Conductor ideals of affine monoids and K-theory

Joseph Gubeladze
San Francisco State University

AMS Special Session: Combinatorial Ideals and Applications

Fargo, 2016
Outline

- Frobenius number of a numerical semigroup
- Affine monoid, normalization, seminormalization
- Conductor ideals & gaps in affine monoids
- Crash course in K-theory
- Affine monoid rings and their K-theory
- Nilpotence of higher K-theory of toric varieties
- Conjecture
Frobenius number of a numerical semigroup

Numerical semigroup is a sub-semigroup $S \subset \mathbb{Z}_{\geq 0}$ such that the set of gaps $\mathbb{Z} \setminus S$ is finite.
Frobenius number of a numerical semigroup

Numerical semigroup is a sub-semigroup $S \subset \mathbb{Z}_{\geq 0}$ such that the set of gaps $\mathbb{Z} \setminus S$ is finite.

The Frobenius number of a numerical semigroup S is the largest gap of S.
Frobenius number of a numerical semigroup

Numerical semigroup is a sub-semigroup $S \subset \mathbb{Z}_{\geq 0}$ such that the set of gaps $\mathbb{Z} \setminus S$ is finite.

The Frobenius number of a numerical semigroup S is the largest gap of S.

Every numerical semigroup S is generated by finitely many integers a_1, \ldots, a_n with $\gcd(a_1, \ldots, a_n) = 1$.
Frobenius number of a numerical semigroup

Numerical semigroup is a sub-semigroup $S \subset \mathbb{Z}_{\geq 0}$ such that the set of **gaps** $\mathbb{Z} \setminus S$ is finite.

The **Frobenius number** of a numerical semigroup S is the largest gap of S.

Every numerical semigroup S is generated by finitely many integers a_1, \ldots, a_n with $\gcd(a_1, \ldots, a_n) = 1$.

Computing the Frobenius number of $g(a_1, \ldots, a_n)$ of $\mathbb{Z}_{\geq 0}a_1 + \cdots + \mathbb{Z}_{\geq 0}a_n$ is **hard**. The only value of n for which there is a formula is $n = 2$:

$$g(a_1, a_2) = a_1a_2 - a_1 - a_2$$
Frobenius number of a numerical semigroup

Numerical semigroup is a sub-semigroup \(S \subset \mathbb{Z}_{\geq 0} \) such that the set of gaps \(\mathbb{Z} \setminus S \) is finite.

The Frobenius number of a numerical semigroup \(S \) is the largest gap of \(S \).

Every numerical semigroup \(S \) is generated by finitely many integers \(a_1, \ldots, a_n \) with \(\gcd(a_1, \ldots, a_n) = 1 \).

Computing the Frobenius number of \(g(a_1, \ldots, a_n) \) of \(\mathbb{Z}_{\geq 0}a_1 + \cdots + \mathbb{Z}_{\geq 0}a_n \) is hard. The only value of \(n \) for which there is a formula is \(n = 2 \):

\[
g(a_1, a_2) = a_1a_2 - a_1 - a_2
\]

Huge existing literature – *Postage Stamp Problem*, *Coin Problem*, *McNugget Problem (special case)*, *Arnold Conjecture (on asymptotics of \(g(a_1, \ldots, a_n) \))*, etc.
Affine monoids, normalization, seminormalization

An affine monoid is a finitely generated submonoid $M \subset \mathbb{Z}^d$.

A positive affine monoid is an affine monoid with no non-zero $\pm x \in M$.

Affine monoids, normalization, seminormalization

An affine monoid is a finitely generated submonoid $M \subseteq \mathbb{Z}^d$

A positive affine monoid is an affine monoid with no non-zero $\pm x \in M$

A positive affine monoid $M \subseteq \mathbb{Z}^d$ defines a rational polyhedral cone

$$C(M) := \mathbb{R}_{\geq 0} M \subseteq \mathbb{R}^d$$
Affine monoids, normalization, seminormalization

An **affine monoid** is a finitely generated submonoid $M \subset \mathbb{Z}^d$

A **positive affine monoid** is an affine monoid with no non-zero $\pm x \in M$

A positive affine monoid $M \subset \mathbb{Z}^d$ defines a **rational polyhedral cone**

$$C(M) := \mathbb{R}_{\geq 0}M \subset \mathbb{R}^d$$

The subgroup of \mathbb{Z}^d, generated by M, is the **group of differences** of M and denoted $\text{gp}(M)$
Affine monoids, normalization, seminormalization

An affine monoid is a finitely generated submonoid \(M \subset \mathbb{Z}^d \).

