
SOLUTIONS TO PROBLEM SET 6

MAT 141

Abstract. These are the solutions to Problem Set 6 for the Euclidean and Non-
Euclidean Geometry Course in the Winter Quarter 2020. The problems were posted
online on Saturday Feb 29 and due Friday March 6 at 10:00am.

Problem 1. (20 pts) Regions in Euclidean Plane and 2-Sphere. A set of lines
L := {L1, L2, . . . , Ln} be a set of n lines is said to be generic if not two lines in L are
parallel, and no three lines in L intersect at a point.

(a) Let L = {L1, L2, . . . , Ln} be a generic set of n lines in R2. Show that the
complement

R2 \ (L1 ∪ L2 ∪ . . . ∪ Ln),

of the lines in L inside the Euclidean plane R2 consists of
n2 + n+ 2

2
regions.

(b) Show that Part.(a) might not hold if L is not necessarily a generic set.

(c) Let L = {L1, L2, . . . , Ln} be a generic set of n lines in S2. Show that the
complement

S2 \ (L1 ∪ L2 ∪ . . . ∪ Ln),

of the lines in L inside the Euclidean plane S2 consists of n2 − n+ 2 regions.

(d) Show that Part.(c) might not hold if L is not necessarily a generic set.

(e) Consider L as in Part.(c). Show that the total number of intersections of all
the lines in L is n(n− 1).

Solution.

(a) We prove this formula by induction on the number n of lines in L. It is clearly
true for n = 0. Now take n to be some general number of lines, and assume
the formula holds for the first n− 1 lines. That is, we are assuming that

R2 \ {L1 ∪ L2 ∪ · · · ∪ Ln−1}

consists of
(n− 1)2 + (n− 1) + 2

2

regions. Since no two lines are parallel, the final line Ln crosses through all
n− 1 previous lines, introducing a new region with each new line that it cuts.
Therefore, cutting with Ln introduces n new regions (there is an extra region
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created after crossing the final line as well), for a grand total of

(n− 1)2 + (n− 1) + 2

2
+ n =

n2 + n+ 2

2
regions.

(b) Take any n ≥ 1 lines that pass through a common point. The complement of
these lines in R2 is 2n regions, which is distinct from (n2 + n+ 2)/2 if n 6= 1, 2.
Or, take n parallel lines, for a total of n + 1 regions, which is distinct from
(n2 + n+ 2)/2 if n 6= 1. Of course, for n = 1, all lines are generic.

(c) We again use induction on the number n of lines in L. The formula is clearly
true for n = 1. Now take n to be some general number of lines, and assume
the formula holds for the first n− 1 lines. That is, we are assuming that

S2 \ {L1 ∪ L2 ∪ · · · ∪ Ln−1}
consists of

(n− 1)2 − (n− 1) + 2

regions. The last great circle Ln crosses each of the other n − 1 great circles
twice, introducing 2(n−1) new regions. Therefore, the total number of regions
is now

(n− 1)2 − (n− 1) + 2 + 2(n− 1) = n2 − n+ 2.

(d) Again take any n lines that pass through a common point. The complement in
S2 is again 2n regions, which is distinct from n2 − n+ 2 if n 6= 1, 2. Any set of
1 or 2 lines is trivially generic.

(e) Each pair of lines in L intersects in two antipodal points. Since no two different
pairs share any of these points, the total number of intersections is twice the
number of pairs. That is, there are

2 ·
(
n

2

)
= n(n− 1)

total intersections.

Problem 2. (20 pts) Stereographic Projection From North and South Poles.
Let N = (0, 0, 1) ∈ S2 be the North pole and S = (0, 0,−1) the South pole of the
2-sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
Let us identify the 2-plane Π = {(x, y, z) ∈ R3 : z = 0} ⊆ R3 with the Euclidean plane
R2 = {(u, v) : u, v ∈ R2} via (x, y, 0) = (u, v).

(a) Let πN : S2 \ {N} −→ R2 be the stereographic projection from the North pole
N , defined by

πN(P ) = Q, P ∈ S2, Q ∈ R2,

where Q is the unique intersection point LP,N ∩Π distinct from N , and LP,N ⊆
R3 is the unique line containing P,N ∈ R3. Find a formula of πN(P ) = (u, v)
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in terms of P = (x, y, z).

