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Abstract. We construct closed arboreal Lagrangian skeleta associated to links of isolated
plane curve singularities. This yields closed Lagrangian skeleta for Weinstein pairs (C2,Λ)
and Weinstein 4-manifolds W (Λ) associated to max-tb Legendrian representatives of alge-
braic links Λ ⊆ (S3, ξst). We provide computations of Legendrian and Weinstein invariants,
and discuss the contact topological nature of the Fomin-Pylyavskyy-Shustin-Thurston clus-
ter algebra associated to a singularity. Finally, we present a conjectural ADE-classification
for Lagrangian fillings of certain Legendrian links and list some related problems.

1. Introduction

The object of this note is to study a relation between the theory of isolated plane curve
singularities1, as developed by V.I. Arnol’d and S. Gusein-Zade [8, 9, 10, 61], N. A’Campo
[1, 2, 3, 4], J.W. Milnor [75] and others, and arboreal Lagrangian skeleta of Weinstein 4-
manifolds. In particular, we construct closed Lagrangian skeleta for the infinite class of
Weinstein 4-manifolds obtained by attaching Weinstein 2-handles [28, 108] to the link of
f : C2 −→ C, where f defines an isolated plane curve singularity at the origin. These closed
Lagrangian skeleta allow for an explicit computation of the moduli of microlocal sheaves
[60, 80, 97] and also explain the symplectic topology origin of the Fomin-Pylyavskyy-Shustin-
Thurston cluster algebra [45] of an isolated singularity.

1.1. Main Results. The advent of Lagrangian skeleta and sheaf invariants have underscored
the relevance of Legendrian knots in the study of symplectic 4-manifolds [21, 28, 49, 97,
98]. The theory of arboreal singularities, as developed by D. Nadler [78, 79], provides a
local-to-global method for the computation of categories of microlocal sheaves [80]. These
invariants, in turn, yield results in terms of Fukaya categories [49, 50]. The existence of
arboreal Lagrangian skeleta has been crystallized by L. Starkston [100] in the context of
Weinstein 4-manifolds, where this article takes place.

Given a Weinstein 4-manifold (W,λst), it is presently a challenge to describe an associated ar-
boreal Lagrangian skeleta L ⊆W . In particular, there is no general method for finding closed
arboreal Lagrangian skeleta2, or deciding whether these exist. This manuscript explores this
question by introducing a new type of closed arboreal Lagrangian skeleta for Legendrian links
Λf ⊆ (S3, ξst) which are maximal-tb Legendrian representatives of the smooth link of an holo-
morphic germ f in (C2, 0). In practice, we restrict to studying polynomials f : C2 −→ C,
f ∈ C[x, y], which define an isolated singularity at the origin, and also suppose that a real

morsification f̃t ∈ R[x, y] of f exists, t ∈ (0, 1]. This is an assumption, and we will always

take f ∈ R[x, y] as our germs. For simplicity of notation, we denote by f̃ a real morsification

f̃t ∈ R[x, y] for some generic but fixed choice of the deformation parameter t ∈ (0, 1]. The
discussion in this note unravels thanks to the following geometric fact.

1The reader is referred to [54] for a beautiful and welcoming introduction to the subject.
2That is, a compact arboreal Lagrangian skeleta L ⊆ (W λ) such that ∂L = 0.
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Theorem 1.1. Let f ∈ C[x, y] define an isolated singularity at the origin, Λf ⊆ (S3, ξst) be

its associated Legendrian link and f̃ ∈ R[x, y] a real morsification. Then, the Weinstein pair
(C2,Λf ) admits the closed arboreal Lagrangian skeleton

L(f̃) = Lf̃ ∪T (ϑf̃ ),

obtained by attaching the Lagrangian D2-thimbles T (ϑf̃ ) of f̃ to an embedded exact La-

grangian surface Lf̃ ⊆ C2, where Lf̃ ⊆ C2 is (compactly supported) smoothly isotopic to the

Milnor fiber Mf ⊆ C2 of f . �

The two objects Λf and L(f̃) in the statement of Theorem 1.1 require an explanation, which
will be given. We rigorously define the notion of a Legendrian link Λf ⊆ (S3, ξst) associated
to the germ f ∈ C[x, y] of an isolated curve singularity in Section 2. Note that the smooth
link of the singularity f ∈ C[x, y], as defined by J. Milnor [75], and canonically associated to
f , is naturally a transverse link Tf ⊆ (S3, ξst) [38, 53, 57]. The Legendrian link Λf ⊆ (S3, ξst)
will be a maximal-tb Legendrian approximation of Tf . The notation (C2,Λf ) refers to the
Weinstein pair (C2,R(Λf )), where R(Λf ) ⊆ (S3, ξst) is a small (Weinstein) annular ribbon
for the Legendrian link Λf .

The Lagrangian skeleton L(f̃) is also defined in Section 2. Note that the Milnor fibration of
f ∈ C[x, y] is a symplectic fibration on (C2, ωst), whose symplectic fibers bound the trans-

verse link Tf ⊆ (S3, ξst). Nevertheless, the Lagrangian skeleton L(f̃) is built from an exact

Lagrangian surface Lf̃ and the vanishing cycles ϑf̃ associated to a real morsification f̃ . The

Lagrangian surface Lf̃ is also introduced in Section 2. Intuitively, in the same manner that

Λf ⊆ (S3, ξst) is a Legendrian approximation of Tf ⊆ (S3, ξst), the exact Lagrangian surfaces
Lf̃ ⊆ (C2, dλst) are Lagrangian analogues of the symplectic Milnor fiber Mf ⊆ (C2, dλst).

Indeed, Lf̃ are smoothly indistinguishable from Mf , and they only become different geomet-

ric objects once we incorporate the symplectic structure (C2, dλst). Theorem 1.1 is a relative
statement, being about a Weinstein pair (C2,Λf ) and not just about a Weinstein 4-manifold.
Hence, it is useful in the absolute context, as follows.

Consider a Legendrian knot Λ ⊆ (S3, ξst) in the standard contact 3-sphere and the Weinstein
4-manifold W (Λ) = D4 ∪Λ T ∗D2 obtained by performing a 2-handle attachment along Λ,
i.e. its Weinstein trace. A front projection for Λ (almost) provides an arboreal skeleton
for the Weinstein 4-manifold W (Λ), as explained in [100]. Nevertheless, the computation of
microlocal sheaf invariants from this model is far from immediate, nor exhibits the cluster
nature of the moduli space of Lagrangian fillings. The symplectic topology of a Weinstein
manifold is much more visible, and invariants more readily computed, from a closed arboreal
Lagrangian skeleton, i.e. an arboreal Lagrangian skeleton which is compact and without
boundary. In particular, Theorem 1.1 provides such a closed Lagrangian skeleton associated
to a real morsification:

Corollary 1.2. Let f ∈ C[x, y] define an isolated curve singularity at the origin, Λf ⊆
(S3, ξst) be its associated Legendrian link and f̃ ∈ R[x, y] a real morsification. The 4-
dimensional Weinstein manifold

W (Λf ) = D4 ∪Λf
(T ∗D2∪ π0(Λf ). . . ∪T ∗D2))

admits the closed arboreal Lagrangian skeleton

L(f̃) ∪∂ (D2∪ π0(Λf ). . . ∪D2),

obtained by attaching the Lagrangian D2-thimbles of f̃ to the compactified surface Lf̃ :=

Lf̃ ∪∂ (D2∪ π0(∂Lf̃ )
. . . ∪D2). �
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Let us see how Theorem 1.1 and Corollary 1.2 can be applied for two simple singularities,
corresponding to the D5 and the E6 Dynkin diagrams. As we will see, part of the strength of
these results is the explicit nature of the resulting Lagrangian skeleta and the direct bridge
they establish between the theory of singularities and symplectic topology.

Figure 1. The D5-Legendrian link Λf ⊆ (S3, ξst) (Left) and a closed La-
grangian arboreal skeleton for the Weinstein 4-manifold W (Λf ) (Right), ob-
tained by attaching 5 Lagrangian 2-disks to the cotangent bundle (T ∗Σ2, λst).

Example 1.3. (i) First, consider the germ of the D5-singularity f(x, y) = xy2 + x4, the
Legendrian link associated to this singularity is depicted in Figure 1 (Left). The Weinstein
4-manifold W (Λf ) = D4 ∪Λf

(T ∗D2 ∪ T ∗D2) admits the closed arboreal Lagrangian skeleton
depicted in Figure 1 (Right). This Lagrangian skeleton is associated to a real morsification

f̃(x, y) = (x + 1)(4x3 − 3x + 2y2 − 1) of f(x, y), whose divide {(x, y) ∈ R2 : (x + 1)(4x3 −
3x + 2y2 − 1) = 0} is depicted in Figure 4. The D5-Dynkin diagram is readily seen in
the unoriented intersection quiver of the boundaries of the Lagrangian 2-disks added to the
(smooth compactification) of the genus 2 Milnor fiber; this unoriented intersection quiver for
the vanishing cycles is also drawn in Figure 4 (Left).

Figure 2. Closed Lagrangian arboreal skeleton associated to the simple E6-
singularity f(x, y) = x3 + y4, according to Corollary 1.2.

(ii) Second, consider the germ of the singularity f(x, y) = x3 + y4, the link of the singularity
is the maximal-tb positive torus knot Λf ∼= Λ(3, 4) ⊆ (S3, ξst). The Weinstein 4-manifold
W (Λf ) = D4 ∪Λf

T ∗D2 admits the closed arboreal Lagrangian skeleton depicted in Figure 2.

This Lagrangian skeleton is associated to a real morsification f̃(x, y) = 4x3 − 3x + 8y4 −
8y2 + 1 of f(x, y); the Lagrangian skeleton is built by attaching six Lagrangian 2-disks to the
Lagrangian zero section Σ3 of the cotangent bundle (T ∗Σ3, λst) of a genus 3 surface. These
2-disks are attached along the six curves in Figure 2, whose intersection quiver is (mutation
equivalent to) the E6 Dynkin diagram; this unoriented intersection quiver is also drawn in
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Figure 3. Another closed Lagrangian arboreal skeleton for the simple E6-
singularity f(x, y) = x3 + y4. This is a more symmetric alternative to the
closed Lagrangian skeleton in Figure 2.

Figure 4 (Right). See also Figure 3 for an alternative closed Lagrangian arboreal skeleton,
also associated to the simple E6-singularity f(x, y) = x3 + y4. �

Figure 4. The two divides associated to the real morsifications that yield
the Lagrangian skeleta in Figures 1 and 2. The implicit equations for the
divides are written in terms of the Chebyshev polynomials Tn(w), determined
by the relations Tn(cos(t)) = cos(nt). The (unoriented) quivers associated to
these two divides are depicted with orange vertices and red edges. Note that
the diagram obtained for E6 is not the E6 Dynkin diagram; once the quiver is
properly oriented, it is mutation equivalent to an orientation of the E6 Dynkin
diagram.

In the two cases of Example 1.3, the real morsifications can be explicitly obtained by using
Chebyshev polynomials Tn(w), which are (uniquely) defined by the functional equations
Tn(cos(t)) = cos(nt), n ∈ N∪{0}. It can be shown that Tn(x) +Tm(y) is a real morsification
of the singularity f(x, y) = xn + ym and thus, for example, the expression T3(x) + T4(y) =
4x3−3x+ 8y4−8y2 + 1 is a real morsification of E6, as used above and depicted in Figure 4.
In general, we will see that the vanishing cycles of a real morsification can be oriented, and
then an oriented quiver can be associated to the skew-symmetric intersection form.

From now onward, we abbreviate “closed arboreal Lagrangian skeleton” to Cal-skeleton.3 Let
(W,λ) be a Weinstein 4-manifold, e.g. described by a Legendrian handlebody, a Lefschetz
fibration or analytic equations in Cn. There are two basic nested questions: Does it admit
a Cal-skeleton? If so, how do you find one ? For instance, consider a max-tb Legendrian

3This seems appropriate, as D. Nadler (UC Berkeley) and L. Starkston (UC Davis), the initial developers
of arboreal Lagrangian skeleta, hold their positions in the University of California.
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representative Λ ⊆ (∂D4, λst) of any smooth knot, does W (Λ) admit a Cal-skeleton ? It might
be that not all these Weinstein 4-manifolds W (Λ) admit such a skeleton: it is certainly not
the case if the Legendrian knot Λ were stabilized, hence the max-tb hypothesis is necessary.
In general, the lack of exact Lagrangians in W (Λ) would provide an obstruction.