A positive affine monoid is an affine monoid with no non-zero \(\pm x \in M \).

A positive affine monoid \(M \subset \mathbb{Z}^d \) defines a rational polyhedral cone

\[
C(M) := \mathbb{R}_{\geq 0}M \subset \mathbb{R}^d
\]

The subgroup of \(\mathbb{Z}^d \), generated by \(M \), is the group of differences of \(M \) and denoted \(\text{gp}(M) \).

A (positive) affine monoid \(M \) is normal if

\[
x \in \text{gp}(M) \& nx \in C(M) \text{ for some } n \implies x \in M
\]
Affine monoids, normalization, seminormalization

An affine monoid is a finitely generated submonoid $M \subset \mathbb{Z}^d$

A positive affine monoid is an affine monoid with no non-zero $\pm x \in M$

A positive affine monoid $M \subset \mathbb{Z}^d$ defines a rational polyhedral cone

$$C(M) := \mathbb{R}_{\geq 0}M \subset \mathbb{R}^d$$

The subgroup of \mathbb{Z}^d, generated by M, is the group of differences of M and denoted $\text{gp}(M)$

A (positive) affine monoid M is normal if

$$x \in \text{gp}(M) \& nx \in C(M) \text{ for some } n \implies x \in M$$

A (positive) affine monoid M is seminormal if

$$x \in \text{gp}(M) \& 2x, 3x \in M \text{ for some } n \implies x \in M$$
Affine monoids, normalization, seminormalization

All affine affine monoids from this point on are positive
Affine monoids, normalization, seminormalization

All affine affine monoids from this point on are positive

The normalization of \(M \) is the smallest normal submonoid \(\widetilde{M} \subset \mathbb{Z}^d \) containing \(M \), i.e., \(\widetilde{M} = C(M) \cap \text{gp}(M) \) – ‘saturation’ of \(M \)
Affine monoids, normalization, seminormalization

All affine affine monoids from this point on are positive

The normalization of M is the smallest normal submonoid $\bar{M} \subset \mathbb{Z}^d$ containing M, i.e., $\bar{M} = C(M) \cap \text{gp}(M)$ – ‘saturation’ of M

The seminormalization of M is the smallest seminormal submonoid $\text{sn}(M) \subset \mathbb{Z}^d$ containing M, i.e.,

$$\bar{M} = \{ x \in \mathbb{Z}^d \mid 2x, 3x \in M \}$$

– ‘saturation’ of M along the rational rays inside the cone $C(M)$
Affine monoids, normalization, seminormalization

All affine affine monoids from this point on are positive

The normalization of M is the smallest normal submonoid $\bar{M} \subset \mathbb{Z}^d$ containing M, i.e., $\bar{M} = C(M) \cap \text{gp}(M)$ – ‘saturation’ of M

The seminormalization of M is the smallest seminormal submonoid $\text{sn}(M) \subset \mathbb{Z}^d$ containing M, i.e.,

$$\bar{M} = \{ x \in \mathbb{Z}^d | 2x, 3x \in M \}$$

– ‘saturation’ of M along the rational rays inside the cone $C(M)$

REMARK. $F \cap \text{sn}(M) = \text{sn}(F \cap M)$ for every face $F \subset C(M)$
Affine monoids, normalization, seminormalization

All affine affine monoids from this point on are positive

The normalization of M is the smallest normal submonoid $\bar{M} \subset \mathbb{Z}^d$ containing M, i.e., $\bar{M} = C(M) \cap \text{gp}(M)$ – ‘saturation’ of M