(b) Find a formula for the inverse map π−1N : R2 −→ S2 \ {N}, i.e. the unique map
such that π−1N ◦ πN = idS2 and πN ◦ π−1N = idR2 .

(c) Let πS : S2 \ {S} −→ R2 be the stereographic projection from the South pole
S, defined by

πS(P ) = Q, P ∈ S2, Q ∈ R2,

where Q is the unique intersection point LP,S∩Π distinct from S, and LP,S ⊆ R3

is the unique line containing P, S ∈ R3. Find a formula of πS(P ) = (u, v) in
terms of P = (x, y, z).

(d) Show that there exists an isometry ϕ : S2 −→ S2 such that πS = πN ◦ ϕ. Is
this isometry unique ?

Solution.

(a) Let’s give our point coordinates: P = (x, y, z) ∈ S2 ⊆ R3. The line LP,N is
best written out with a parametrization by starting at N and using the velocity
vector P −N = (x, y, z − 1). Then

LP,N = {N + t(P −N) : t ∈ R} = {(tx, ty, t(z − 1) + 1) : t ∈ R} ⊆ R3.

This crosses the plane Π when t(z − 1) + 1 = 0, or t = 1/(1 − z). The full
coordinates for this value of t are (x/(1− z), y/(1− z), 0), so we see that

(1) (u, v) = πN(x, y, z) =

(
x

1− z
,

y

1− z

)
.

(b) We’ll play the same game as in (a). For a point U ∈ Π in the plane, with
coordinates U = (u, v, 0), the line from the North pole N to U is

LU,N = {(tu, tv,−t+ 1) : t ∈ R}.

We want to know where this line crosses the sphere, so we require

(tu)2 + (tv)2 + (−t+ 1)2 = 1.

Throwing out the solution t = 0 (this corresponds to the North pole), we find

t =
2

u2 + v2 + 1
.

Substituting back into the line LU,N and using

− 2

u2 + v2 + 1
+ 1 =

u2 + v2 − 1

u2 + v2 + 1
,

we find

(x, y, z) = π−1N (u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.
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The line LU,N connecting U to N and intersecting P in the sphere S2 is exactly
the line LP,N connecting P to N and intersecting U in the plane Π. This con-
firms that π−1N is a proper inverse on both sides of πN .

(c) We repeat the process from before. Now, for P = (x, y, z), the velocity vector
is P − S = (x, y, z + 1), and

LP,S = {S + t(P − S) : t ∈ R} = {(tx, ty, t(z + 1)− 1) : t ∈ R} ⊆ R3.

The third coordinate is 0 when t = 1/(1 + z), so

(2) (u, v) = πS(x, y, z) =

(
x

1 + z
,

y

1 + z

)
.

(d) Let ϕ : S2 −→ S2 be reflection in the xy-plane Π. That is,

ϕ(x, y, z) = rE(x, y, z) = (x, y,−z).

Then

πN ◦ ϕ(x, y, z) = πN(x, y,−z) =

(
x

1 + z
,

y

1 + z

)
= πS(x, y, z).

as desired.

The isometry ϕ is indeed unique. In fact, it is the only set-wise map, isometric
or not, that can do this. In trying to solve the formula πS = πN ◦ ϕ for ϕ,
we could just compose both sides on the left with π−1N to uniquely pin down
π−1N ◦πS = ϕ. Since the left-hand side is a precise function, ϕ has no choice but
to match it. We could have calculated ϕ in this way, but it was easier to just
guess that reflection would work.

Remark. It was somewhat special that π−1N ◦ πS turned out to be an isometry
at all, given that it is the composition of two very non-isometric projections.
This result heuristically tells us that these two projections are essentially the
same, since they “agree up to isometry”.

Problem 3. Properties of πN . Let πN : S2 \ {N} −→ R2 be the stereographic
projection from the North pole.

(a) Show that πN is bijective.

(b) Let P ∈ S2 a point in the equator E = S2 ∩Π. Show that πN(x, y, z) = (x, y).

(c) Describe the image of the lower hemisphere S2 ∩ {(x, y, z) : z ≤ 0}.