Remark 1.4. For simplicity, we focus on oriented exact Lagrangians. Non-orientable Cal-
skeleta should also be of interest. For instance, consider the max-tb Legendrian left-handed
trefoil knot Λ(31) ⊆ (∂D4, λst). Figure 5 (Right) depicts a planar front for it. Then the
Weinstein 4-manifold W (Λ(31)) admits a Cal-skeleton RP2 ∪S1 D2 given by attaching a La-
grangian 2-disk to a Lagrangian RP2, as shown in Figure 5. Indeed, the Weinstein 4-manifold
given by Figure 5 (Left), described by one Weinstein 1-handle and the (black) Weinstein 2-
handle passing through it twice, is Weinstein equivalent to the standard cotangent bundle
(T ∗RP2, λst, ϕst), see e.g. [58]. The zero section RP2 is chosen as its Lagrangian skeleton,
and then a Lagrangian 2-disk – core of a Weinstein 2-handle – is attached along the blue
circle depicted in the Weinstein handlebody diagram in Figure 5 (Left). At this stage, we
simplify the diagram by handle-sliding the black Legendrian knot along the blue Legendrian
boundary of the Lagrangian 2-disk, and then cancel the Weinstein 1-handle with this latter
(blue) Weinstein 2-handle; see [21]. This yields a front for the max-tb Legendrian left-handed
trefoil knot Λ(31) ⊆ (∂D4, λst), as required. �

Figure 5. Cal-skeleton RP2 ∪S1 D2 associated to Λ(31) ⊆ (∂D4, λst).

Symplectic invariants of Weinstein 4-manifolds W include (partially) wrapped Fukaya cate-
gories [12, 101] and categories of microlocal sheaves [80]. Microlocal sheaf invariants should
be particularly computable if a Cal-skeleton L ⊆ W is given, yet worked out examples are
scarce in the literature. In Section 4, we use4 Theorem 1.1 to compute the moduli space of
simple microlocal sheaves on some of the Cal-skeleta L from Corollary 1.2.

Finally, Theorem 1.1 provides a context for the study of exact Lagrangian fillings of Legen-
drian links Λf ⊆ (S3, ξst) associated to isolated plane curve singularities. Indeed, let

L(f̃) = Lf̃ ∪ ϑ(f̃)

be a Cal-skeleton for the Weinstein pair (C2,Λf ) for a real morsification f̃ , as produced in
Theorem 1.1. The exact Lagrangian filling Lf̃ may serve as a starting exact Lagrangian filling

for the Legendrian link Λf , and then performing Lagrangian disk surgeries [96, 109] along

the Lagrangian thimbles in ϑ is a method to construct additional5 exact Lagrangian fillings.
In general, this strategy might be potentially obstructed, as the Lagrangian disks might ac-
quire immersed boundaries when the Lagrangian surgeries are performed. That said, since
Lagrangian disks surgeries yield combinatorial mutations of a quiver, Theorem 1.1 might
hint towards a structural conjecture: we expect as many exact Lagrangian fillings Λf as
elements in the cluster mutation class of the intersection quiver for the vanishing thimbles ϑ.
It should be noted that C. Viterbo’s work is abundant in useful and remarkable results, but

4The correspondence [84, Theorem 1.3] and T. Kálmán’s description [66] of augmentation varieties Aug(Λ)
are also useful tools in this context.

5Potentially not Hamiltonian isotopic.

5



also bountiful in insightful questions and conjectures6: trying to follow his steps, Section 5
concludes with a discussion on such conjectural matters.

Acknowledgements: The author is grateful to Patrick Popescu-Pampu and the referee for
their insightful comments and suggestions on the manuscript. The author is supported by
the NSF grant DMS-1841913, the NSF CAREER grant DMS-1942363, a BBVA Research
Fellowship and the Alfred P. Sloan Foundation.

2. Lagrangian Skeleta for Isolated Singularities

In this section we introduce the necessary ingredients for Theorem 1.1 and prove it. We refer
the reader to [9, 54, 76] for the basics of plane curve singularities and [37, 38, 53, 85] for
background on 3-dimensional contact topology.

2.1. The Legendrian Link of an Isolated Singularity. Let f ∈ C[x, y] be a bivariate
complex polynomial which defines an isolated complex singularity at the origin (x, y) =
(0, 0) ∈ C2. The link of the singularity Tf ⊆ (S3, ξst) is the intersection

Tf = V (f) ∩ S3
ε = {(x, y) ∈ C2 : f(x, y) = 0} ∩ {(x, y) ∈ C2 : |x|2 + |y|2 = ε},

where ε ∈ R+ is small enough. The intersection is transverse for ε ∈ R+ small enough [31, 75],
and thus Tf is a smooth link. The link Tf is in fact a transverse link for the contact structure
ξst = TS3 ∩ i(TS3), as is the boundary of the (Milnor) fiber Mf for the Milnor fibration
[53, 57]. Equivalently, it is the transverse binding of the contact open book generated by

f

‖f‖
: S3 \ Tf −→ S1.

The link of a singularity was first introduced by W. Wirtinger and K. Brauner [19] and
masterfully studied by J. Milnor [75]. The book [31] comprehensively develops7 the smooth
topology of link of singularities and their connection to 3-manifold topology. The contact
topological nature of the associated open book was developed by E. Giroux [57].

Let us suppose that the germ of our singularity is irreducible.8 From a smooth perspective,
the smooth isotopy class of Tf is that of an iterated cable of the unknot [31]. Let Kl,m be
the oriented (l,m)-cable of a smooth link K ⊆ S3, i.e. an embedded curve in the boundary
∂Op(K) of the solid torus Op(K) in the homology class l · [λ] +m · [µ], with λ the longitude
and µ the meridian of Op(K). It is shown in [31, Chapter IV.7] that an iterated cable
K(l1,µ1),(l2,µ2),...,(lr,µr) ⊆ S3 is the link of an isolated singularity if and only if µi+1 > (liµi)li+1,
for 1 ≤ i ≤ r − 1.

Remark 2.1. Given an isolated singularity f(x, y), there are algorithms for determining the
smooth type of Tf , i.e. the sequence of pairs {(l1, µ1), (l2, µ2), . . . , (lr, µr)}. For instance, by
applying the Newton-Puiseux algorithm to f(x, y) we may write

y = a1x
m1
n1 + a2x

m2
n1n2 + a3x

m3
n1n2n3 + . . . , ai ∈ C∗

at each branch, where the exponents m1/n1 < m2/(n1n2) < m3/(n1n2n3) < . . . are increas-
ing and gcd(mi, ni) = 1, for all i ∈ N. The pairs (ni,mi) ∈ N2 are called the Puiseux pairs.
For reference, the Newton pairs are then (pi, qi) with pi = ni, q1 = m1 and qi = mi−mi−1ni
for i ≥ 2, and the cabling algebraic condition reads pi, qi > 0. The topological pairs (li, µi)
are given by li = pi = ni, µ1 = q1 and µi+1 = qi+1 + pipi+1µi for i ≥ 1, and the cabling

6E.g. I recently attended a conference at IMPA where several talks discussed “the Viterbo conjecture”.
As it turned out, the conjectures the speakers discussed were all different, yet all clearly impactful in their
respective areas.

7See also W. Neumann’s article in E. Kähler’s volume [65].
8For the general case, we refer the reader to [31] and their splice diagrams.

6



algebraic condition translates into li = pi > 0 and qi+1 = µi+1 − lili+1µi > 0, as above. The
algorithm and these relations are explained in [31, Appendix to Chapter I]. �

In the finer context of contact topology, the transverse link Tf ⊆ (S3, ξst) is an iterated

cable with maximal self-linking number sl(Tf ) = sl, as it bounds the symplectic Milnor fiber
Mf ⊆ C2 of f ∈ C[x, y], equiv. the symplectic page of the contact open book [39, 57]. By the
transverse Bennequin bound [14], this self-linking must be equal to the Euler characteristc
−χ(Mf ). A fact about the smooth isotopy class of links of singularities is their Legendrian
simplicity:

Proposition 2.2. Let f ∈ C[x, y] define an isolated singularity at the origin and Tf ⊆
(S3, ξst) be its associated transverse link. There exists a unique maximal Thurston-Bennequin
Legendrian approximation Λf ⊆ (S3, ξst) of the transverse link Tf .

Proof. The classification of Legendrian representatives of iterated cables of positive torus
knots is established in [71, Corollary 1.6], building on [40, 41]. The sufficent numerical
condition for Legendrian simplicity is µi+1/li+1 > tb(Ki), where Ki is the ith iterated cable
in K(l1,µ1),(l2,µ2),...,(lr,µr) ⊆ S3. The maximal Thurston-Bennequin equals tb(Ki) = Ai − Bi,
where Ai, Bi ∈ N are given by

Ai :=
i∑

α=1

pα

i∏
β=α+1

qβ

i∏
β=α

qβ, Bi :=
i∑

α=1

pα i∏
β=α+1

qβ

+
i∏

α=1

qα, i ∈ N,

as defined in [71, Equation (2)], and satisfy µili > Ai − Bi. In particular, an algebraic
link satisfies µi+1/li+1 > µili > Ai − Bi = tb(Ki), for all 1 ≤ i ≤ r − 1, and its max-tb
representative is unique. �

Proposition 2.2 implies that there exists a unique Legendrian link Λf ⊆ (S3, ξst), up to contact
isotopy, whose positive transverse push-off τ(Λf ), as defined in [53, Section 3.5.3], is trans-
verse isotopic to the transverse link Tf . Note that two distinct Legendrian approximations
of a transverse link [35, Theorem 2.1] differ by Legendrian stabilizations, which necessarily
decrease the Thurston-Bennequin invariant.

Remark 2.3. Proposition 2.2 does not hold for K ⊆ (S3, ξst) an arbitrary smooth link. For
instance, the smooth isotopy classes of the mirrors 52, 61 of the three-twist knot and the
Stevedore knot admit two distinct maximal-tb Legendrian representatives each [27, Section
4]. That said, the knots 52, 61 are not links of singularities, as their Alexander polynomials
are not monic, and thus they are not fibered knots [83]. �

Proposition 2.2 allows us to canonically define a Legendrian link associated to an isolated
singularity:

Definition 2.4. Let f be the germ of an isolated singularity at the origin. A Legendrian
link Λf ⊆ (S3, ξst) is associated to f if it is a maximal-tb Legendrian link Λf ⊆ (S3, ξst)
whose positive transverse push-off τ(Λf ) is transversely isotopic to the link of the singularity
Tf ⊆ (S3, ξst). �

Proposition 2.2 shows that the Legendrian isotopy class of a Legendrian link Λf ⊆ (S3, ξst)
associated to f is unique. Thus, we refer to Λf ⊆ (S3, ξst) in Definition 2.4 as the Legendrian
link associated to the germ f .

Example 2.5 (ADE Singularities). Let us consider the three ADE families of simple isolated
singularities [11, Chapter 2.5]. Their germs are given by

(An) f(x, y) = xn+1 + y2, (Dn) f(x, y) = xy2 + xn−1, n ∈ N,
(E6) f(x, y) = x3 + y4, (E7) f(x, y) = x3 + xy3, (E8) f(x, y) = x3 + y5.
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Figure 6. The Legendrian link for the An-singularity is the max-tb (2, n+1)-
torus link (Left). The Legendrian link for the Dn-singularity is the link given
by the union of a max-tb (2, n − 2)-torus link and a standard Legendrian
unknot, in orange, linked as in the Legendrian front on the right (Right).

The Legendrian link associated to the An-singularity is the positive (2, n+ 1)-torus link, with
tb = n− 1. These links are associated to the braid σn+1

1 , as depicted in Figure 6 (Left). The
Legendrian link associated to the Dn-singularity is the link consisting of the link associated to
the An−3-singularity and the standard Legendrian unknot, linked as in Figure 6 (Right). This
is the topological consequence of the factorization f(x, y) = x(y2 + xn−2). These Dn-links
are associated to the (rainbow closure of the) positive braid σn−2

1 σ2σ
2
1σ2, n ≥ 3. Each of the

three components K1,K2,K3 of the D2-link is a max-tb Legendrian unknot, with K1∪K2 and
K2 ∪K3 forming each a (max-tb) Hopf link and K1 ∪K3 forming the 2-unlink. The D3-link
is Legendrian isotopic to the A3-link, i.e. a max-tb positive T (2, 4)-torus link.

Figure 7. The Legendrian links for the E6, E7 and E8 simple singularities.

The Legendrian links associated to the E6 and E8 singularities are the maximal-tb positive
(3, 4)-torus Legendrian link and the Legendrian (3, 5)-torus link, as depicted in Figure 7. The
E7 is a maximal-tb Legendrian link consisting of a trefoil knot and a standard Legendrian
unknot, linked as in the center Legendrian front in Figure 7. This is implied by the f(x, y) =
x(x2 + y3) factorization of the E7 singularity. The Legendrian links for E6, E7 and E8 can
also be obtained as the closure of the three braids σn−3

1 σ2σ
3
1σ2, n = 6, 7, 8. Figure 7 also

depicts generators of the first homology group of the minimal genus Seifert surface; these
generate the first homology of each Milnor fiber, and the E6, E7 and E8 Dynkin diagrams are
readily exhibited from their intersection pattern. �

The singularities f(x, y) = xa+yb, a ≥ 3, b ≥ 6, or (a, b) = (4, 4), (4, 5), yield an infinite family
of non-simple isolated singularities for which the associated Legendrian is readily computed
to be the maximal-tb positive (a, b)-torus link, confer Remark 2.1. Two more instances are
illustrated in the following:

Example 2.6. (Two Iterated Cables) Consider the isolated curve singularity

g(x, y) = x7 − x6 + 4x5y + 2x3y2 − y4.
8



The Puiseux expansion yields the Newton solution y = x3/2(1 + x1/4) and thus Λf ⊆ (S3, ξst)
is the maximal-tb Legendrian representative of the (2, 13)-cable of the trefoil knot. This Leg-
endrian knot is depicted in Figure 8 (Left). The reader is invited to show that the Legendrian
knot Λf ⊆ (S3, ξst) of the singularity

h(x, y) = x9 − x10 + 6x8y − 3x6y2 + 2x5y3 + 3x3y4 − y6,

is the maximal-tb Legendrian representative of the (3, 19)-cable of the trefoil knot [54], as

depicted in Figure 8 (Right). (For that, start by writing the relation as y(x) = x3/2 +x5/3.)�

Figure 8. The Legendrian links Λg and Λh associated to the singularity
g(x, y) = x7−x6 +4x5y+2x3y2−y4, on the left, and the singularity h(x, y) =
x9 − x10 + 6x8y − 3x6y2 + 2x5y3 + 3x3y4 − y6, on the right.

