L-Infinity Optimization in Tropical Geometry and Phylogenetics

Daniel Irving Bernstein* and Colby Long

North Carolina State University
dibernst@ncsu.edu
https://arxiv.org/abs/1606.03702

October 19, 2016
Phylogenetics Motivation

- Find a tree representing the evolutionary history among a set of species from data
- Sometimes the data is a list of pairwise “distances” between species

Example
- Species: human, gorilla, banana
- Data:
 - $d(\text{human}, \text{gorilla}) = 1$
 - $d(\text{human}, \text{banana}) = 5$
 - $d(\text{gorilla}, \text{banana}) = 5$

What if our data were perturbed and we instead observed $d(\text{human}, \text{gorilla}) = 1$, $d(\text{human}, \text{banana}) = 5$, and $d(\text{gorilla}, \text{banana}) = 6$?
Ultrametrics

Definition

A *dissimilarity map* on a set X is a function $d : X \times X \rightarrow \mathbb{R}$ such that

1. $d(x, y) = d(y, x)$ and
2. $d(x, x) = 0$

We say that $d(\cdot, \cdot)$ is an *ultrametric* if for all $x, y, z \in X$ the maximum of $d(x, y), d(y, z)$ and $d(x, z)$ is attained twice.

Example

Let $X = \{A, B, C, D\}$. The following is an ultrametric on X.

$$
\begin{pmatrix}
A & B & C & D \\
A & 0 & 5 & 7 & 9 \\
B & 5 & 0 & 7 & 9 \\
C & 7 & 7 & 0 & 9 \\
D & 9 & 9 & 9 & 0
\end{pmatrix}
$$
Proposition

Every ultrametric on a finite set can be expressed as a rooted tree and vice versa. The tree structure associated to an ultrametric d is called the topology of d.
Which ultrametrics are l^∞-nearest to the dissimilarity map below?

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
A & 0 & 2 & 4 & 6 \\
B & 2 & 0 & 7 & 10 \\
C & 4 & 7 & 0 & 12 \\
D & 6 & 10 & 12 & 0 \\
\end{array}
\]
Finding l^∞-Nearest Ultrametrics

Theorem (Chepoi and Fichet 2000)

Let d be a dissimilarity map on a finite set X. Then the following algorithm produces an ultrametric on X that is nearest to d in the l^∞ norm.

1. **Draw the complete graph on vertex set X**
2. **Label the edge between x and y by $d(x, y)$**
3. **For each $x, y \in X$ define**

 $$d_u(x, y) = \min_{\text{paths } P \text{ from } x \text{ to } y} \left(\max_{\text{edges } (i, j) \text{ of } P} d(i, j) \right)$$

4. **Let $\delta = \|d_u - d\|_\infty$ and let 1 be the ultrametric such that $1(x, y) = 1$ for all $x, y \in X$**
5. **Then $d_u(x, y) + \frac{\delta}{2} 1$ is an ultrametric that is l^∞-nearest to d.**
Example

\[d = \begin{pmatrix} A & B & C & D \\ A & 0 & 2 & 4 & 6 \\ B & 2 & 0 & 7 & 10 \\ C & 4 & 7 & 0 & 12 \\ D & 6 & 10 & 12 & 0 \end{pmatrix} \]

\[d_u = \begin{pmatrix} A & B & C & D \\ A & 0 & 2 & 4 & 6 \\ B & 2 & 0 & 4 & 6 \\ C & 4 & 4 & 0 & 6 \\ D & 6 & 6 & 6 & 0 \end{pmatrix} \]

\[d_u + \frac{\|d_u - d\|_\infty}{2} \mathbf{1} = \begin{pmatrix} A & B & C & D \\ A & 0 & 5 & 7 & 9 \\ B & 5 & 0 & 7 & 9 \\ C & 7 & 7 & 0 & 9 \\ D & 9 & 9 & 9 & 0 \end{pmatrix} \]
Remark

There exist other ultrametrics that are also l^∞ distance 3 from d. Some have different tree topologies.
Problems

Let $U(n)$ denote the set of ultrametrics on a set of size n. If d is a dissimilarity map, let $C(d, U(n))$ denote the collection of ultrametrics that are l_∞-nearest to d.