(d) Describe the image of the upper hemisphere (S2 \ {N}) ∩ {(x, y, z) : z ≥ 0}.

(e) Let θ ∈ S1 be an angle. Find an isometry φ ∈ Iso(S2 \ {N}) such that

πN ◦ φ = R(0,0),θ ◦ πN ,
where R(0,0),θ in the rotation of angle θ centered at the origin (0, 0) ∈ R2

u,v.
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Solution.

(a) A map is bijective if and only it has a two-sided inverse. We constructed such
an inverse for πN in Problem 1(b), so stereographic projection is definitely bijec-
tive. The take away from this is that we get a natural correspondence between
the sphere (minus a point) and the plane.

(b) This is true geometrically because the line LP,N from P to the North pole
crosses the plane Π already at P . Symbolically, since P is on the equator, it
has the form P = (x, y, 0). Then

πN(P ) = πN(x, y, 0) =

(
x

1− 0
,

y

1− 0

)
= (x, y).

(c) We will show that the lower hemisphere is mapped under πN to the unit disk
in the plane,

D = {(u, v) ∈ R2 : u2 + v2 ≤ 1.

The image of P = (x, y, z) under πN is 1
1−z (x, y), which has norm

x2 + y2

(z − 1)2
=

√
1− z2

(z − 1)2
=

√
1− z2

(z − 1)4
.

We will show that the final expression under the square root is at most 1 when
z ≤ 0. Call this expression r(z). Clearly r(0) = 1. Furthermore r′(z) =
2(z + 2)/(z − 1)4, which is positive for all z < 1 (and all points in S2 \ {N}
have z-coordinate less than 1). Therefore r(z) ≤ 1 for z < 0.

This proves that πN(P ) is in the unit disk D. We also want to show that the
entire disk is actually covered under πN by the lower hemisphere. Indeed, a
point in D has the form (u, v) for u2 + v2 ≤ 1. Under π−1N , this corresponds in
the sphere to

(3)

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

Since u2 + v2−1 ≤ 0, we see that the third coordinate of the image is negative,
so our point (u, v) is the image under πN of some point in S2 located in the
lower hemisphere.

(d) Since πN is a bijection which maps the lower hemisphere to the unit disk D,
it must map the upper hemisphere to the remaining part of the plane, R2 \D
(everything but the unit disk).

More directly, the fact that r′(z) above is positive for all z < 1 gives us imme-
diately that r(z) ≥ 1 for all 0 ≤ z < 1, which takes care of the whole upper
hemisphere. The opposite direction is also similar to the lower hemisphere.
Take a point (u, v) in R2 \D, meaning u2 + v2 ≥ 1. Now u2 + v2 − 1 ≥ 0, so
the third coordinate in 3 is positive. Therefore, (u, v) is the image under πN of
some point in the upper hemisphere of S2.
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Remark. We now see that the correspondence induced by stereographic pro-
jection can be refined to three separate correspondences: the equator with itself,
the lower hemisphere with the unit disk, and the upper hemisphere with the
complement of the unit disk.

(e) Stereographic projection is a phenomenon mostly about the z-axis, and it is
totally uniform under rotations about this axis. Therefore, our guess should be
that φ is essentially the same map as R(0,0),θ, a rotation about the z axis by θ.
Our notation was Rz,θ, which was really just the matrix R(0,0),θ in the xy-plane
plus no movement in the z direction. Formally,

πN ◦Rz,θ(x, y, z) = πN


cos θ − sin θ 0

sin θ cos θ 0
0 0 1

xy
z




= πN(x cos θ − y sin θ, x sin θ + y cos θ, z)

=
1

1− z
(x cos θ − y sin θ, x sin θ + y)

=
1

1− z

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
= R(0,0),θ ◦ πN(x, y, z),

so the choice φ = Rz,θ works.

Remark. If we think of the plane R2
u,v as just the xy-plane Π in R3 (which is

always fine), then the 2× 2 matrix R(0,0),θ naturally becomes exactly the 3× 3
matrix Rz,θ. So stereographic projection πN commutes with rotation about
the z-axis, as long as we think about things correctly. We can now feel free
to perform Rz,θ rotations at will when dealing with stereographic projections.
These are our “suitable isometries” that can simplify problems.