2.2. A’Campo’s Divides and Their Conormal Lifts. Let f ∈ C[x, y] define an isolated
singularity at the origin, D4

ε ⊆ C2 be a Milnor ball for this singularity [76, Corollary 4.5],
ε ∈ R+, R2 = {(x, y) ∈ C2 : =(x) = 0,=(y) = 0} ⊆ C2 the real 2-plane, and D2

ε = D4
ε ∩ R2 a

real Milnor 2-disk. First, we need the notion of a divide, called partage in [2], as follows:

Definition 2.7 ([2]). Let D2
ε ⊆ R2 be the 2-disk of radius ε ∈ R+. A divide is a proper

generic immersion γ : I −→ D2 of a 1-manifold I into D2. �

The image γ(I) ⊆ D2
ε is also referred to as a divide, in a slight abuse of notation. Definition

2.7 belongs to the realm of real differential topology. A remarkable fact is that A’Campo
explained how to associate a divide to certain real morsifications of a singularity. For that,
consider a real morsification f̃t(x, y), t ∈ [0, 1], such that, for t ∈ (0, 1], ft(x, y) has only

A1-singularities, its critical values are real and the level set f̃−1
t (0) ∩ D4

ε, contains all the

saddle points of the restriction (f̃t)|D2
ε
. Then, the intersection Df̃ := f̃−1(0) ∩ D2

ε ⊆ R2,

where f̃ = f1, is a divide, and it is known as the divide of the real morsification f̃t [3, 9, 64].

Let us denote by Df a divide Df̃ obtained from a real morsification f̃t of f . A divide Df is

also referred to as an A’Campo divide for the singularity f . As in Definition 2.7, it is the
image of a union of a smooth 1-manifold I under an immersion i : I −→ R2 [55, 62, 63], and
it is a generic such immersion. In this manuscript, we assume that the germs of singularities
that we consider admit such real morsifications. See [2, 61] for the existence and details of
real morsifications, and see Figure 4 for divides associated to real morsifications of the simple
singularities D5 and E6.

Let us now move towards contact topology. By considering a divide Df ⊆ R2 as a wave-
front co-oriented in both conormal directions, its (biconormal) Legendrian lift is a Leg-
endrian link Λ0(Df ) in the (ideal) contact boundary (∂(T ∗R2), λst|∂(T ∗R2)). In this case,

(∂(T ∗R2), λst|∂(T ∗R2)) is considered with its Legendrian projection onto the zero section

∂(T ∗R2) −→ R2, who fibers are Legendrian 1-spheres S1 ⊆ ∂(T ∗R2). See [8, Section 3.1]
for fronts and Legendrian fibrations and, e.g. [98, Section 2] and [53, Section 3.2].
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The biconormal lift Λ0(Df ) ⊆ ∂(T ∗R2) of the immersed curve Df to the (unit) boundary of
the cotangent bundle T ∗R2 can be constructed using the three local models:

(i) The biconormal lift near a smooth interior point P ∈ Df is defined as

{u = (q, uq) ∈ T ∗Op(P ) : ‖uq‖ = 1, TqDf ⊆ ker(uq) for q ∈ Df ∩ Op(P )},

for an arbitrary fixed choice of metric in R2, and neighborhood Op(P ) ⊆ R2. See the
first row of Figure 9.

(ii) The biconormal lift near an immersed point P ∈ Df is defined as the (disjoint) union
of the conormal lifts of each of its embedded branches through P . See the second row
of Figure 9.

(iii) Finally, at the endpoint P ∈ Df , the biconormal lift is defined as the closure in T ∗PR2

of one of the components of

T ∗PR2 \ {u ∈ T ∗PR2 : ‖uq‖ = 1, TPDf ⊆ ker(uq) for q ∈ Df ∩ Op(P )},

where the tangent line TPDf is defined as the (ambient) smooth limit of the tangent
lines TqiDf for a sequence {qi}i∈N of interior points qi ∈ Df convering to P ∈ Df .
There are two such components, but our arguments are independent of such a choice.
See the third row of Figure 9.

Figure 9. Local models for the divides Df , on the left column, and their cor-
responding biconormal lifts, on the right column. Note that we have depicted
the biconormal lift in its non-generic form (matching Df at the boundary), at
the left of the right column, and also after a Legendrian front perturbation,
at the right of the right column. The local model of the crossing is depicted
in gray so that the conormal direction (in blue) is visible.

Remark 2.8. The restriction of the canonical projection π : ∂(T ∗R2) −→ R2 is finite two-to-
one onto the image of the interior points of I. The pre-image of π at (the image of) endpoints
contains an open interval of the Legendrian circle fiber. For instance, the full conormal lift of
a point p ∈ R2 is Legendrian isotopic to the zero section S1 ⊆ (J1S1, ξst), as is the conormal
lift of an embedded closed segment. �
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These local models define the Legendrian biconormal lift Λ0(Df ) ⊆ (∂(T ∗R2), ξst) of the

divide of the Morsification f̃ . Let ι0 : S1 −→ (S3, ξst) be a Legendrian embedding in
the isotopy class of the standard Legendrian unknot. A small neighborhood Op(ι(S1))
is contactomorphic to the 1-jet space (J1S1, ξst) ∼= (T ∗S1 × Rt, ker{λst − dt}), yielding a
contact inclusion ι : (J1S1, ξst) −→ (S3, ξst). Note that there exists a contactomorphism
Ψ : (∂(T ∗R2), ξst) −→ (J1S1, ξst), where the zero section in the 1-jet space bijects to the
Legendrian boundary of a Lagrangian cotangent fiber in T ∗R2. This leads to the following:

Definition 2.9. Let Df ⊆ R2 be the divide associated to a real morsification of a germ
f defining an isolated singularity. The biconormal lift Λ(Df ) ⊆ (S3, ξst) is the image
ι(Ψ(Λ0(Df ))). That is, the biconormal lift Λ(Df ) ⊆ (S3, ξst) is the satellite of the biconor-
mal lift Λ0(Df ) ⊆ (∂(T ∗R2), ξst) with companion knot the standard Legendrian unknot in
(S3, ξst). �

The central result in N. A’Campo’s articles [3, 4] is that the Legendrian link Λ(Df ) ⊆ S3 is
smoothly isotopic to the transverse link Tf , see also [63]. The formulation above, in terms of
the satellite to the Legendrian unknot, is not necessarily explicit in the literature on divides
and their Legendrian lifts, but probably known to the experts, as it is effectively being used
in M. Hirasawa’s visualization [62, Figure 2]. See also the work of T. Kawamura [70, Figure
2], M. Ishikawa and W. Gibson [55, 64] and others [26, 63]. The phrasing in Definition 2.9
might help crystallize the contact topological characteristics of each object.

Figure 10. A co-oriented divide D for the A2-singularity f(x, y) = x3+y2, as
a front for its Legendrian link Λ(D) ⊆ (∂(T ∗D2), ξst). That is, the biconormal
lift of D is Λ(D). Its satellite along the standard unknot is the (unique)
max-tb Legendrian trefoil Λ(2, 3) ⊆ (R3, ξst).
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Example 2.10. (i) The A1-singularity admits two real morsifications f̃1(x, y) = x2 + y2− 1

and f̃2(x, y) = x2 − y2, with corresponding divides

D1 = {(x, y) ∈ R2 : x2 + y2 − 1 = 0}, D2 = {(x, y) ∈ R2 : x2 − y2 = 0}.
The biconormal lift Λ0(D1) ⊆ (∂(T ∗R2), ξst) consists of two copies of the Legendrian fibers
of the fibration π : ∂(T ∗R2) −→ R2. Each of these two copies is satellited to the standard
Legendrian unknot, forming a maximal-tb Hopf link Λ(D1) ⊆ (S3, ξst). Indeed, the second
Legendrian fiber can be assumed to be the image of the first Legendrian fiber under the Reeb
flow. Hence, the Legendrian link Λ(D1) ⊆ (S3, ξst) must consist of the standard Legendrian
unknot union a small Reeb push-off. Similarly, the biconormal lift Λ0(D2) ⊆ (∂(T ∗R2), ξst)
equally consists of two copies of the Legendrian fibers of the fibration π : ∂(T ∗R2) −→ R2,
and thus both Legendrian links Λ(D1),Λ(D2) are Legendrian isotopic in (S3, ξst).

(ii) The A2-singularity f(x, y) = x3+y2 admits the real morsification f̃(x, y) = x2(x−1)+y2,
whose divide is D = {(x, y) ∈ R2 : x2(x − 1) + y2 = 0}. The divide D ⊆ R2 with its co-
orientations is depicted in Figure 10 (upper left). It depicts a wavefront homotopy, which
yields a Legendrian isotopy in (∂(T ∗R2), ξst), and an additional move equivalence (as in
[45, Definition 8.2]). In the first row, the first move separates the two conormals pictorially
and the second move is a Reidemeister II, i.e. a safe (non-dangerous) self-tangency. The
transition to the second row starts with a Reidemeister III move, which is a front homotopy.
The first move in the second row is undoing the kink, also known as a U-turn – see [45,
Figure 30] – and the second is a planar isotopy. Finally, the third row starts by depicting the
change of front projections induced by the contactomorphism Ψ, and performs the satellite
to the standard Legendrian unknot. The resulting Legendrian Λf ⊆ (S3, ξst) is the max-tb
Legendrian trefoil knot Λ(2, 3) presented in one of its common fronts for (R3, ξst). �

Remark 2.11. In general, divides for An-singularities are depicted in [45, Figure 4]. We
invite the reader to study the A5-singularity f(x, y) = x5 + y2 with its divide

D = {(x, y) ∈ R2 : x2(x3 + x2 − x− 1) + y2 = 0}
and discover the corresponding Legendrian isotopy, as in Figure 10. The isotopy should end
with the max-tb Legendrian link Λ(2, 5) ⊆ (S3, ξst), e.g. expressed as the (rainbow) closure
of the positive braid σ5

1, equiv. the (−1)-framed closure of σ7
1. The general case n ∈ N is

similar. �

Before we proceed with the proof of Theorem 1.1, we note the following contact topological
property for the Legendrian links Λ(Df̃ ) associated to divides of real morsifications f̃ :

Proposition 2.12. Let f ∈ C[x, y] define an isolated singularity, Df ⊆ R2 be the divide as-
sociated to a real morsification and Λ(Df ) ⊆ (S3, ξst) its biconormal lift. Then Λ(Df ) admits
an embedded exact Lagrangian filling in (D4, λst). In particular, the Thurston-Bennequin
invariant of Λ(Df ) is maximal.

Proof. Consider the plabic graph associated to the divide Df as in [45, Definition 6.11] and
note that the alternating strand diagram associated to a plabic graph is Legendrian isotopic
to Λ(Df ). Indeed, they only differ by U -turns, at the boundary endpoints, and safe tangencies
[45, Section 8] at the interior crossings. Now, from a smooth perspective, we can consider
the Goncharov-Kenyon conjugate surface [59, Section 2.1] associated to this plabic graph,
which bounds its alternating strand diagram. Thus, this is a smooth embedded surface in
S3 bounding Λ(Df ) ⊆ S3 which can be pushed into an embedded surface D4, relative to the
boundary. In short, the conjugate surface is a smooth surface filling for Λ(Df ). This surface
can be turned in an embedded exact Lagrangian, as done in [97, Proposition 4.9], which
proves the first statement. The statement on the Thurston-Bennequin invariant follows from
[24, Theorem 1.4]. �
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Figure 11 depicts a piece of such a Lagrangian filling near a crossing of the divide. See [97,
Section 4] and [45, Section 6] for further details on the construction. Observe that the plabic
graph associated to Df is not unique, e.g. it is possible to perform a square move at each
crossing. The Hamiltonian isotopy of the Lagrangian filling, relative to the boundary, does
typically depend on this choice and one should expect to build more than one Hamiltonian
isotopy class of Lagrangian fillings with the method of Proposition 2.12.9

Figure 11. A local depiction of the (Lagrangian) conjugate surface near a
crossing of the divide (Right). The surface is depicted in darker blue, and it
bounds a front, in blue, for the Legendrian link. The plabic graph associated
to a crossing (Left) is shown the center. Note that there are two choices of
(bi)coloring for the vertices, and the two surfaces differ by a square move, i.e.
a Lagrangian mutation; both such choices yield embedded exact Lagrangian
fillings (though not necessarily in the same Hamiltonian isotopy class).