Proposition (B.-Long 2016)

$C(d, U(n))$ is a tropical polytope.

Problem

Describe the tropical vertices of $C(d, U(n))$.

We give an algorithmic solution to the above problem in a more general setting (Bergman fans of matroids). We also investigate the problem below.

Problem

Given a linear space $L \subseteq \mathbb{R}^N$ and some $x \in \mathbb{R}^N$, describe the set of points in L that are l_∞-nearest to x.
Definition

The *tropical semiring* is the extended real numbers \(\mathbb{R} \cup \{-\infty\} \) where tropical addition is defined as

\[
a \oplus b := \max\{a, b\}
\]

and tropical multiplication is defined as

\[
a \odot b := a + b.
\]

Definition

The *tropical semi-module* is \((\mathbb{R} \cup \{-\infty\})^n\). If \(x, y \in (\mathbb{R} \cup \{-\infty\})^n\), then \(x \oplus y\) is the vector whose \(i\)th entry is \(x_i \oplus y_i\). If \(\alpha \in \mathbb{R} \cup \{-\infty\}\) then the \(i\)th entry of \(\alpha \odot x\) is \(\alpha \odot x_i\).

\[
\begin{pmatrix}
1 \\
2
\end{pmatrix} \oplus 1 \odot \begin{pmatrix}
-\infty \\
2
\end{pmatrix} = \begin{pmatrix}
1 \\
2
\end{pmatrix} \oplus \begin{pmatrix}
-\infty \\
3
\end{pmatrix} = \begin{pmatrix}
1 \\
3
\end{pmatrix}
\]
In what follows, \(v_1, \ldots, v_k \in (\mathbb{R} \cup \{-\infty\})^n \).

Definition

A tropical polytope is a set of the form

\[
t\text{conv}\{v_1, \ldots, v_k\} := \{\lambda_1 \otimes v_1 \oplus \cdots \oplus \lambda_k \otimes v_k : \lambda_1, \ldots, \lambda_k \in \mathbb{R} \cup \{-\infty\} \text{ and } \lambda_1 \oplus \cdots \oplus \lambda_k = 0\}.
\]

Definition

A tropical polyhedral cone is a set of the form

\[
t\text{cone}\{v_1, \ldots, v_k\} := \{\lambda_1 \otimes v_1 \oplus \cdots \oplus \lambda_k \otimes v_k : \lambda_1, \ldots, \lambda_k \in \mathbb{R} \cup \{-\infty\}\}.
\]
Example

tconv\{(1, 0), (0, 1)\} is displayed below. tcone\{(1, 0), (0, 1)\} is the entire plane.
Bergman Fans

Definition

Let \mathcal{M} be a matroid on ground set E. The Bergman fan of \mathcal{M} is the subset of \mathbb{R}^E:

$$\tilde{\mathcal{B}}(\mathcal{M}) := \{ x \in \mathbb{R}^E : \text{if } C \text{ is a circuit of } \mathcal{M}, \text{ then the maximum of } \{x_i : i \in C\} \text{ is attained twice} \}.$$

Example

Let \mathcal{M} be the matroid underlying the complete graph on 4 vertices. The edge-labeled graph on the left represents an element of $\tilde{\mathcal{B}}(\mathcal{M}(K_4))$ whereas the one on the right does not.
Theorem (Ardila and Klivans, 2006)

The collection of ultrametrics on a finite set of size n is exactly the Bergman fan of the complete graph on n vertices.

Theorem (Ardila, 2004)

Bergman fans of matroids are tropical polyhedral cones. The Chipoi-Fichet algorithm for ultrametrics extends to Bergman Fans of matroids.