Problem 4. (20 pts) Stereographic Projection and Lines. Let us consider the
stereographic projection πN : S2 \ {N} −→ R2 from the North pole.

(a) Let L ⊆ S2 be a line. Show that the image πN(L) is a line if and only if L
passes through the North pole.

(b) Let L ⊆ S2 be a line such that N 6∈ L. Show that πN(L) is a circle.

(c) Show that πN is not an isometry.

(d) Prove that πN preserves angles.
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Solution.

(a) Technically we should be omitting the north pole N = (0, 0, 1) from all great
circles before we plug them into πN . This will always be assumed, so in practice
we restrict to −1 ≤ z < 1 for the third-coordinate in S2.

From Problem 4 of Problem Set 5, The line L must necessarily pass through
the equator in two antipodal points. By a suitable rotation about the North
pole (see the Remark following the solution of Problem 3(e) above), we may
assume that L passes through the points (1, 0, 0) and (−1, 0, 0).

If L passes through the North pole, then L is the unit circle in the xz-plane,

L = {(x, 0, z) ∈ R3 : x2 + z2 = 1}.

Therefore,

πN(L) = {πN(x, 0, z) : x2 + z2 = 1} =

{(
x

1− z
, 0

)
∈ R2

u,v : x2 + z2 = 1

}
.

To show that this set is actually the whole u-axis (first coordinate) in R2, we
just need to argue that the equations x/(1 − z) = t and x2 + z2 = 1 can be
solved simultaneously for any t ∈ R. It is readily seen that

x =
2t

t2 + 1
and z =

t2 − 1

t2 + 1

are the solutions, so we conclude that

πN(L) = {(t, 0) ∈ R2
u,v : t ∈ R}

is a line in the plane.

Now suppose L does not contain the North pole. By (b) below, πN(L) is a
circle, so it cannot be a line in R2! As a more direct proof, we will show that
πN(L) is a bounded set in the plane. Since lines in the plane are unbounded,
this means that πN(L) cannot be a line.

Since N 6= L, L is a full circle in the domain S2 \ {N} of πN . Therefore, there
is a point of L, lying in this domain, which achieves the maximum height of
L; that is, a point (x̂, ŷ, ẑ) ∈ L such that no other point in L has z-coordinate
greater than ẑ. Take any point (x, y, z) ∈ L. We necessarily have z ≤ ẑ, and
stereographic projection gives us

πN(x, y, z) =

(
x

1− z
,

y

1− z

)
in the plane. Both of the coordinates x/(1 − z) and y/(1 − z) have magni-
tude less than or equal to 1/(1 − ẑ). Since this applies to any point in L, we
see that πN(L) is contained in the square centered at (0, 0) with side length
2/(1− ẑ). Therefore, πN(L) is a bounded set in the plane, so it cannot be a line.

Remark. Note that the argument above fails if L contains the North pole, be-
cause then there would not be a highest point (we must omit the North pole N
from L). This is why πN(L) is an unbounded line if L contains N . The higher
you move up on the sphere, the farther from the origin you’ll be sent by πN .
As you approach the North pole, your image under πN approaches “infinity”
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in the plane.

(b) Stillwell uses complex coordinates in Section 3.4 to show this result by relating
reflections in the sphere to inversions in circles in the plane. We present here a
more elementary (though perhaps messier) proof using parametrizations.

Since L is a line in S2 avoiding the North pole, we may perform a suitable Rz

isometry and assume that L meets the equator at exactly (1, 0, 0) and (−1, 0, 0)
(we can ignore the case where L is the equator itself, since the result is obviously
true then). Then L is actually the image of the equator under some Rx,θ

rotation. By symmetry and a suitable Rz rotation, it suffices to restrict to
the case 0 < θ < π/2. A good parametrization of the equator is (cos t, sin t),
0 ≤ t < 2π, so our line L has the parametrization

L = {Rx,θ(cos t, sin t) : t ∈ [0, 2π)}
= {(cos t, cos θ sin t, sin θ sin t) : t ∈ t ∈ [0, 2π)}.