The seminormalization of M is the smallest seminormal submonoid $\text{sn}(M) \subset \mathbb{Z}^d$ containing M, i.e.,

$$\bar{M} = \{ x \in \mathbb{Z}^d \mid 2x, 3x \in M \}$$

– ‘saturation’ of M along the rational rays inside the cone $C(M)$

REMARK. $F \cap \text{sn}(M) = \text{sn}(F \cap M)$ for every face $F \subset C(M)$

FACT. $\bar{M} \cap \text{int} C(M) = \text{sn}(M) \cap \text{int} C(M)$
Conductor ideals & gaps in affine monoids

The conductor ideal of an affine monoid M is

$$c_{\tilde{M}/M} := \{ x \in \tilde{M} \mid x + \tilde{M} \subset M \} \subset M$$

It is an ideal of M because $c_{\tilde{M}/M} + M \subset M$
Conductor ideals & gaps in affine monoids

The conductor ideal of an affine monoid M is

$$c_{\bar{M}/M} := \{x \in \bar{M} \mid x + \bar{M} \subset M\} \subset M$$

It is an ideal of M because $c_{\bar{M}/M} + M \subset M$

FACT. $c_{\bar{M}/M} \neq \emptyset$
Conductor ideals & gaps in affine monoids

The conductor ideal of an affine monoid \(M \) is

\[
c_{\bar{M}/M} := \{ x \in \bar{M} \mid x + \bar{M} \subset M \} \subset M
\]

It is an ideal of \(M \) because \(c_{\bar{M}/M} + M \subset M \)

FACT. \(c_{\bar{M}/M} \neq \emptyset \)

Proof. Let \(\bar{M} \) is module finite over \(M \). Let \(\{ x_1 - y_1, \ldots, x_n - y_n \} \subset \text{gp}(M) \) be a generating set \(x_i, y_i \in M \). Then \(y_1 + \cdots + y_n \in c_{\bar{M}/M} \). \(\square \)
Conductor ideals & gaps in affine monoids

The conductor ideal of an affine monoid M is

$$c_{\bar{M}/M} := \{ x \in \bar{M} \mid x + \bar{M} \subset M \} \subset M$$

It is an ideal of M because $c_{\bar{M}/M} + M \subset M$

FACT. $c_{\bar{M}/M} \neq \emptyset$

Proof. Let \bar{M} is module finite over M. Let $\{x_1 - y_1, \ldots, x_n - y_n\} \subset \text{gp}(M)$ be a generating set $x_i, y_i \in M$. Then $y_1 + \cdots + y_n \in c_{\bar{M}/M}$. □

(Katthän, 2015)

$$\bar{M} \setminus M = \bigcup_{j=1}^{l} (q_j + \text{gp}(M \cap F)) \cap C(M),$$

where the F_j are faces of the cone $C(M)$ and $q_j \in \bar{M}$
Conductor ideals & gaps in affine monoids

The elements of $\text{sn}(M) \setminus M$ are gaps of M. Different from the set $\tilde{M} \setminus M$.
Conductor ideals & gaps in affine monoids

The elements of \(\text{sn}(M) \setminus M \) are gaps of \(M \). Different from the set \(\overline{M} \setminus M \).

For a numerical semigroup \(S \), this is the same as \(\overline{S} \setminus S \).
Conductor ideals & gaps in affine monoids

The elements of $\text{sn}(M) \setminus M$ are gaps of M. Different from the set $\bar{M} \setminus M$

For a numerical semigroup S, this is the same as $\bar{S} \setminus S$

Moreover, $c_{\bar{S}/S} = g(S) + \mathbb{Z}_{>0}$, where $g(S)$ is the Frobenius number of S
Conductor ideals & gaps in affine monoids

The elements of $\text{sn}(M) \setminus M$ are gaps of M. Different from the set $\bar{M} \setminus M$.

For a numerical semigroup S, this is the same as $\bar{S} \setminus S$.