Theorem (B.-Long 2016)

Let \mathcal{M} be a matroid on ground set E and let $x \in \mathbb{R}^E$. Then the subset of the Bergman fan $\tilde{\mathcal{B}}(\mathcal{M})$ of points that are l^∞-nearest to x is a tropical polytope. We have an algorithm for computing its tropical vertices.

Proposition (B.-Long 2016)

All l^∞-nearest ultrametrics to d have the same topology if and only if all the vertices have the same topology.
Algorithm idea:

1. Compute the l^∞-nearest ultrametric given by Chepoi-Fichet
2. Slide internal nodes of the tree down until either creating a new polytomy, or sliding any further would increase l^∞ distance
3. Repeat
4. If at most one internal node can still be moved down, then that ultrametric is a tropical vertex
Tropical Polytope of Nearest Ultrametrics
Other Things

- Algorithm extends to Bergman fans of arbitrary matroids by generalizing the notion of tree topology
- Question for future work: how probable is it that a given dissimilarity map is ℓ^∞-nearest to ultrametrics with different topologies?
Let $L \subseteq \mathbb{R}^n$ be a linear space and let $x \in \mathbb{R}^n$.

Denote $C(x, L) := \{y \in L : \|x - y\|_\infty \text{ is minimized}\}$

If δ is the l^∞ distance from x to L then

$$C(x, L) = (x + [-\delta, \delta]^n) \cap L$$
Oriented Matroids

Definition
The oriented matroid associated to a linear space L is the collection of sign vectors that appear as coefficients of linear forms vanishing on L.

Example
Let $L = \{(t, t, 0) : t \in \mathbb{R}\} \subset \mathbb{R}^3$. Then the oriented matroid associated to L is the sign vectors:

$$(+,-,0) \quad (-,+,-,0) \quad (0,0,0)$$

$$(+,-,+,-) \quad (-,+,-,0) \quad (0,0,+)$$

$$(+,-,+,0) \quad (-,+,-,0) \quad (0,0,-).$$

Some linear forms that vanish on L are

$$x - y \quad - 2x + 2y + 5z \quad - 4z$$
Rank Functions of Oriented Matroids

Definition
If O_L is the oriented matroid associated to L and $\sigma \in O_L$, then we define $\text{rank}(\sigma)$ to be the size of the largest subset of the support of σ that can be arbitrarily specified in L.

Example
Let $L = \{(t, t, 0) : t \in \mathbb{R}\} \subset \mathbb{R}^3$.
- $\text{rank}(0, 0, +) = 0$
- $\text{rank}(+, -, 0) = 1$
- $\text{rank}(-, +, +) = 1$.
We can associate a sign vector to each face of a cube $x + [-\delta, \delta]^n$.

If $x \in \mathbb{R}^n$ is distance δ from L, we define $\text{type}_L(x)$ to be the sign vector of the minimal face of $x + [-\delta, \delta]^n$ that contains $C(x, L)$.

\begin{align*}
&(-,+) \quad (0,+) \quad (+,+) \\
&(-,0) \quad (0,0) \quad (+,0) \\
&(-,-) \quad (0,-) \quad (+,-)
\end{align*}
Theorem (B.-Long)

Let \(L \subseteq \mathbb{R}^n \) be a linear space of dimension \(d \).

1. The set of possible values of \(\text{type}_L(x) \) is the oriented matroid underlying \(L \).
2. The dimension of the set of points in \(L \) that are closest to \(x \) in \(L \) is \(d - \text{rank(\text{type}(x))} \).

Corollary

The \(l^\infty \)-nearest point in \(L \) to a given \(x \in \mathbb{R}^n \) is unique for all \(x \) if and only if the matroid underlying \(L \) is uniform.
References

Federico Ardila.
Subdominant matroid ultrametrics.

Federico Ardila and Caroline J. Klivans.
The Bergman complex of a matroid and phylogenetic trees.

Daniel Irving Bernstein and Colby Long.
L-infinity optimization in tropical geometry and phylogenetics.

Victor Chepoi and Bernard Fichet.
L-infinity optimization via subdominants.
Journal of Mathematical Psychology, 44, 600-616, 2000.