Now we stereographically project:

πN(L) = {πN(cos t, cos θ sin t, sin θ sin t) : t ∈ t ∈ [0, 2π)}

=

{(
cos t

1− sin θ sin t
,

cos θ sin t

1− sin θ sin t

)
: t ∈ [0, 2π)

}
.(4)

We need to argue that this image set is actually the parametrization of some
circle in the plane. The problem is that this will not be a parametrization with
constant velocity (since πN is not an isometry).

We first find a candidate for the center and radius of this circle. By the symme-
try of the problem, the center of this circle should lie somewhere on the y-axis
of the plane. Therefore, we just need to find the extreme y-coordinates of π(L).
Their average will be the center of our circle, and their common distance to
that center will be our radius. The extreme values of

cos θ sin t

1− sin θ sin t

occur at t = π/2 and t = 3π/2 which can be verified with calculus. (We could
also know that these are correct by noticing that these values correspond to
the high and low points of the original circle great circle L. We already know
that πN(P ) is closer to the origin the lower P is in R3, and that πN preserves
azimuthal angles. So we can conclude that these values of t will attain the
extreme y-values of πN(L).) Substituting in and simplifying, we see that the
extreme y-values of π(L) are(

0,
sin θ + 1

cos θ

)
, and

(
0,

sin θ − 1

cos θ

)
.

Since the x-coordinates of these points are 0, this confirms our intuition that
the center of our circle lies on the y-axis.

The average of these extreme y-values is tan θ, from which each value differs by
sec θ. Therefore, our candidate for πN(L) is the circle

C = {(sec θ cos t, sec θ sin t+ tan θ) : t ∈ [0, 2π)}.
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To prove that πN(L) = C we could find a reparametrization for πN (perhaps by
finding the arc-length parameter with integration), but there is an easier clever
way. After some trigonometry, you can confirm that the coordinates given for
πN(L) in 4 satisfy the equation x2 + (y − tan θ)2 = sec2 θ, which proves that
πN(L) lies in C. To see that it covers all of C, notice that we already know
that πN(L) covers the extreme y-values of C. Since πN is continuous, the in-
termediate value theorem tells us that πN(L) must hit all y-values between
these extremes. By obvious symmetry, this covering must occur on both paths
between extreme y-values, which covers all of C.

(c) There are many ways to see this. In particular, since πN carries great circles
through N to lines in R2, it takes something with length 2π to something with
infinite length. Since isometries preserve distance, stereographic projection is
not an isometry.

(d) All angles in S2 are achieved by the intersection of lines. The angle at the
intersection of two lines can be defined as the angle between the planes in R3

that cut out those lines in S2, or it can be defined more intrinsically as the angle
between the tangent vectors of those lines at the point of intersection. This
second definition is very useful in describing isometries, and also in describing
the weaker notion of angle-preserving maps (also called conformal maps).

Suppose we have two tangent vectors u and v on the sphere, both based at the
same point P = (x, y, z) ∈ S2. The angle θ between u and v is given by

cos θ =
u · v
‖u‖ ·‖v‖

.

We want to show that as the map πN acts on these vectors, it does not change
this angle. The way that the function πN acts on vectors (based at (x, y, z)) is
via its derivative matrix (also called the Jacobian),

DπN =

[
1

1−z 0 x
(1−z)2

0 1
1−z

y
(1−z)2

]
,

which we obtained by taking the partial derivatives of 2. This matrix takes
in the vectors u and v based at P (which have 3 components), and outputs
vectors (with 2 components) based at πN(P ). To show that the angle cos θ is
unchanged, we want to prove that

(5)
u · v
‖u‖ ·‖v‖

=
DπNu ·DπNv
‖DπNu‖ ·‖DπNv‖

.

Note that the condition for an isometry would be u · v = DπNu ·DπNv, which
is certainly not true, because for u = v, this would say that πN preserves all
norms (which we are about to show is false). Give our vectors the components

u =

uxuy
uz

 and v =

vxvy
vz

 .
We will need the following important observation: the tangent plane to S2

at the point P = (x, y, z) is comprised of the vectors (based at P ) which are
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perpendicular to the radial line from the origin to P . Therefore, we have the
relations

0 = P · u = xux + yuu + zuz and(6)

0 = P · v = xvx + yvu + zvz.