2.3. Proof of Theorem 1.1. There is an interesting dissonance at this stage. The Legen-
drian link Λ(Df ) ⊆ S3 in Definition 2.9 and the transverse link Tf ⊆ S3 of the singularity
are smoothly isotopic, yet certainly not contact isotopic. Their relationship is described by
the following:

Proposition 2.13. Let f ∈ C[x, y] define an isolated singularity and Df ⊆ R2 be the divide
associated to a real morsification. The positive transverse push-off τ(Λ(Df )) ⊆ (S3, ξst) of the
Legendrian link Λ(Df ) is contact isotopic to the transverse link Tf ⊆ (S3, ξst). In particular,
Λ(Df ) ⊆ (S3, ξst) is Legendrian isotopic to the Legendrian link Λf ⊆ (S3, ξst) associated to
the isolated singularity of f ∈ C[x, y]. �

Proof. First, we note that Λ(Df ) is a maximal-tb Legendrian representative by Proposition
2.12. Thus the latter part of statement follows from the former and Proposition 2.2. Hence
we now focus on the first part of the statement. In A’Campo’s isotopy [3, Section 3] from
the link associated to the divide to the link of the singularity, the key step is the almost
complexification of the Morsification f̃ : R2 −→ R. This replaces the R-valued function f̃ by
an expression of the form

f̃C : T ∗R2 −→ C, f̃C(x, u) := f̃(x) + idf̃(x)(u)− 1

2
χ(x)H(f(x))(u, u),

which is a C-valued function, where u = (u1, u2) ∈ R2 are Cartesian coordinates in the fiber.
Here H(f(x)) is the Hessian of f , which is a quadratic form, and χ(x) is a bump function
with χ(x) ≡ 1 near double-points of the divide Df ⊆ R2 and χ(x) ≡ 0 away from them. The
results in [3], see also [63, 64], imply that the transverse link of the singularity is isotopic to

the intersection ∂ε(T
∗R2)∩ f̃−1

C (0) ⊆ (∂ε(T
∗R2), ξst) of the ε-unit cotangent bundle with the

9Naively applied, this method seems to yield finitely many possible Hamiltonian isotopy classes of La-
grangian fillings. Note that we have proven in [20] that most max-tb Legendrian algebraic links admit
infinitely many such classes.

13



0-fiber of f̃C, ε ∈ R+ small enough.10 It thus suffices to compare this transverse link to the
Legendrian lift Λ(Df ) ⊆ (∂ε(T

∗R2), ξst), which we can check in each of the two local models:
near a smooth interior point of the divide Df and near each of its double points. Note that
the case of boundary points can be perturbed to that of smooth interior points, as in the
second row of the local models depicted in Figure 9 or the first perturbation in Figure 10.
We detail the computation in the first local model, the case of double points follows similarly.

The contact structure (∂ε(T
∗R2), ξst) admits the contact form ξst = ker{cos(θ)dx1−sin(θ)dx2},

(x1, x2) ∈ R2 and θ ∈ S1 is a coordinate in the fiber – this is the angular coordinate in the
(u1, u2)-coordinates above. The divide can be assumed to be cut locally by D = {(x1, x2) ∈
R2 : x2 = 0} ⊆ R2, as we can write f̃(x1, x2) = x2, and thus its bi-conormal Legendrian lift
is

Λ(D) = {(x1, x2, θ) ∈ R2 × S1 : x2 = 0, θ = ±π/2}.
Note that the tangent space T(x1,x2)Λ(D) of Λ(D) is spanned by ∂x1 , which satisfies

〈∂x1〉 = ker{cos(θ)dx1 − sin(θ)dx2}, as cos(θ) = 0 at θ = ±π/2.

Since the model is away from a double point, f̃C(x, u) := x2 + i(0, 1) · (u1, u2)t = x2 + iu2

becomes the standard symplectic projection R2 × R2 −→ R2 onto the second (symplectic)
factor. The zero set is thus x2 = 0 and u2 = 0 and so the intersection with T εR2 is

κ = {(x1, x2, θ) ∈ R2 × S1 : x2 = 0, θ = 0, π},

as the points with |u1|2 = ε are at θ-coordinates θ = 0, π. The tangent space Tκ = 〈∂x1〉 is
spanned by ∂x1 , which is transverse to the contact structure along κ:

(cos(θ)dx1 − sin(θ)dx2)(∂x1) = ±1, at θ = 0, π.

It evaluates positive for θ = 0 and negative for θ = π, which corresponds to each of the two
branches in the biconormal lift. It is readily verified [53, Section 3.1] that κ is the transverse
push-off, positive and negative11, of Λ(D), e.g. observe that the annulus {(x1, x2, θ) ∈ R2×S1 :
x2 = 0, 0 ≤ θ ≤ π} is a (Weinstein) ribbon for the Legendrian segment {(x1, x2, θ) ∈ R2×S1 :
x2 = 0, θ = π/2}. �

Proposition 2.13 implies that real morsifications f̃ yield models for the Legendrian link Λf ⊆
(S3, ξst) of a singularity f ∈ C[x, y], as introduced in Definition 2.4. That is, given an isolated
plane curve singularity f ∈ C[x, y], the Legendrian link Λf ⊆ (S3, ξst) is Legendrian isotopic
to the Legendrian lift Λ(Df̃ ) ⊆ (S3, ξst) of a divide Df̃ ⊆ R2 of a real morsification, and thus

we now directly focus on studying the Legendrian links Λ(Df̃ ) ⊆ (S3, ξst).

Let us now prove Theorem 1.1. For that, we use N. A’Campo’s description [4] of the set of
vanishing cycles associated to a divide of a real morsification. For each double point pi ∈ D
in the divide D := Df̃ , there is a vanishing cycle ϑpi . For each bounded region of R2 \ D,

which we label by qj , there is a vanishing cycle ϑqj . These vanishing cycles are also naturally
oriented by choosing the counter-clockwise orientation in the plane. First, we visualize those
vanishing cycles by perturbing the divide D ⊆ R2 using the local models in Figure 9, e.g. as
depicted in Figure 12.(i) and (ii). Let us denote this perturbed cooriented front by D′ ⊆ R2,
and note that D′ only uses one conormal direction at a given point. This perturbation is
a front homotopy from Λ(Df̃ ) and thus produces a Legendrian isotopy of the associated

Legendrian links Λ(Df̃ ) ∼= Λf in (S3, ξst).

10This mimicks S. Donaldson’s construction of Lefschetz pencils, where the boundary of a fiber is a trans-
verse link at the boundary, see also E. Giroux’s construction of the contact binding of an open book [56, 57].

11The orientation for the negative branch is reversed when considering the global link κ.
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Figure 12. (Left) Two front homotopies from the pieces of a divide to a
(generic) Legendrian front, in line with the local models in Figure 9. The
vanishing cycle ϑp is drawn in the Lagrangian base R2. (Right) A perturbation
of a divide for the E7-singularity. The vanishing cycles ϑp coming from the
double points of the divide are drawn in yellow, and the vanishing cycles ϑq
coming from each of the three bounded interior regions are drawn in red.

Once the perturbation has been performed, we can draw the curves ϑpi , ϑqj as in Figure 12.
For instance, Figure 12.(iii) depicts the case of the E7-singularity with a particular choice of
divide D and its perturbation D′, with ϑpi in yellow and ϑqj in red. That is:

(1) For each double point pi ∈ D, i.e. a crossing, the curve ϑpi is a closed simple curve
through the four new double points in D′,

(2) For each closed region, ϑqj is a simple closed curve which (exactly) passes through
the double points at the perturbed boundary in D′ of the region qj .

The algorithm in [4] constructs a model for the topological Milnor fiber of f by using

the real morsification f̃ , as follows. First, start with the conical Lagrangian conormal
L(D′) ⊆ (T ∗R2, λst) of the perturbed divide D′. This Lagrangian conormal intersects the
unit cotangent bundle of T ∗R2 at Λ(D′) and thus, being conical, the information of L(D′)
is equivalent to the information of the Legendrian link Λ(D′) ⊆ (∂(T ∗R2), λst|∂(T ∗R2)) with

its front D′ ⊆ R2. The intersection L(D′) ∩ R2 = D′ with the zero section R2 ⊆ T ∗R2 is the
divide D′. Second, consider the bounded regions in R2 \D′ which are not enclosed by either
of the curves of type ϑpi , ϑqj , described in (1) and (2) above. These are the bounded regions

in R2 \D′ which do not come from a bounded square obtained by resolving a crossing (as in
Figure 9) nor from a bounded region in R2 \D. Each of these regions is represented by an
embedded (exact) Lagrangian 2-disk, as they are contained in the Lagrangian zero section
(T ∗R2, λst). The topological surface obtained as the union of the Lagrangian conormal L(D′)
with these Lagrangian 2-disks is a surface (with corners) which, upon smoothing, lies in the
same smooth isotopy class of the Milnor fiber of f . This explains, following [4], that the union
of the Lagrangian L(D′) with certain bounded Lagrangian regions in R2 \D′ is a model for
the topological Milnor fiber.

Remark 2.14. For instance, in the example depicted in Figure 12 (right), there are 10 such
regions in R2 \ D′ out of 17. We have depicted these regions in blue in Figure 13 (left).
Note that there are 4 crossings in D and 3 bounded regions in R2 \D. The union of these
10 regions with L(D′) yields a topological surface of genus 4 and 2 boundary components –
those of the 2-component link Λ(Df ). Its first Betti number indeed matches µ(E7) = 7. �
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Figure 13. (Left) A Lagrangian model for the Milnor fiber of E7 using the
biconormal lift L(D)′ and some of the bounded regions in the zero section
R2 ⊆ (T ∗R2, λst), filled in blue. (Right) The Lagrangian skeleton L(D′) ∪ R2

previous to trimming the unbounded region (also depicted in yellow) and
the result of applying a holonomy homotopy, where the unbounded region is
trimmed to L(f̃).

In addition to the above model for the Milnor fiber, the article [4] also guarantees that the

curves ϑpi , ϑqj are vanishing cycles for the real morsification f̃ . At this stage, the key fact

that we use from A’Campo’s algorithm is that our choice of immersion of the divide D′ ⊆ R2,
given by the perturbation, exhibits Lagrangian 2-disks D2

pi ,D
2
qj ⊆ R2 such that ∂D2

pi = ϑpi
and ∂D2

qj = ϑqj . The union of all these Lagrangian 2-disks D2
pi ,D

2
qj constitutes the set T (ϑf̃ )

of Lagrangian D2-thimbles in the statement of Theorem 1.1.

For the curves ϑpi , this follows from Figure 12.(i), or Figure 9, where the 2-disk D2
pi is (a small

extension of) the square given by the four double points in D′ appearing in the perturbation
of pi ∈ D. For ϑqj , the 2-disk D2

qj is chosen to be a small extension of the bounded region

itself. These disks are (exact) Lagrangian because R2 ⊆ (T ∗R2, λst) is exact Lagrangian.
The Liouville vector field in (T ∗R2, λst) vanishes at R2 and is tangent to L(D′). Hence, the
inverse flow of the Liouville field retracts the Weinstein pair (R4,Λ(D′)) to L(D′) union the
zero section R2. This shows that L(D′) ∪ R2 is a Lagrangian skeleton of the Weinstein pair
(R4,Λ(D′)). Figure 13 depicts this skeleton in its center, where the R2 is included in its
entirety.

Now, the Lagrangian skeleton has an open piece at the unbounded part of R2. To complete
our argument, it suffices to homotope the Lagrangian skeleton so that the unbounded part
is trimmed to match the boundary B of the unbounded piece of R2 \ D′. These skeletal
modifications are explained in detail in [100, Section 3]. In a nutshell, one applies the
holonomy modifications from [28, Section 12] to homotope the boundary at infinity of R2

until it coincides with B, modifying the pseudo-gradient field accordingly and producing
a Weinstein homotopy. In conclusion, the union of the conical Lagrangian L(D′), some
bounded regions12 of R2 \D′, and the Lagrangian 2-disks D2

pi ,D
2
qj ⊆ R2 forms a Lagrangian

skeleton of the Weinstein pair (R4,Λ(D′)), as required. �

Remark 2.15. The referee also suggested the following (equivalent) viewpoint to smoothly
construct the Milnor fiber, which can also be helpful. Consider the bipartite vertices of the
AΓ-diagram [45, Definition 3.1] associated to the divide D: by definition, this is a black
vertex at each crossing and a white vertex for each bounded region. In the perturbed front
diagram D′, each black (resp. white) vertex yields a bounded region in the complement
R2 \D′ whose boundary has all the conormals pointing outwards (resp. inwards). In the two
types of curve in the proof above, the curves ϑpi correspond to the black vertices and the

12Namely, the bounded regions in R2 \D′ which do not come from a bounded square obtained by resolving
a crossing nor from a bounded region in R2 \D; i.e. the blue bounded regions, as depicted in Figure 13.
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curves ϑqj correspond to the white vertices. A bounded region in the complement R2 \ D′
whose boundary has all the conormals pointing outwards (resp. inwards) is called a source
(resp. a sink); a region which is not a sink or a source is said to be mixed.