Moreover, $c_{\bar{S}/S} = g(S) + \mathbb{Z}_{>0}$, where $g(S)$ is the Frobenius number of S (Reid-Roberts, 2001). Let $\{v_1, \ldots, v_d, v_{d+1}\} \subset \mathbb{Z}_{\geq 0}^d$ be a circuit (no d elements are linearly dependent) and $M = \mathbb{Z}_{\geq 0}v_1 + \cdots + \mathbb{Z}_{\geq 0}v_1$.
Conductor ideals & gaps in affine monoids

The elements of $\text{sn}(M) \setminus M$ are gaps of M. Different from the set $\bar{M} \setminus M$

For a numerical semigroup S, this is the same as $\bar{S} \setminus S$

Moreover, $c_{\bar{S}/S} = g(S) + \mathbb{Z}_{>0}$, where $g(S)$ is the Frobenius number of S

(Reid-Roberts, 2001) Let $\{v_1, \ldots, v_d, v_{d+1}\} \subset \mathbb{Z}_{\geq 0}^d$ be a circuit (no d elements are linearly dependent) and $M = \mathbb{Z}_{\geq 0}v_1 + \cdots + \mathbb{Z}_{\geq 0}v_1$. Then

$$c_{\bar{M}/M} = g + (\text{int} \ C(M) \cap \text{gp}(M))$$
Conductor ideals & gaps in affine monoids

The elements of $\text{sn}(M) \setminus M$ are gaps of M. Different from the set $\bar{M} \setminus M$

For a numerical semigroup S, this is the same as $\bar{S} \setminus S$

Moreover, $c_{S/S} = g(S) + \mathbb{Z}_{>0}$, where $g(S)$ is the Frobenius number of S

(Reid-Roberts, 2001) Let $\{v_1, \ldots, v_d, v_{d+1}\} \subset \mathbb{Z}_{\geq 0}^d$ be a circuit (no d elements are linearly dependent) and $M = \mathbb{Z}_{\geq 0}v_1 + \cdots + \mathbb{Z}_{\geq 0}v_1$. Then

$$c_{\bar{M}/M} = g + \left(\text{int } C(M) \cap \text{gp}(M)\right)$$

where

$$g = \left(\sum_{i=1}^{d+1} d_i v_i\right) / 2 - \sum_{i=1}^{d+1} v_i$$

d_i being the order of \mathbb{Z}^d modulo $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{d+1}$
Crash course in K-theory

Grothendieck’s group $K_0(R)$ of a ring R measures how far the projective R-modules overall are from being free (actually, stably free, which is a certain functorial weakening of ‘free’).
Crash course in K-theory

Grothendieck’s group $K_0(R)$ of a ring R measures how far the projective R-modules overall are from being free (actually, stably free, which is a certain functorial weakening of ‘free’)

Bass-Whitead group $K_1(R)$ measures how far the invertible matrices over R overall are from being diagonalizable via elementary row (or column) transformations. (Again, in the stable sense)
Crash course in \(K \)-theory

Grothendieck’s group \(K_0(R) \) of a ring \(R \) measures how far the projective \(R \)-modules overall are from being free (actually, stably free, which is a certain functorial weakening of ‘free’)

Bass-Whitead group \(K_1(R) \) measures how far the invertible matrices over \(R \) overall are from being diagonalizable via elementary row (or column) transformations. (Again, in the stable sense)

Milnor’s group \(K_2(R) \) measures how many essentially different diagonalizations overall there exist for all possible diagonalizable invertible \(R \)-matrices
Crash course in K-theory

Grothendieck’s group $K_0(R)$ of a ring R measures how far the projective R-modules overall are from being free (actually, stably free, which is a certain functorial weakening of ‘free’)

Bass-Whitead group $K_1(R)$ measures how far the invertible matrices over R overall are from being diagonalizable via elementary row (or column) transformations. (Again, in the stable sense)

Milnor’s group $K_2(R)$ measures how many essentially different diagonalizations overall there exist for all possible diagonalizable invertible R-matrices

Higher groups $K_i(R)$ do not admit transparent definitions in terms of classical algebraic objects, they are higher homotopy variants of K_0, K_1, K_2
Crash course in K-theory

Grothendieck’s group $K_0(R)$ of a ring R measures how far the projective R-modules overall are from being free (actually, stably free, which is a certain functorial weakening of ‘free’)