All that’s left to do is calculate. To start,

DπNu =

[
1

1−z 0 x
(1−z)2

0 1
1−z

y
(1−z)2

]uxuy
uz

 =
1

1− z

[
ux + x

1−zuz
uy + y

1−zuz

]
,

and similarly for DπNv. Using 6 and x2 + y2 + z2 = 1, the norm is

‖DπNu‖ =
1

1− z

((
ux +

x

1− z
uz

)2

+

(
uy +

y

1− z
uz

)2
)1/2

=
1

1− z

(
u2x + u2y +

x2 + y2

(1− z)2
u2z +

2uz
1− z

(xux + yuy)

)1/2

=
1

1− z

(
u2x + u2y +

1− z2

(1− z)2
u2z +

2uz
1− z

(−zuz)

)1/2

=
1

1− z

(
u2x + u2y +

1 + z

1− z
u2z −

2z

1− z
u2z

)1/2

=
1

1− z
(u2x + u2y + u2z)

1/2

=
1

1− z
‖u‖ ,

and similarly for v (note that the norm depends only on the magnitude of our
vector and the location of its base, not on its direction).

Substituting this into 5, we now just need to show that

(1− z)2(DπNu ·DπNv) = u · v.
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Indeed,

(1− z)2(DπNu ·DπNv) =

[
ux + x

1−zuz
uy + y

1−zuz

]
·
[
vx + x

1−zvz
vy + y

1−zvz

]

= uxvx + uyvy +
x2 + y2

(1− z)2
uzvz

+
1

1− z
(
x(uxvz + vxuz) + y(uyvz + vyuz)

)
= uxvx + uyvy +

1− z2

(1− z)2
uzvz

+
1

1− z
(
(xux + yuy)vz + (xvx + yvy)uz

)
= uxvx + uyvy +

1 + z

1− z
uzvz

+
1

1− z
(
(−zuz)vz + (−zvz)uz

)
= uxvx + uyvy + uzvz

= u · v,

which completes the proof.

If you don’t like tangent vectors, here is another more elementary approach,
though it is again messier than the approach using complex coordinates. Angles
in S2 are created when lines meet, so we need to look at two intersecting lines.
We omit the case where two lines L1 and L2 intersect at the North pole, because
that’s not in the domain of πN . By a suitable Rz rotation, we can assume that
L1 intersects the equator E at the standard points (1, 0, 0) and (−1, 0, 0).

First we consider the case where L2 also intersects E at (±1, 0, 0). From the
construction in the solution to (b) above, we are then in the situation where
L1 is some Rx,θ1 rotation of E, and L2 is some Rx,θ2 rotation of E. Clearly the
angle between L1 and L2 is θ2 − θ1, where we can without loss of generality
assume that θ2 > θ1. Since θ2 − θ1 = (θ2 − 0) − (θ1 − 0), we actually only
have to prove the case where θ1 = 0. All images under πN of lines of this form
intersect at (1, 0) and (−1, 0), so the resulting circles in the plane will still meet
in angles that satisfy the same additive property as the lines in S2.

Hence, to prove the case where both L1 and L2 intersect at (±1, 0, 0), it suffices
to consider the case where L1 = E and L2 := L := Rz,θE for some 0 < θ < π/2.
These two lines clearly meet at angle θ. We have πN(E) = E, and from (b) we
know that

(7) πN(L) =

{(
cos t

1− sin θ sin t
,

cos θ sin t

1− sin θ sin t

)
: t ∈ [0, 2π)

}
.

(We could instead use the constant-velocity parametrization found in (b), but
then the values of t won’t match up with the original parametrization of E)

Now, πN(L) meets E at (±1, 0) as usual, so we need to prove that these meetings
have angle θ. Under the usual parametrization, the tangent vector to E at (1, 0)
is (0, 1)T. On the other hand, applying d/dt to 7 and evaluating at t = 0 shows
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that the tangent vector to πN(L) at (1, 0) is (sin θ, cos θ)T. which certainly
meets (0, 1)T at angle θ. The case at (−1, 0) is nearly identical. This proves
the result for two lines which meet at (±1, 0, 0) on the equator.