From this viewpoint, the smooth Milnor fiber for the morsification f̃ associated to D = Df̃

can be constructed by consider a 2-disk for each bounded mixed region of R2\D′ and attaching
1-handles connecting two such 2-disks for each intersection point of the pair of correspond-
ing mixed regions.13 It should be possible to make this construction in the embedded and
exact Lagrangian context: the 2-disks coming from the bounded mixed regions of R2 \ D′
are (embedded exact) Lagrangians by virtue of being contained in the zero section of the
cotangent bundle (T ∗R2, λst), and one would just need to argue that the 1-handle attach-
ment can be made an exact Lagrangian 1-handle attachment with boundaries as dictated
by the fronts (i.e. that adding the conical Lagrangian piece L(D′) is tantamount to adding
these Lagrangian 1-handles). �

2.4. Lagrangian Skeleta. Arboreal Lagrangian skeleta L ⊆ (W,λ) for Weinstein 4-manifolds
are defined in [79, 100]. Given a Weinstein manifold W = W (Λ), the arborealization proce-
dure in [100] yields an arboreal Lagrangian skeleton L ⊆ (W,λ) with ∂L 6= ∅. Intuitively,
those Lagrangian skeleta are obtained by attaching 2-handles to D2 along a (modification of
a) front for Λ, and thus roughly contain the same information as a front π(Λ) ⊆ R2 for Λ.
Let Λ ⊆ (S3, ξst) be a Legendrian link and (W,λ) a Weinstein manifold.

Definition 2.16. A compact arboreal Lagrangian skeleton L ⊆ C2 for a Weinstein pair
(C2,Λ) is said to be closed if ∂L = Λ. A compact arboreal Lagrangian skeleton L ⊆ W for
a Weinstein manifold (W,λ) is said to be closed if ∂L = ∅.

The Lagrangian skeleta in Theorem 1.1 and Corollary 1.2 are arboreal and closed. For
reference, we denote the two Cal-skeleta associated to a real morsification f̃ of an isolated
plane curve singularity f ∈ C[x, y] by

L(f̃) := Mf ∪ϑ(f̃)

|ϑ(f̃)|⋃
i=1

D2, L(f̃) := Mf ∪ϑ(f̃)

|ϑ(f̃)|⋃
i=1

D2.

The former L(f̃) is a Lagrangian skeleton for the Weinstein pair (C2,Λf ), and the latter

for the Weinstein 4-manifold W (Λf ). The notation Mf stands for the surface obtained
by capping each of the boundary components of the Milnor fiber Mf with a 2-disk. The

notation L(f) and L(f) will stand for any Cal-skeleton obtained from a real morsification

f̃ as in Theorem 1.1 and Corollary 1.2. Similarly, we will denote by ϑ(f) a collection of

vanishing cycles ϑ(f̃) obtained from a real morsification f̃ , without necessarily specifying f̃ .

Remark 2.17. In the context of low-dimensional topology, the 2-complexes underlying these
Lagrangian skeleta are often referred to as Turaev’s shadows, following [103, Chapter 8]. In
particular, it is known how to compute the signature of a (Weinstein) 4-manifold from any
Cal-skeleton by using [103, Chapter 9]. Similarly, the SU(2)-Reshetikhin-Turaev-Witten in-
variant of the 3-dimensional (contact) boundary can be computed with the state-sum formula
in [103, Chapter 10]. It would be interesting to explore if such combinatorial invariants can
be enhanced to detect information on the contact and symplectic structures. �

3. Augmentation Stack and The Cluster Algebra of
Fomin-Pylyavskyy-Shustin-Thurston

In the article [45], the authors develop a connection between the topology of an isolated
singularity f and the theory of cluster algebras. In concrete terms, they associate a clus-
ter algebra A(f) to an isolated singularity. An initial cluster seed for A(f) is given by a

13Some of these 1-handles might be attached between a region and itself.
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quiver Q(Df̃ ) coming from the AΓ-diagrams of a divide Df̃ of a real morsification f̃ of f .

Equivalently, by [4, 61], the quiver Q(Df̃ ) is the intersection quiver for a set of vanishing

cycles associated to a real morsification of f . The conjectural tenet in [45] is that different
choices of Morsifications lead to mutation equivalent quivers and, conversely, two quivers
associated to two real morsifications of the same complex topological singularity must be
mutation equivalent.

There are two varieties associated to a cluster algebra, the X -cluster variety and the A-cluster
variety [44, 59, 95]. In the case of the cluster algebra A(f) from [45], one can ask whether
either of these varieties has a particularly geometric meaning. Our suggestion is that either of
these cluster varieties is the moduli space of exact Lagrangian fillings for the Legendrian knot
Λf ⊆ (R3, ξst), with the appropriate additional data (e.g. local systems). Equivalently, they
are the moduli space of (certain) objects of a Fukaya category associated to the Weinstein
pair (C2,Λf ); for instance, the partially wrapped Fukaya category of C2 stopped at Λf . In

this sense, these cluster varieties are mirror to the Weinstein pair (R4,Λf ).14 Focusing on the
Legendrian link Λf ⊆ (R3, ξst), let us then suggest an alternative route from a plane curve
singularity f ∈ C[x, y] to a cluster algebra A(f), following Definition 2.4 and Proposition 2.2
and 2.13.

Starting with f ∈ C[x, y], consider the Legendrian15 Λf ⊆ (R3, ξst), where (R3, ξst) is identi-
fied as the complement of a point in (S3, ξst) and the Legendrian DGA A (Λf ), as defined by
Y. Chekanov in [25] and see [36]. Then we define A(f) to be the coordinate ring of functions
on the augmentation variety A(Λf ) of the DGA A (Λf ). Technically, the DGA A (Λf ) allows
for a choice of base points, and the augmentation variety depends on that. Thus, it is more
accurate to define:

Definition 3.1. Let f ∈ C[x, y] define an isolated singularity, the augmentation algebra A(f)
associated to f is the ring of k-regular functions on the moduli stack of objects ob(Aug+(Λf ))
of the augmentation category Aug+(Λf ). �

The Aug+(Λ) augmentation category of a Legendrian link Λ ⊆ (R3, ξst) is introduced in [84].

An exact Lagrangian filling16 defines an object in the category Aug+(Λ), and the morphisms
between two such objects are given by (a linearized version of) Lagrangian Floer homology.
In fact, there is a sense in which any object in Aug+(Λ) comes from a Lagrangian filling
[88, 89], possibly immersed, and thus ob(Aug+(Λ)) is a natural candidate for a moduli space
of Lagrangian fillings. The algebra A(f) is known to be a cluster algebra [51] in characteristic
two. The lift to characteristic zero can be obtained by combining [22] and [51].

By Proposition 2.2, A(f) is a well-defined invariant of the complex topological singularity.
For these Legendrian links Λ = Λf , the Couture-Perron algorithm [30] implies that there
exist a Legendrian front π(Λf ) ⊆ R2 given by the (−1)-closure of a positive braid β∆2,
where ∆ is the half-twist; equivalently the front is the rainbow closure of the positive braid β
[20]. Hence, there is a set of non-negatively graded Reeb chords generating the DGA A (Λf )
and ob(Aug+(Λf )) coincides with the set of k-valued augmentations of A (Λf ) where exactly
one base point per component has been chosen, k a field. The articles [22, 66] provide an
explicit and computational model for ob(Aug+(Λf )), and thus A(f), as follows.

First, suppose that Λ = Λf is a knot. Then, A(f) is the algebra of regular functions of the
affine variety

X(β) := {B(β∆2) + diagi(β)(t, 1, , . . . , 1) = 0} ⊆ C|β∆2|+1,

14The difference between X - and A-varieties should be the decorations we require for the Lagrangian
fillings.

15In the context of plabic graphs [45, Section 6], the zig-zag curves [59, 91] also provide a front for the
Legendrian link Λf .

16Throughout the text, exact Lagrangian fillings are, if needed, implicitely endowed with a C∗-local system.
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where B are the (i(β)× i(β))-matrices defined in [22, Section 3] and Computation 3.2 below,
i(β) is the number of strands of β,∆, and |β∆2| is the number of crossings of β∆2. In the case
Λf is a link with l components, the space ob(Aug+(Λf )) is a stack17, with isotropy groups of

the form (C∗)k. If the tenet [45, Conjecture 5.5] holds, the affine algebraic type of the aug-
mentation stack ob(Aug+(Λf )) of a Legendrian link should recover the Legendrian link Λf
and the complex topological type of the singularity f . Here is how to compute ob(Aug+(Λf )).

Computation 3.2. Let Λ = Λf be an algebraic knot, we can find a set of equations for the

affine variety ob(Aug+(Λf )), essentially using [67], see also [22]. Consider a positive braid18

β◦ ∈ Br+
n such that the (−1)-closure of β◦ is a front for Λ = Λ(β◦). For k ∈ [1, n− 1], define

the following n× n matrix Pk(z), with variable z ∈ C:

(Pk(z))ij =


1 i = j and i 6= k, k + 1

1 (i, j) = (k, k + 1) or (k + 1, k)

z i = j = k + 1

0 otherwise;

Namely, Pk(z) is the identity matrix except for the (2 × 2)-submatrix given by rows and
columns k and k + 1, where it is ( 0 1

1 z ). Suppose that the crossings of β◦, left to right, are
σk1 , . . . , σks , s = |β◦| ∈ N, σi ∈ Br+

n the Artin generators. Then the augmentation stack
ob(Aug+(Λf )) is cut out in Cs × C∗ = Spec[z1, z2, . . . , zs, t, t

−1] by the n2 equations

(3.1) diagn(t, 1, 1, . . . , 1) + Pk1(z1)Pk2(z2) · · ·Pks(zs) = 0.

The matrix Pk1(z1)Pk2(z2) · · ·Pks(zs) is denoted by B(β◦). Equations 3.1 provide a compu-
tational mean to an explicit description of the affine varieties ob(Aug+(Λf )) that yield the
cluster algebra A(f). �

Example 3.3. Consider the plane curve singularity19 described by

f(x, y) = −12x10y2 − 4x9y2 − 2x7y4 + 6x6y4 − 4x3y6 + x14 − 2x13 + x12 + y8

=
(
2x3y2 − 4x5y + x7 − x6 − y4

) (
2x3y2 + 4x5y + x7 − x6 − y4

)
The Puiseux expansion yields y(x) = x3/2 + x7/4 and using the Couture-Perron algorithm
[30], or [45, Definition 11.3], a positive braid word associated to this singularity is

β = (σ2σ1σ3σ2σ1σ3σ2σ1)σ3(σ1σ2σ3σ1σ2σ3σ1σ2)σ1σ3

The Legendrian Λf ⊆ (R3, ξ) is the rainbow closure of β, and the (−1)-framed closure of β◦ =
β∆2. Note that Λf is a knot, and thus we will use one base point t ∈ C∗ in the computation of
X(β) = ob(Aug+(Λf )). Following Computation 3.2 above, we can write equations for affine
variety X(β) as a subset X(β) ⊆ C31×C∗. We use coordinates (z1, z2, . . . , z31; t) ∈ C31×C∗,
(z1, z2, . . . , z19) corresponding to the 19 crossings of β and (z20, . . . , z31) account for the 12
crossings of ∆2 ∈ Br+

3 . There are a total of 16 equations, the first two of which read as
follows:

z11 + z9z12 + (z9 + (z11 + z9z12) z18) z20 + (z13 + z9z14 + (z11 + z9z12) z15) z21+

(z9z16 + (z11 + z9z12) z17 + (z13 + z9z14 + (z11 + z9z12) z15) z19 + 1) z23 = −t−1

z7 + z6z9 + (z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z18 + (z8 + z6z13 + (z7 + z6z9)z14+

(z8z10+z6z11+(z7+z6z9)z12+1)z15)z22+(z6+(z7+z6z9)z16+(z8z10+z6z11+(z7+z6z9)z12+1)z17+

17Namely, it is isomorphic to a quotient of X(β)× (C∗)l by a non-free (C∗)l−1-action.
18Note that β◦ can be written in the form β◦ = β∆2.
19We have chosen this example as a continuation of [30, Example 5.3] and [45, Figure 6].
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(z8+z6z13+(z7+z6z9)z14+(z8z10+z6z11+(z7+z6z9)z12+1)z15)z19)z24+(z8z10+z6z11+(z7+z6z9)z12+

(z7 + z6z9 + (z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z18)z20 + (z8 + z6z13 + (z7 + z6z9)z14+

(z8z10+z6z11+(z7+z6z9)z12+1)z15)z21+(z6+(z7+z6z9)z16+(z8z10+z6z11+(z7+z6z9)z12+1)z17+

(z8 + z6z13 + (z7 + z6z9)z14 + (z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z15)z19)z23 + 1)z31 = 0

The remaining 14 equations are longer, but can be readily obtained. This hopefully illustrates
that the method is computationally immediate.20 �

Remark 3.4. (i) One may consider the moduli stack ob(Sh1
Λf

(R2)) of sheaves with mi-

crolocal rank-1 along Λf , instead of ob(Aug+(Λf )). By [84], there is an equivalence of

categories Aug+(Λf ) ∼= Sh1
Λf

(R2). The stack ob(Sh1
Λf

(R2)) is a X -cluster variety; the

associated A-cluster variety in the cluster ensemble is the moduli of framed sheaves
[95].21 In short, the cluster algebra A(f) could have been defined in terms of the mod-
uli space of constructible sheaves microlocally supported in Λ, instead of Floer theory.