Bass-Whitead group $K_1(R)$ measures how far the invertible matrices over R overall are from being diagonalizable via elementary row (or column) transformations. (Again, in the stable sense)

Milnor’s group $K_2(R)$ measures how many essentially different diagonalizations overall there exist for all possible diagonalizable invertible R-matrices

Higher groups $K_i(R)$ do not admit transparent definitions in terms of classical algebraic objects, they are higher homotopy variants of K_0, K_1, K_2

Informally, these groups are syzygies between elementary transformation of invertible matrices over R. Formally, they are higher homotopy groups of a certain K-theoretical space, associated to R (Quillen, the 1970s)
K-theory of monoid rings

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid
K-theory of monoid rings

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid

(Grothendieck) $K_0(R) = K_0(R[X_1, \ldots, X_d])$ ($= K_0(R[\mathbb{Z}^d_{\geq 0}])$)
K-theory of monoid rings

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid

(Grothendieck) \hspace{1cm} K_0(R) = K_0(R[X_1, \ldots, X_d]) \quad (= K_0(R[\mathbb{Z}^d_{\geq 0}]))

(Quillen) \hspace{1cm} K_*(R) = K_*(R[X_1, \ldots, X_d]) \quad (= K_*(R[\mathbb{Z}^d_{\geq 0}]))
K-theory of monoid rings

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid

(Grothendieck) \hspace{1cm} K_0(R) = K_0(R[X_1, \ldots, X_d]) \hspace{1cm} (= K_0(R[\mathbb{Z}^d_{\geq 0}])))

(Quillen) \hspace{1cm} K_*(R) = K_*(R[X_1, \ldots, X_d]) \hspace{1cm} (= K_*(R[\mathbb{Z}^d_{\geq 0}])))

(G., 1988) \hspace{1cm} K_0(R) = K_0(R[M]) \hspace{1cm} \text{iff} \hspace{1cm} M = \text{sn}(M)
K-theory of monoid rings

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid

(Grothendieck) \quad K_0(R) = K_0(R[X_1, \ldots, X_d]) \quad (= K_0(R[\mathbb{Z}^d_{\geq 0}]))

(Quillen) \quad K_*(R) = K_*(R[X_1, \ldots, X_d]) \quad (= K_*(R[\mathbb{Z}^d_{\geq 0}]))

(G., 1988) \quad K_0(R) = K_0(R[M]) \quad \text{iff} \quad M = \text{sn}(M)

Corollary: \quad K_0(R[M])/K_0(R) \cong R(\text{sn}(M) \setminus M) \quad \text{when} \quad \mathbb{Q} \subset R
K-theory of monoid rings

Let R be a (commutative) regular ring and $M \subseteq \mathbb{Z}^d$ an affine monoid

(Grothendieck) \[K_0(R) = K_0(R[X_1, \ldots, X_d]) \quad (= K_0(R[\mathbb{Z}_0^d])) \]

(Quillen) \[K_*(R) = K_*(R[X_1, \ldots, X_d]) \quad (= K_*(R[\mathbb{Z}_0^d])) \]

(G., 1988) \[K_0(R) = K_0(R[M]) \text{ iff } M = \text{sn}(M) \]

Corollary: \[K_0(R[M])/K_0(R) \cong R(\text{sn}(M) \setminus M) \] when $\mathbb{Q} \subset R$

(G., 1992) \[K_*(R) = K_*(R[M]) \text{ iff } M \cong \mathbb{Z}_0^r \text{ for some } r \geq 0 \]
K-theory of monoid rings

Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid.

(Grothendieck) \[K_0(R) = K_0(R[X_1, \ldots, X_d]) \quad (= K_0(R[\mathbb{Z}^d_{\geq 0}])) \]

(Quillen) \[K_*(R) = K_*(R[X_1, \ldots, X_d]) \quad (= K_*(R[\mathbb{Z}^d_{\geq 0}])) \]

(G., 1988) \[K_0(R) = K_0(R[M]) \iff M = \text{sn}(M) \]

Corollary: \[K_0(R[M])/K_0(R) \cong R(\text{sn}(M) \setminus M) \quad \text{when } Q \subset R \]