Back to the general case. We have assumed that L1 contains (±1, 0, 0), but L2

meets E at some other pair of antipodal points. We’ll now use ideas from the
solution and Remark of Problem 3(e), where we make no distinction between
R2 rotations in the xy-plane and R3 rotations about the z-axis. There is some
angle ϕ such that L′2 := R−1z,ϕL2 contains (±1, 0, 0), our usual standard form.
Therefore, by the previous case, the angle θ between L1 and L′2 is preserved by
πN .

From the result of Problem 3(e), we know that

πN(L2) = Rz,ϕ

(
πN(L′2)

)
.

So it suffices to show that this rotation Rz,ϕ of the circle πN(L′2) changes the
angle θ made with πN(L1) in exactly the same way as the rotation Rz,ϕ of the
line L′2 changes the angle made with L1. Indeed, suppose L1 = Rx,ψ1E and
L′2 = Rz,ϕRx,ψ2E. These are cut out by planes with normal vectors

Rx,ψ1(0, 0, 1) = (0,− sinψ1, cosψ1) and

Rz,ϕRx,ψ2(0, 0, 1) = (sinϕ sinψ2,− cosϕ sinψ2, cosψ2),

Taking the dot product of these, we see that the angle θ between L1 and L′2
satisfies

(8) cos θ = cosψ1 cosψ2 + cosϕ sinψ1 sinψ2.

(Notice that when ϕ = 0, we get cos θ = cos(ψ1 − ψ2), as expected).

On the other hand, using the results of (b), πN(L1) is the circle with center
(0, tanψ1) and radius r1 = secψ1. The data for πN(L′2) is similar, except that
we should apply the rotation Rz,ϕ. This means that πN(L′2) has center

(− sinϕ tanψ2, cosϕ tanψ2)

and radius r2 = secψ2.

Finally, we use a classical result from geometry: given two intersecting circles
with radii r1 and r2, whose centers are separated by distance d, they intersect
at an angle θ given by

(9) cos θ =
r21 + r22 − d2

2r1r2
.

We know the centers of our circles πN(L1) and πN(L′2), so we can find the
distance d. Using all of this, and a lot of trigonometry, the right-hand side of
9 will match the right-hand side of 8. This was what we needed to show.

Problem 5. (20 pts) Stereographic Projection for 1-sphere. Let us consider
the 1-sphere S1 = {(x, y) ∈ R2 : x2 + y2 = 1} with its North Pole N = (0, 1), and
H = {(x, y) ∈ R2 : y = 0} ⊆ R2 the horizontal x-axis. Define the stereographic
projection

πN : S1 \ {N} −→ R, πN(P ) = Q,
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where P = (x, y) ∈ S1, and Q = u ∈ R is defined as the unique intersection point
LP,N ∩H distinct from N , and LP,N ⊆ R2 is the unique line containing P,N ∈ R2.

(a) Find a formula of πN(P ) = u in terms of P = (x, y).

(b) Show that (x, y) ∈ S1 \ {N} has rational coordinates, i.e. x, y ∈ Q, if and only
if πN(x, y) is a rational number.

(c) Show that πN : (S1 \ {N}) ∩Q2 −→ Q is a bijection.

(d) Show that the inverse image π−1N (u) of a rational point u = m/n ∈ Q ⊆ R,
m,n ∈ N, is given by

(x, y) =

(
2nm

n2 +m2
,
m2 − n2

n2 +m2

)
.

(e) Let m,n ∈ N be two natural numbers, and define

a = m2 − n2, b = 2mn, c = m2 + n2.

Show that a2 + b2 = c2.

(f) Euclid’s Theorem For Phytagorean Triples. (Optional: Not graded) Let a, b, c ∈
N be a primitive Phytagorean triple, i.e. a2 + b2 = c2 such that gcd(a, b, c) = 1.
Show that there exist m,n ∈ N such that

a = m2 − n2, b = 2mn, c = m2 + n2.

Solution.

(a) The line LP,N connecting N = (0, 1) to P = (a, b) is cut out by the equation

y − 1 =
b− 1

a
x,

which has x-intercept a/(1− b). Therefore,

u = πN(x, y) =
x

1− y
.

Notice that this resembles stereographic projection for the 2-sphere.