(ii) The Aug+-category is Floer-theoretical in nature, e.g. its morphisms are certain Floer
homology groups. It would have also been natural to consider the partially wrapped
Fukaya category W (C2,Λf ), as defined [50, 101], or the infinitesimal Fukaya category
Fuk(C2,Λ) [81, 77]. These are Floer-theoretical Legendrian invariants associated to
Λf , and thus the singularity f ∈ C[x, y], which might be of interest on their own.

4. A few Computations and Remarks

Consider the derived dg-category ShΛ(M) of constructible sheaves in a closed smooth mani-
fold M microlocally supported at a Legendrian link Λ ⊆ (∂(T ∗M), ξst), e.g. as introduced
in [98, Section 1]. Equivalently, one may consider a conical Lagrangian L ⊆ T ∗M instead
of Λ ⊆ (∂(T ∗M), ξst); in practice, the input data is a wavefront π(Λ) ⊆ M [8]. Let µsh
denote the sheaf of microlocal sheaves defined22 in [80, Section 5]. There are two situations
we consider, depending on whether the focus is on the Weinstein pair (C2,Λf ) or on the
Weinstein 4-manifold W (Λf ):

(i) Sheaf Invariants of the Weinstein pair (C2,Λf ).23 The category of microlocal

sheaves µsh(L(f)) is an invariant of (C2,Λf ), as established in [60, 80, 98].24 In
this case, the global sections µsh(L(f)) is a category equivalent to the more familiar
ShΛ(f)(R2). For simplicity, we focus on the moduli stack S(f) ⊆ ob(ShΛ(f)(R2)) of
sheaves whose microlocal support is rank one, microlocally supported in the Legen-
drian link of an isolated plane curve singularity f : C2 −→ C. See [69, Section 7.5]
or [60, Section 1.10] for a detailed discussion on these sheaves. In our case Λ = Λ(f),
S(f) is an Artin stack of finite type [98, Prop. 5.20], and typically is an algebraic
variety or a G-quotient thereof, with G = (C∗)k or GL(k,C). Note that µsh(L(f)) is
equivalent to the wrapped Fukaya category of C2 stopped at Λf [49].

(ii) Sheaf Invariants of the Weinstein 4-manifold W (Λf ). The category µsh(L(f))

of microlocal sheaves [80] on a Lagrangian skeleton L(f) ⊆ W (Λf ) is an invariant
of W (Λf ), up to Weinstein homotopy [80] and up to symplectomorphism [49]. This

20Even if the equations themselves, being rather long, may not be particularly enlightening.
21The cluster algebra structure for A(f) defined by [51] is obtained by pulling-back the cluster algebra

structure of the open Bott-Samelson cell associated to β. There should exist a cluster algebra structure on
A(f) defined strictly in Floer-theoretical terms.

22Thanks go to V. Shende for helpful discussions on sheaf invariants.
23Invariance up to Weinstein homotopy [28], and also symplectomorphism of Liouville pairs.
24The category µsh(L(f)) is likely not an invariant of the Weinstein 4-manifold W (Λf ) itself.
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category is25 Shϑ(f)(Mf ), or µloc(L(f)), in the notation of [96], i.e. the global sections
of the Kashiwara-Schapira sheaf of dg-categories [96, Prop. 3.5] on the Lagrangian
skeleton L(f). For simplicity, we focus on the moduli stack Θ(f) ⊆ µsh(L(f)) of
microlocal rank-1 sheaves as well. Note that µsh(L(f)) is equivalent to the wrapped
Fukaya category of W (Λf ) by [49].

The moduli stack S(f) in (i) is isomorphic to the stack of microlocal rank-1 sheaves in
ob(Shϑ(f)(Mf )). This is because the union of R2 ⊆ T ∗R2 and the Lagrangian cone of Λ ⊆
(T+R2, ξst) is a Lagrangian skeleton for the relative Weinstein pair (C2,Λ), so is L(f) by
Theorem 1.1, and ob(Shϑ(f)(Mf )) is an invariant of the Weinstein pair (C2,Λ), independent
of the choice of Lagrangian skeleton. Thus, the difference between S(f) and Θ(f) is at the
boundary, which for S(f) might give monodromy contributions (and these become trivial
on Θ(f)). In other words, since L(f) is obtained from L(f) by attaching 2-disks (to close
the boundary of the Milnor fiber Mf ), the category µsh(L(f)) is a homotopy pull-back of
µsh(L(f)).

Remark 4.1. There are currently two methods for computing S(f): either by direct means,
as exemplified in [98], or by using the equivalence of categories Aug+(Λ(f)) ∼= Sh1

Λf
(R2) from

[84, Theorem 1.3], the latter being denoted by C1(Λf ) in [84]. Thanks to the computational
techniques available for augmentation varieties, the moduli of objects ob(Aug+(Λ(f))) is
readily computable for (−1)-framed closures of positive braids as in Section 3 above, confer
Computation 3.2. Similarly Θ(f) could be computed directly, or by means of the isomorphism
to the wrapped Fukaya category26 of W (Λf ). �

In this section, we take to opportunity to build on [80, 96] and perform an actual computation
for a class of Cal-Skeleta coming from Theorem 1.1.

Figure 14. A Cal-skeleta L(f2n+1) for the Weinstein 4-manifolds W (Λ(A2n+1)).

4.1. Cal-Skeleta for An-Singularities. Consider the An-singularity fn(x, y) = xn+1 + y2.
The Legendrian Λ(An) ⊆ (R3, ξst) associated to the singularity is the max-tb Legendrian
(2, n + 1)-torus link. By Theorem 1.1, a Lagrangian skeleton L(fn) for the Weinstein pair
(C2,Λf ) is obtained by attaching n 2-disks to a (3/2 − (−1)n/2)–punctured bn−1

2 c–genus
surface along an An-Dynkin chain of embedded curves. Similarly, Corollary 1.2 implies
that a Lagrangian skeleton L(fn) for the Weinstein 4-manifold Wn = W (Λ(An)) is given
by attaching n 2-disks to a bn−1

2 c–genus surface along an An-Dynkin chain, as depicted in
orange in Figure 15, see also Figure 14.

Let us compute Θ(fn) for n ∈ N even, so that Λ(An) is a knot; the n ∈ N odd case is similar.
The key technical tool is the Disk Lemma [68, Lemma 4.2.3]. The Disk Lemma explains,
in precise terms, how to compute the category of microlocal sheaves on a 2-dimensional

25Recall that we denote by ϑ(f) a collection of vanishing cycles ϑ(f̃) obtained from a real morsification f̃ .
26Should the reader be willing to use the surgery formula, this wrapped Fukaya category may be presented

as modules over the Legendrian DGA of Λf . (This is only informative and not needed for the present purposes.)
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Figure 15. The Cal-skeleta L(f) for the Weinstein 4-manifolds W (Λ(A2))
and W (Λ(A6)). The relative Cal-skeleta L(f) for the corresponding Weinstein
pairs (C2,Λ(A2)) and (C2,Λ(A6)) are obtained by introducing one puncture
to the surfaces.

Lagrangian skeleton S ∪γ D2 in terms of the category for the corresponding Lagrangian
skeleton S, where D2 is attached along an embedded smooth curve γ ⊆ S. In brief, the
Disk Lemma states that the microlocal sheaf category for S ∪γ D2 has as its objects pairs
consisting of an object FS in the category for S and a (derived) trivialization of the microlocal
monodromy of FS along γ, i.e. a homotopy from this microlocal monodromy to the identity.

The complement Mf \ ϑ(f) of the vanishing cycles is a 2-disk, and the category of local

systems is just C-mod. Thus, the moduli of simple constructible sheaves on Mf microlocally
supported on (the Legendrian lift of) the vanishing cycles ϑ(f) consists of a vector space
V = C and maps x1, x2, . . . , xn ∈ End(V ), one associated to each vanishing cycle. This is
depicted in Figure 15 for n = 2, 6, and note that n = |ϑ(f)|. Denote by L(fn)0 ⊆ T ∗Mf

the Lagrangian skeleton given by Mf union the conormal lifts of ϑ(f). These maps are not

necessarily invertible in µsh(L(fn)0).

The skeleton L(fn) is obtained by attaching n Lagrangian 2-disks to L(fn)0, i.e. L(fn) is
the homotopy push-out of L(fn)0 and the disjoint union of n 2-disks. In consequence, the
category of microlocal sheaves on L(fn) is given by the homotopy pull-back of the category
of microlocal sheaves on L(fn)0 and the category of microlocal sheaves on n disjoint 2-disks
(which are just copies of C-mod). Attaching a 2-disk along a vanishing Vi cycle in ϑ(f),
i ∈ [1, n], has the effect of trivializing the “monodromy” corresponding map xi, by the Disk
Lemman [68, Lemma 4.2.3] cited above; see [96, Section 4] and [68, Section 4.2] for the details.
Here, the monodromy27 is given by restricting a microlocal sheaf to (an arbitrarily small
neighborhood of) Vi. Note that in this restriction, we land into a 1-dimensional Lagrangian
skeleton given by a circle Vi ∼= S1 union conical segments coming from the adjacent vanishing
cycles. Let us call γi the composition of maps from cone(xi) to itself obtained by going around
Vi, each of the maps coming from traversing a segment. Then, the trivialization is a homotopy
to the identity, and it translates into adding a map αi such that xiαi − 1 = γi.

Example 4.2. Consider the map x1 in Figure 15 (Left), which is depicted transversely to
the vanishing cycle V1. The restriction of a microlocal sheaf to a neighborhood of V1 gives a
microlocal sheaf for the skeleton S1 ∪ T ∗,+p S1 ⊆ T ∗S1, where T ∗,+p S1 is the positive half of the
cotangent fiber at a point p ∈ S1. Such a microlocal sheaf is described by a (complex of) vector
space(s) and an endomorphism. In this case the vector space is V = C and this endomorphism
is identified with γ1 = x2. Hence, trivializing along V1 adds a map α1 ∈ End(C), which we
can think of as a variable α1 ∈ C, such that x1α1 + 1 = −x2. Similarly, trivializing along V2,
with γ2 = −α1, adds a variable α2 ∈ C such that 1 + x2α2 = −α1. Hence Θ(f) is the affine
variety

Θ(f3) = {(x, y, z) ∈ C3 : xyz + x− z − 1 = 0}.
27We had written “monodromy” in quotations because it is not a priori necessarily invertible.
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This affine variety appears in the study of isomonodromic deformations of the Painlevé I
equation [105, Section 3.10], see also [18, Section 5]. �

The vanishing cycles V1, Vn have simpler monodromies γ1, γn, as they only intersect one other
vanishing cycle. Adding the 2-disks to the skeleton L(fn)0 along V1, Vn yields a category of
microlocal sheaves whose moduli space of simple objects is described by that of L(fn)0 and
the two equations x1α1 + 1 = −x2 and xnαn + 1 = −αn−1. For each of the middle vanishing
cycles Vi, 2 ≤ i ≤ n− 1, we have the monodromy γi = αi−1xi+1. In consequence, attaching
the n 2-disks L(fn)0 along all the curves Vi, i ∈ [1, n], leads to the moduli space

Θ(f) ∼= {(xi, αi) ∈ (C2)n : x1α1+1 = −x2, xnαn+1 = −αn−1, 1+xjαj = αj−1xj+1, j ∈ [2, n−1]}.