(G., 1992) \[K_*(R) = K_*(R[M]) \iff M \cong \mathbb{Z}^r_{\geq 0} \quad \text{for some } r \geq 0 \]

(G., 2005) Assume $Q \subset R$ and $c \geq 2$. Then high iterations of the homothety $M \to cM$, defined by $m \mapsto cm$, kill $K_*(R[M])/K_*(R)$.
Let R be a (commutative) regular ring and $M \subset \mathbb{Z}^d$ an affine monoid

\begin{align*}
\text{(Grothendieck)} \quad K_0(R) &= K_0(R[X_1, \ldots, X_d]) \quad (= K_0(R[\mathbb{Z}^d_{\geq 0}]))) \\
\text{(Quillen)} \quad K_*(R) &= K_*(R[X_1, \ldots, X_d]) \quad (= K_*(R[\mathbb{Z}^d_{\geq 0}]))) \\
\text{(G., 1988)} \quad K_0(R) &= K_0(R[M]) \text{ iff } M = \text{sn}(M) \\
\text{Corollary:} \quad K_0(R[M])/K_0(R) &\cong R(\text{sn}(M) \setminus M) \text{ when } Q \subset R \\
\text{(G., 1992)} \quad K_*(R) &= K_*(R[M]) \text{ iff } M \cong \mathbb{Z}_{\geq 0}^r \text{ for some } r \geq 0 \\
\text{(G., 2005)} \quad \text{Assume } Q \subset R \text{ and } c \geq 2. \text{ Then high iterations of the homothety } M \rightarrow cm, \text{ defined by } m \mapsto cm, \text{ kill } K_*(R[M])/K_*(R) \\
\text{(Cortiñas, Haesemayer, Walker, Weibel, announced in 2016)} \quad \text{The condition } Q \subset R \text{ in the statement above can be dropped}
\end{align*}
Conjecture. \(R \) a regular ring, containing \(\mathbb{Q} \) : for every finitely generated monomial algebra \(R[M] \) without nontrivial units we have the equality
Conjecture. Let R be a regular ring, containing \mathbb{Q}: for every finitely generated monomial algebra $R[M]$ without nontrivial units we have the equality

$$K_i(R[M])/K_i(R) \cong (\text{a finitely generated } M\text{-graded thin } R[M]\text{-module})$$

and on this module the map $M \to M$, $m \mapsto cm$, acts by dilating the M-degrees by factor c.
Conjecture. \(R \) a regular ring, containing \(\mathbb{Q} \): for every finitely generated monomial algebra \(R[M] \) without nontrivial units we have the equality

\[
K_i(R[M])/K_i(R) \cong (\text{a finitely generated } M \text{-graded thin } R[M] \text{-module})
\]

and on this module the map \(M \to M, \ m \mapsto cm \), acts by dilating the \(M \) -degrees by factor \(c \).

Informally, the mentioned thinness means that every element of \(K_i(R[M])/K_i(R) \) is pushed by sufficiently high iterations of the map \(M \to M, \ m \mapsto cm \), to the \(M \) -graded zero zone. In particular, this conjecture implies the aforementioned nilpotence of \(K_i(R[M])/K_i(R) \).
Conjecture. \(R \) a regular ring, containing \(\mathbb{Q} \): for every finitely generated monomial algebra \(R[M] \) without nontrivial units we have the equality

\[
K_i(R[M]) / K_i(R) \cong \text{(a finitely generated } M \text{-graded thin } R[M] \text{-module)}
\]

and on this module the map \(M \rightarrow M, m \mapsto cm \), acts by dilating the \(M \)-degrees by factor \(c \).

Informally, the mentioned thinness means that every element of \(K_i(R[M]) / K_i(R) \) is pushed by sufficiently high iterations of the map \(M \rightarrow M, m \mapsto cm \), to the \(M \)-graded zero zone. In particular, this conjecture implies the aforementioned nilpotence of \(K_i(R[M]) / K_i(R) \).

It is known that \(K_i(R[M]) / K_i(R) \) is an \(R \)-module; this follows from the Bloch-Stienstra action of the big Witt vectors.
Conjecture
REFERENCES

REFERENCES

Thank you