(b) The difference of two rational numbers is a rational number, and the quotient of
two rational numbers is a rational number, so if x, y ∈ Q are rational, certainly
πN(x, y) = x/(1− y) is rational too.

Conversely, suppose πN(x, y) is rational, so πN(x, y) = m/n for some integers
m,n with m 6= 0. Using the fact that (x, y) ∈ S1 satisfies x2 + y2 = 1, we have

m

n
= πN(x, y) =

x

1− y
= ±

√
1− y2

1− y
,

which has solution

y =
m2 − n2

m2 + n2
.
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Therefore, y is rational. Since x = (1 − y)πN(x, y) = (1 − y)m/n, we see that
x is also rational.

(c) In (b) above, we showed that this map makes sense: that is, πN actually does
map (S1 \ {N}) ∩ Q2 (rational points in the domain) to Q (rational numbers
in the target space). The full map πN : S1 \ {N} −→ R is already bijective (its
inverse can be found as in Problem 2(b), or, if you like, this projection is really
just a restriction of the higher-dimensional version to a particular great circle
going through the North pole), so certainly our restriction is one-to-one.

Finally, we must show that it is onto, meaning that πN hits every rational
number. Indeed, we showed above in (b) that if πN(x, y) = m/n, then the
rational pair

(10) (x, y) =

(
m

n

(
1− m2 − n2

m2 + n2

)
,
m2 − n2

m2 + n2

)
=

(
2mn

n2 +m2
,
m2 − n2

m2 + n2

)
achieves the value m/n under the map πN .

(d) We could find the full inverse function just like we did in Problem 2(b), but
for rational numbers, we’ve already done the necessary work. We essentially
solved for (x, y) in the proof of (b), and we wrote it explicitly in 10.

(e) We showed in (c) and (d) above that

(x, y) =

(
2mn

n2 +m2
,
m2 − n2

m2 + n2

)
=

(
b

c
,
a

c

)
is the solution to πN(x, y) = m/n. In particular, it is a point on the circle S1,
so

1 = x2 + y2 =

(
b

c

)2

+

(
a

c

)2

.

Multiplying through by c2, we find c2 = b2 + a2, as desired.

Alternatively, we can just compute:

a2 + b2 = (m2 − n2)2 + (2mn)2 = (m2 + n2)2 = c2.

Remark. Therefore, from elementary geometry, we have constructed an infi-
nite set of Pythagorean triples! One triple for each pair of positive integers m,n.

(f) Since a, b, and c are pairwise coprime (meaning the gcd of any pair of them is
1), it cannot be true that both a and b are even. Since one of them is odd, by
relabeling if necessary, we may assume that a is odd. If b were also odd, then

c2 ≡ a2 + b2 ≡ 1 + 1 ≡ 2 (mod 4),

(where we used that 12 ≡ 32 ≡ 1 (mod 4)), which is a contradiction because
nothing squares to 2 mod 4. Therefore, b is even. Finally, c must be odd
(because two even numbers cannot be coprime).
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Next, we form the positive integers

s =
c+ a

2
and d =

c− a
2

.

(They are integers because c and a are both odd, so their sum and difference
are both even. The latter is positive because c > a is the hypotenuse of a right
triangle.) These two numbers are also coprime, because any common divisor
would divide s+ d = c and s− d = a, contradicting the assumption that a and
c are coprime. Next,

b =
√
c2 − a2 =

√
(s+ d)2 − (s− d)2 = 2

√
sd.

Since b is even,
√
sd is an integer, so sd is a perfect square. Therefore, since

s and d share no common factors, they must each be perfect squares, so write
s = m2 and d = n2 for positive integers m and n. Then

m2 − n2 = s− d = a, 2mn = 2
√
sd = b, and m2 + n2 = s+ d = c

as desired.

Remark. This answers the question: “did part (e) actually construct all pos-
sible Pythagorean triples?” The answer is “almost”. Given any Pythagorean
triple (a, b, c), we can scale the corresponding triangle down by gcd(a, b, c).
The resulting side lengths will still be integers, and they will form a primitive
Pythagorean triple. Therefore, Euclid’s formula in (e) produces all Pythagorean
triples up to rescaling.