Remark 4.3. Consider (n + 3)-tuples of vectors (v1, . . . , vn+3) ∈ C2, modulo GL2(C), the
equations for Θ(f) above can be read directly by writing the (n+ 3)-tuple as

(
1
0

)
,

(
0
1

)
,

(
−1
x1

)
,

(
α1

x2

)
,

(
α2

x3

)
,

(
α3

x4

)
,

(
α4

x5

)
, . . . ,

(
αn−1

xn

)
,

(
αn
−1

)
,

and imposing vi ∧ vi+1 = 1, where we have use the GL2(C) gauge group to trivialize the
first two vectors, and one component of the third and last vectors. P. Boalch [18] names this
moduli stack after Y. Sibuya [99]. Note that [18, Section 5] points out that some of these
equations were initially discovered by L. Euler in 1764 [42]. In the context of open Bott-
Samelson cells [95, 97], these spaces appear as the open positroid varieties {p ∈ Gr(2, n+ 3) :
Pi,i+1(p) 6= 0}, where Pi,j is the Plücker coordinate given by the minor at the i and j columns,
and the index i is understood Z/(n+ 3)-cyclically. �

Finally, we notice that the cohomology H∗(Θ(f),C), or that of H∗(S(f),C), can be an
interesting invariant [98, Section 6]. For the case of An-singularities, we can use the fact that
these are actually cluster varieties of An-type in order to compute their cohomology using
[72, Section 6.2]. For n = 2m ∈ N even, and removing any C∗-factors coming from frozen
variables, one obtains that the Abelian graded cohomology group is isomorphic to Q[t]/tm+1,
|t| = 2. In general, the mixed Hodge structure for these moduli spaces can be non-trivial,
but for singularities of An-type, these cohomologies are of Hodge-Tate type, and entirely
concentrated in

⊕
k≥0H

k,(k,k).

Remark 4.4. It would be valuable to understand the relation between sheaf invariants of
a singularity f ∈ C[x, y], such as µsh(L(f)) and µsh(L(f)), and classical invariants from
singularity theory [3, 9, 10]. In particular, it could be valuable to develop more systematic
methods to compute µsh(L(f)) and µsh(L(f)) both directly and from a divide. �

5. Structural Conjectures on Lagrangian Fillings

Let Λ ⊆ (S3, ξst) be a max-tb Legendrian link. The classification of embedded exact La-
grangian fillings L ⊆ (D4, λst) with fixed boundary Λ, up to Hamiltonian isotopy, is a central
question. The only Legendrian Λ for which a complete classification exists is the standard
unknot [33]. In this case, the standard Lagrangian flat disk is the unique filling: there is
precisely one exact Lagrangian filling, up to Hamiltonian isotopy.

The recent developments [20, 22, 23] show that such finiteness is actually rare: e.g. the
max-tb torus links (n,m) admit infinitely many exact Lagrangian filling, up to Hamiltonian
isotopy, if n,m ≥ 4. In fact, it is proven in [20] that Legendrian representatives of infinitely
many types of either torus, satellite or hyperbolic knots admit infinitely many Hamiltonian
isotopy classes of embedded exact Lagrangian fillings. This final section states and discusses
Conjectures 5.1 and 5.4, which might help towards our understanding of the classification of
exact Lagrangian fillings of Legendrian links.
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Geometric Strategy. Given Λ ⊆ (S3, ξst), we would like to know whether it admits finitely
many Lagrangian fillings or not, and in the finite case provide the exact count. Theorem
1.1 provides insight for the class of Legendrian links Λ ⊆ (S3, ξst) that are algebraic links
and, more generally, arise from a divide. Indeed, Lagrangian fillings for Λ can be constructed
by using the Lagrangian skeleta for the Weinstein pair (C2,Λ) built in the statement. For
instance, the inclusion of the Lagrangian Milnor fiber Lf̃ ⊆ Lf̃ provides an exact Lagrangian

filling, and performing Lagrangian disk surgeries along the Lagrangian 2-disks in Lf̃ \ Lf̃ ,

which bound vanishing cycles, will potentially yield new Lagrangian fillings. This strategy
can be implemented in certain cases but, in general, one must be able to find an embed-
ded Lagrangian disk in the new Lagrangian skeleton (with an embedded boundary curve),
in order to perform the next Lagrangian disk surgery. Curves being immersed rather than
embedded28, might a priori represent a challenge.29 This geometric scheme has the following
algebraic incarnation.

Algebraic Strategy. Consider the intersection quiver Qϑ(f̃) of vanishing cycles for a real

morsification f̃ , Lagrangian disk surgeries induce mutations of the quiver [96] and the (mi-
crolocal) monodromies of a local system serve as cluster X -variables [23, 97]. Thus, the
cluster algebra A(Q(f)) associated to the quiver, as it appears in [45], governs possible exact
Lagrangian fillings for the Legendrian link Λ. That is, a Lagrangian filling L ⊆ (D4, λst)
yields a cluster chart for this algebra [51, 97], and the Lagrangian skeleta from Theorem 1.1
provide a geometric realization for the quiver in the form of an exact Lagrangian filling with
ambient Lagrangian disks ending on it.

The recent developments [20, 51, 96, 97] and the existence of the Lagrangian skeleta in
Theorem 1.1 shyly hint towards the fact that, possibly, Lagrangian fillings are classified by
the cluster algebra A(Q(f)). That is, every cluster chart in A(Q(f)) is induced by precisely
one exact Lagrangian filling.30 It should be emphasized that this is not known for any
Λ ⊆ (R3, ξst) except the standard Legendrian unknot. It is possible that the case of the
Hopf link Λ(A1) can be solved by building on the techniques in [92], which classifies exact
Lagrangian tori near the Whitney sphere31; this is currently work in progress.

Having presented the available evidence, we state the following conjectural guide:

Conjecture 5.1 (ADE Classification of Lagrangian Fillings). Let Λ ⊆ (R3, ξst) be the Leg-
endrian rainbow closure of a positive braid such that the mutable part of its brick quiver is
connected. Then one of the following possibilities occur:

1. Λ is smoothly isotopic to the link of the An-singularity.
Then Λ has precisely 1

n+2

(
2n+2
n+1

)
exact Lagrangian fillings.

2. Λ is smoothly isotopic to the link of the Dn-singularity.
Then Λ has precisely 3n−2

n

(
2n−2
n−1

)
exact Lagrangian fillings.

3. Λ is smoothly isotopic to the link of the E6, E7 or the E8-singularities.
Then Λ has precisely 833, 4160, and 25080 exact Lagrangian fillings, respectively.

4. Λ has infinitely many exact Lagrangian fillings.

28Equivalently, the existence of curves with zero algebraic intersection but non-empty geometric
intersection.

29The vanishing cycles can be organized as a quiver Q, the additional data of a superpotential (Q,W )
should be helpful in solving the disparity between immersed and embedded curves in the Milnor fiber.

30That is, two Lagrangian fillings inducing the same cluster chart in A(Q(f)) are Hamiltonian isotopic and
every cluster chart is induced by at least one Lagrangian filling.

31See also [29], which appeared during the writing of this manuscript.

24



The following comments are in order:

(i) In [46], S. Fomin and A. Zelevinsky classify cluster algebras of finite type. This
is an ADE-classification, parallel to the classification of simple singularities [9], the
Cartan-Killing classification of semisimple Lie algebras, finite crystallographic root
systems (via Dynkin diagrams) and the like. Thus, Conjecture 5.1 first states that
Λ will have finitely many exact Lagrangian fillings, up to Hamiltonian isotopy, if and
only if the associated quiver is ADE.

(ii) The case of Λ = Λf an algebraic link associated to a non-simple singularity f ∈ C[x, y]
of a plane curve follows from [20], and the case of a Legendrian Λ with a non-ADE
underlying quiver has recently been proven in [52]. These approaches are based on the
following fact: if there exists an embedded exact Lagrangian cobordism from Λ− to
Λ+ and Λ− admits infinitely many Lagrangian fillings, then so does Λ+. See [22, 86]
and [20, Section 6]. This itself initiates the quest for finding the smallest Legendrian
link which admits infinitely many exact Lagrangian fillings.

At present, if we measure the size of a link Λ as π0(Λ) + 2g(Λ), g(Λ) the (minimal)
genus of a (any) embedded Lagrangian filling, the smallest known Legendrian link
has g(Λ) = 1 and two components π0(Λ) = 2; it is built in [22]. Intuitively, it is the

geometric link corresponding to the Ã2 cluster algebra.

(iii) According to (ii) above, the missing ingredient for Conjecture 5.1 is showing that
(1), (2) and (3) hold. For the An-case (1), it is known that there are at least the
stated Catalan number worth of exact Lagrangian fillings, distinct up to Hamilton-
ian isotopy. This was originally proven by Y. Pan [87] and subsequently understood
in [97, 102] from the perspective of microlocal sheaf theory. It remains to show
that any exact Lagrangian filling of Λ(An) is Hamiltonian isotopic to one of those;
the first unsolved case is the Hopf link Λ(A1) having exactly two embedded exact
Lagrangian fillings.32 For the Λ(Dn),Λ(E6),Λ(E7) and Λ(E8) cases in Conjecture
5.1, one needs to first find the corresponding number of distinct Lagrangian fillings,
and then show these are all. The construction part should be relatively accessible,
in the spirit of either [23, 87, 97], and it is reasonable to suspect that these many
fillings can be distinguished using either augmentations or microlocal monodromies.33

(iv) The numbers appearing in Conjecture 5.1.(i)-(iii) are the number of cluster seeds for
the corresponding cluster algebra. Precisely, consider a root system of Cartan-Killing
type Xn, e1, . . . , en its exponents and h the Coxeter number. Then the numbers in
Conjecture 5.1 are N(Xn) =

∏n
i=1(ei + h+ 1)(ei + 1)−1 for Xn = An, Dn, E6, E7, E8.

The brick graph of a positive braid is defined in [13, 94], it can be enhanced to a quiver,
which we call the brick quiver, following the algorithm in [95, Section 3.1] or [51, Section
4.2], which itself generalizes the wiring diagram construction in [16, 43].

Remark 5.2. The hypothesis of the mutable part of its brick quiver being connected is
necessary. We could otherwise add a meridian to any positive braid, which would create
a disconnected quiver; the resulting cluster algebra would be a product with A1, which
preserves being of finite type. It stands to reason that adding a meridian to a Legendrian
link Λ would yield a Legendrian link Λ∪µ with exactly twice as many Lagrangian fillings. It
is clear that there are at least twice as many Lagrangian fillings for Λ ∪ µ, as there are two
distinct Lagrangian cobordisms from Λ to Λ ∪ µ. The simplest case is Λ = Λ0 the standard

32In particular, this would show that the two possible Polterovich surgeries [90] of a 2-dimensional La-
grangian node are the only two exact Lagrangian cylinders near the node, up to Hamiltonian isotopy.

33Showing these exhaust all fillings, up to Hamiltonian isotopy, is another matter, possibly much more
challenging.
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Legendrian unknot and Λ∪µ ∼= Λ(A1) the Hopf link, which should have 2 = 2 · 1 Lagrangian
fillings, in accordance with Conjecture 5.1. The next case would be Λ = Λ(A1), so that
Λ(A1) ∪ µ ∼= Λ(D2), in line with Λ(D2) conjecturally having 4 = 2 · 2 Lagrangian fillings. �

Note that the article [22] has provided the first examples of Legendrian links Λ ⊆ (S3, ξst)
which are not rainbow closures of positive braids and yet they admit infinitely many La-
grangian fillings, up to Hamiltonian isotopy. These Legendrian links have components which
are stabilized, not max-tb, and thus they cannot be rainbow closures of any positive braid.
It would be interesting to extend Conjecture 5.1 to a larger class of links, possibly including
(−1)-framed closures of certain positive braids, e.g. those with Demazure product equal to
a half-twist, as studied in [22].

Remark 5.3. To the author’s knowledge, [33, 87], Theorem 1.1, and the recent [20, 23, 22,
51, 52], constitute the current evidence towards Conjecture 5.1. Hints towards Conjecture
5.1 might have appeared in the symplectic folklore in one form or another: e.g. the advent
of Symplectic Field Theory led to the mantra of “pseudoholomorphic curves or nothing”34,
the subsequent arrival of microlocal sheaf theory to symplectic topology led to “sheaves or
nothing”. In the current zeitgeist, cluster algebras provide a new algebraic invariant that one
might hope to be complete.35 �

In the line of Remark 5.3, a natural strengthening of Conjecture 5.1, under same the hypothe-
ses, would be to speculate that there exists precisely one Hamiltonian isotopy class of La-
grangian fillings per each cluster seed in the augmentation variety associated to Λ ⊆ (R3, ξst).
Given our current understanding, this might as well be the case. The statement is correct
for the unknot and current work in progress indicates that it is correct for the Hopf link.

Finally, an ADE-classification is often part of a larger classification36, involving a few addi-
tional families. For instance, simple Lie algebras are classified by connected Dynkin diagrams,
which are An, Dn, E6, E7, E8, known as the simply laced Lie algebras, and Bn, Cn, F4 and G2.
These latter cases, Bn, Cn, F4 and G2, are interesting on their own right. For instance, simple
singularities are classified according to An, Dn, E6, E7, E8, and Bn, Cn, F4 then arise in the
classification of simple boundary singularities [9, Chapter 17.4], as shown in [10, Chapter 5.2].
(See also D. Bennequin’s [15, Section 8] and [7].) In general, the tenet is that Bn, Cn, F4 and
G2 arise when classifying the same objects as in the ADE-classification with the additional
data of a symmetry.37 This a perspective (and technique) called folding, ubiquitous in the
study of Bn, Cn, F4, G2, which is developed in [47, Section 2.4] for the case of cluster algebras.

Let us consider a Legendrian Λ ⊆ (R3, ξst), a Lagrangian filling L ⊆ (R4, λst), ∂L = Λ,
and a finite group G acting faithfully on (R4, λst) by exact symplectomorphisms, inducing
an action on the boundary piece (R3, ξst) by contactomorphisms. For instance, s : R4 −→
R4, s(x, y, z, w) = (−x,−y, z, w) is an involutive symplectomorphism which restricts to the
contactomorphism (x, y, z) 7→ (−x,−y, z) on its boundary piece (R3, ker{dz − ydx}). Let
us define an exact Lagrangian G-filling of Λ to be an exact Lagrangian filling L of Λ such
that G(L) = L and G(Λ) = Λ setwise. Also, by definition, we say Λ ⊆ (R3, ξst) admits a
G-symmetry if there exists a faithful action of G by contactomorphisms on (R3, ξst) such
that G(Λ) = Λ setwise. Examples of such symmetries can be readily drawn in the front
projection, as shown in Figure 16 for Λ(A9),Λ(D8),Λ(E6) and Λ(D4). Following the tenet
above, the following classification might be plausible:

34That is, if pseudoholomorphic invariants cannot distinguish two objects, they must be equal.
35As with the previous two cases, there is no particularly hard evidence for “cluster algebras or nothing”.
36The larger classification is an ABCDEFG-classification, which admittedly does not roll off the tongue.
37The study of boundary singularities can be understood as the study of singularities taking into account

a certain Z2-symmetry.
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Conjecture 5.4 (BCFG Classification of Lagrangian Fillings). Let Λ(β) ⊆ (S3, ξst) the
Legendrian rainbow closure of a positive braid β:

1. (Bn) If Λ(β) = Λ(A2n−1), the Z2-symmetry (x, z) −→ (−x, z) for the front depicted

in Figure 16 lifts to a Z2-symmetry of Λ(A2n−1). Then Λ(A2n−1) has precisely
(

2n
n

)
exact Lagrangian Z2-fillings.

2. (Cn) If Λ(β) = Λ(Dn+1), the Z2-symmetry (x, z) −→ (−x, z) for the front depicted

in Figure 16 lifts to a Z2-symmetry of Λ(Dn+1). Then Λ(Dn+1) has precisely
(

2n
n

)
exact Lagrangian Z2-fillings.

3. (F4) If Λ(β) = Λ(E6), the Z2-symmetry (x, z) −→ (−x, z) in the front depicted in
Figure 16 lifts to a Z2-symmetry of Λ(E6). Then Λ(E6) has precisely 105 exact La-
grangian Z2-fillings.

4. (G2) If Λ(β) = Λ(D4), the Z3-symmetry in the front depicted in Figure 16 lifts to a
Z3-symmetry of Λ(D4). Then Λ(D4) has precisely 8 exact Lagrangian Z3-fillings.

Figure 16. Legendrian fronts for Λ(A2n−1),Λ(Dn+1),Λ(E6),Λ(D4) with G-
symmetries, G = Z2,Z3. The upper row exhibits these symmetric fronts as
divides of the associated singularities, and the lower row depicts them in the
standard front projection (x, y, z) 7→ (x, z) for a Darboux chart (R3, ξst).

For the G2-case in Conjecture 5.4.(4), it might be helpful to notice that the D4-singularity is
topologically equivalent to f(x, y) = x3 + y3. The Z3-symmetry cyclically interchanges the
three linear branches of this singularity. In particular, we can draw a front for the Legendrian
Λ(D4) as the (3, 3)-torus link, the rainbow closure of β = (σ1σ2)6.38

For the Bn-case in Conjecture 5.4.(1), the construction of
(

2n
n

)
distinct Lagrangian Z2-fillings

likely follows from adapting [87]. Indeed, in the Z2-invariant front for Λ(A2n−1), as depicted
in Figure 16, there are n crossing to the left, equivalently right, of the Z2-symmetry axis. We
can construct a Z2-filling of Λ(A2n−1) by opening those n crossings in any order, with the rule

38The Z3-action should coincide with the loop Ξ1 ◦ (δ−1 ◦ Ξ1 ◦ δ) from [20, Section 2].
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that we simultaneously open the corresponding Z2-symmetric crossing.39 Should one distin-
guish these Z2-fillings via their augmentations, as in [87], an appropriate G-equivariant Floer
theoretic invariant (e.g. G-equivariant DGA and its augmentations) needs to be defined. The
perspective of microlocal sheaves [102] yields combinatorics closer to those of triangulations
[46, Section 12.1], modeling An-cluster algebras, and thus might provide a simpler route to
distinguish these fillings. In either case, Conjecture 5.4 calls for a G-equivariant theory of
invariants for Legendrian submanifolds of contact manifolds.

5.1. Some Questions. We finalize this section with a series of problems on Weinstein 4-
manifolds and their Lagrangian skeleta. To my knowledge, there are several unanswered
questions at this stage, including checkable characterizations of Weinstein 4-manifolds of the
form W (Λf ), where Λf is the Legendrian link of an isolated plane curve singularity. Here
are some interesting, yet hopefully reasonable, problems:

Problem 1. Find a characterization of Legendrian links Λ ⊆ (S3, ξst) for which (C2,Λ), or
W (Λ), admits a Cal-skeleton. (Ideally, a verifiable characterization.)

Problem 2. Find necessary and sufficient conditions for a Lagrangian skeleton L ⊆ (W,λ) to
guarantee that the Stein manifold (W,λ) is an affine algebraic manifold. Similarly, charac-
terize Legendrian links Λ ⊆ (S3, ξst) such that W (Λ) is an affine algebraic variety.

Note that the standard Legendrian unknot Λ0
∼= Λ(A0) ⊆ (S3, ξst) and the max-tb Hopf link

Λ(A1) ⊆ (S3, ξst) yield affine Weinstein manifolds, as we have

W (Λ0) ∼= {(x, y, z) ∈ C3 : x2 +y2 +z2 = 1}, W (Λ(A1)) ∼= {(x, y, z) ∈ C3 : x3 +y2 +z2 = 1}.

By [21, Section 4.1], the trefoil Λ(A2) is also an example of such a Legendrian link, as

W (Λ(A2)) ∼= {(x, y, z) ∈ C3 : xyz + x+ z + 1 = 0}.

Heuristic computations indicate that Λ(A3) and Λ(D4) also have this property. See [73, 74]
for a source of necessary conditions, and [93] for (topological) skeleta of affine hypersurfaces.

Problem 3. Find necessary and sufficient conditions for a Lagrangian skeleton40 L ⊆ (W,λ) to
guarantee that the Stein manifold (W,λ) is flexible.41 (Again, a verifiable characterization.)
Similarly, characterize Λ ⊆ (S3, ξst) such that W (Λ) is flexible.

Note that affine manifolds W ⊆ CN might be flexible [21, Theorem 1.1]. In particular, it
could be fruitful to compare Lagrangian skeleta of Xm = {(x, y, z) ∈ C3 : xmy + z2 = 1} for
m = 1 and m ≥ 2, e.g. the ones provided in [93].

Problem 4. Suppose that a Weinstein 4-manifold W = W (Λ) is obtained as a Lagrangian
2-handle attachment to (D4, ωst). Given a Cal-skeleton L ⊆ (W,λ), devise an algorithm to
find one such possible Legendrian Λ ⊆ (∂D4, ξst).

(Note that such a Legendrian Λ might not be unique, i.e. it could be possible that two non-
isotopic Legendrian knots Λ1,Λ2 might have Weinstein isomorphic traces W (Λ1) ∼= W (Λ2).)

Problem 5. Let L ⊆ (W,λ) be a closed exact Lagrangian surface. Study whether there
exists a Cal-skeleton L ⊆ (W,λ) such that L ⊆ L. In addition, study whether there exists
a Legendrian handlebody Λ ⊆ (#kS1 × S2, ξst), so that W = W (Λ), and L is obtained by
capping a Lagrangian filling of a Legendrian sublink of Λ.

39The naive count of 312-pattern avoiding permutations from [32, 87] would indicate that there are 1
n

(
2n
n

)
such Lagrangian Z2-fillings, instead of

(
2n
n

)
. Thus, should Conjecture 5.4 hold, there must be an additional

rule for Z2-fillings (not just those in [87, Lemma 3.10]), possibly related to the fact that the crossing closest
to the Z2-axis is different from the rest.

40Not closed in this case.
41See [28] for flexible Weinstein manifolds. In the 4-dimensional case above, we might just define flexible

as being of the form W = W (Λ) where Λ is a stabilized knot.
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See [106] for an interesting construction in the case of Bohr-Sommerfeld Lagrangian subman-
ifolds and see [34] for a general discussion on regular Lagrangians. The nearby Lagrangian
conjecture holds for W = T ∗S2, T ∗T2, thus the answer is affirmative in these cases.

Problem 6. Characterize which cluster algebras A can arise as the ring of functions of the
augmentation stack of a Legendrian link Λ ⊆ (S3, ξ).

By using double-wiring diagrams [16], (generalized) double Bruhat cells satisfy this property

[95]. It is proven in [22, 51] that the cluster algebras A(D̃n) of affine Dn-type have this

property. Heuristic computations indicate that the affine types Ãp,q also verify this [22]. It
might be reasonable to conjecture that cluster algebras of surface type all have this property.

Here is a variation on this problem. Suppose that a cluster algebra A arises, e.g. as an
augmentation variety associated to a Legendrian link Λ. An interesting problem might be to
characterize those elements of the cluster automorphism group of A which arise as Legendrian
loops of Λ. In certain cases, this is known to be the case for Grassmannian braid symmetries
[20, 48], the square of the Donaldson-Thomas transformation [52] and the Zamolodchikov
operator [66].

In general, relating geometric properties of Lagrangian fillings to algebraic properties of
cluster algebras should be fruitful. For instance, already in Type A, it would be interesting to
geometrically characterize those Lagrangian fillings of the (2, n)-torus links that yield positive
cluster seeds. More ambitiously, it would seem useful to be able to access geometrically, e.g.
via holomorphic curve counts, the Zt-tropical structure, or the R+-positive structure, of the
cluster varieties associated to some Legendrian links.

Problem 7. Let a3(Λ) be the number of A3-arboreal singularities of a Cal-skeleton L ⊆ (W,λ).
Find the number a3(W ) := minL⊆W a3(L), where L ⊆ W runs amongst all possible Cal-
skeleta. In particular, characterize Weinstein 4-manifolds (W,λ) with a3(W ) = 0.

Problem 8. Develop a combinatorial theory of symplectomorphisms in Symp(W,dλ) in terms
of Cal-skeleta L ⊆ (W,λ).

This is being developed in the case dim(W ) = 2 by using A’Campo’s tête-à-tête twists
[5, Section 3], see also [6, Section 5]. A (symplectic) mapping class in Symp(W,dλ) is
a composition of Dehn twists in this 2-dimensional case. This is no longer the case in
dim(W ) = 4, e.g. due to the existence of Biran-Giroux’s fibered Dehn twists, confer [104,
Section 3] and [107, Section 2]. Note that π0(Symp(W )) might be infinite even if W contains
no exact Lagrangian 2-spheres [20].

Problem 9. Compare Cal-skeleta L1 ⊆ (W1, λ1), L2 ⊆ (W2, λ2) for exotic Stein pairs W1,W2.
That is, W1 is homeomorphic to W2, but not diffeomorphic. In particular, investigate skeletal
corks: combinatorial modifications on a Cal-skeleton that can produce exotic Stein pairs.

In [82], H. Naoe uses Bing’s house [17] to study some such corks.

Problem 10. Find a contact analogue of Turaev’s Shadow formula42 [103, Chapter 10] for the
contact 3-dimensional boundary in terms of the combinatorics of a Cal-skeleton L ⊆ (W,λ).
That is, find a contact invariant43 of (∂W, λ|∂W ) which can be computed in terms of the
combinatorics of L ⊆ (W,λ).
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volume 82 of Monographs in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1985. The classification
of critical points, caustics and wave fronts, Translated from the Russian by Ian Porteous and Mark
Reynolds.
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Vol. 1 (Schnepfenried, 1982), volume 107 of Astérisque, pages 87–161. Soc. Math. France, Paris, 1983.

[15] Daniel Bennequin. Caustique mystique (d’après Arnol′d et al.). Number 133-134, pages 19–56. 1986.
Seminar Bourbaki, Vol. 1984/85.

[16] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky. Cluster algebras. III. Upper bounds and
double Bruhat cells. Duke Math. J., 126(1):1–52, 2005.

[17] R. H. Bing. Some aspects of the topology of 3-manifolds related to the Poincaré conjecture. In Lectures
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[57] Emmanuel Giroux. Géométrie de contact: de la dimension trois vers les dimensions supérieures. In

Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 405–414,
Beijing, 2002. Higher Ed. Press.

[58] Robert E. Gompf. Handlebody construction of Stein surfaces. Ann. of Math. (2), 148(2):619–693, 1998.
[59] A. B. Goncharov. Ideal webs, moduli spaces of local systems, and 3d Calabi-Yau categories. In Algebra,

geometry, and physics in the 21st century, volume 324 of Progr. Math., pages 31–97. Birkhäuser/Springer,
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