Convex incidences, neuroscience, and ideals

Mohamed Omar
(joint w/ R. Amzi Jeffs)
Combinatorial Ideals & Applications
AMS Spring Central Sectional Meeting

Apr 16, 2016
Biological Motivation

Place cells: Neurons which are active in a particular region of an animal’s environment. (Nobel Prize 2014, Physiology or Medicine, O’Keefe/Moser-Moser)

https://upload.wikimedia.org/wikipedia/commons/5/5e/Place_Cell_Spiking_Activity_Example.png
Biological Motivation

How is data on place cells collected?
Biological Motivation

How is data on place cells collected?
Biological Motivation

How is data on place cells collected?
Biological Motivation

How is data on place cells collected?

\[C = \{000, 100, 001, 011, 110, 111\} \]
Mathematical Formulation

Neural codes capture an animal’s response to a stimulus.

We assume that the receptive fields for place cells are open convex sets in Euclidean space.
Mathematical Formulation

We associate collections of convex sets to binary codes.

Definition (Curto et. al, 2013)

Let $\mathcal{U} = \{U_1, \ldots, U_n\}$ be a collection of convex open sets. The code of \mathcal{U} is

$$\mathcal{C}(\mathcal{U}) := \left\{ v \in \{0, 1\}^n \left| \bigcap_{v_i=1} U_i \setminus \bigcup_{v_j=0} U_j \neq \emptyset \right. \right\}$$

Let $\mathcal{U} = \{U_1, U_2, U_3\}$

$\mathcal{C}(\mathcal{U}) = \{000, 100, 010, 001, 110, 011\}$
The Question

Let $C \subseteq \{0, 1\}^n$ be a code. If there exists a collection of convex open sets U so that $C = C(U)$, we say that C is convex. We call U a convex realization of C.

Question: How can we detect whether a code C is convex?
The Question

Definition
Let $C \subseteq \{0,1\}^n$ be a code. If there exists a collection of convex open sets \mathcal{U} so that $C = C(\mathcal{U})$ we say that C is convex. We call \mathcal{U} a convex realization of C.

Question
How can we detect whether a code C is convex?
Non-Example

Consider the code \(\mathcal{C} = \{000, 100, 010, 110, 011, 101\} \)
Consider the code $\mathcal{C} = \{000, 100, 010, 110, 011, 101\}$

\mathcal{C} is not realizable!
Classifying Convex Codes

Question

Can we find meaningful criteria that guarantee a code is convex?

Answer: Yes!
Question

Can we find meaningful criteria that guarantee a code is convex?

Answer: Yes!

- Simplicial complex codes (Curto et. al, 2013)
- Codes with 11⋯1 in them (Curto et. al, 2016)
- Intersection complete codes (Kronholm et. al, 2015)
- Many more (results from several papers)
Other Ideas....

Use Ideals!
An Algebraic Approach

We will work in the polynomial ring $\mathbb{F}_2[x_1, \ldots, x_n]$.

Definition (CIVCY2013)

Let $v \in \{0, 1\}^n$. The indicator pseudomonomial for v is

$$\rho_v : = \prod_{i=1}^{n} x_i / \prod_{j \in v^c} (1 - x_j).$$

$\rho_{110} = x_1 x_2 (1 - x_3)$. Note that $\rho_v(u) = 1$ only if $u = v$.

Definition (CIVCY2013)

Let $C \subseteq \{0, 1\}^n$ be a code. The neural ideal J_C of C is the ideal $J_C : = \cup \rho_v / v \not\in C$.
An Algebraic Approach

We will work in the polynomial ring $\mathbb{F}_2[x_1, \ldots, x_n]$.

Definition (CIVCY2013)

Let $v \in \{0, 1\}^n$. The *indicator pseudomonomial* for v is

$$\rho_v := \prod_{v_i=1} x_i \prod_{v_j=0} (1 - x_j).$$

$\rho_{110} = x_1x_2(1 - x_3)$. Note that $\rho_v(u) = 1$ only if $u = v$.

Mohamed Omar (joint w/ R. Amzi Jeffs) ǀ Convex incidences, neuroscience, and ideals ǀ Apr 16, 2016
An Algebraic Approach

We will work in the polynomial ring $\mathbb{F}_2[x_1, \ldots, x_n]$.

Definition (CIVCY2013)

Let $v \in \{0, 1\}^n$. The *indicator pseudomonomial* for v is

$$\rho_v := \prod_{v_i=1} x_i \prod_{v_j=0} (1 - x_j).$$

$\rho_{110} = x_1 x_2 (1 - x_3)$. Note that $\rho_v(u) = 1$ only if $u = v$.

Definition (CIVCY2013)

Let $C \subseteq \{0, 1\}^n$ be a code. The *neural ideal* J_C of C is the ideal

$$J_C := \langle \rho_v \mid v \notin C \rangle.$$
Neural Ideal Example

Definition (CIVCY2013)

Let $C \subseteq \{0, 1\}^n$ be a code. The neural ideal J_C of C is the ideal

$$J_C := \langle \rho_v \mid v \notin C \rangle.$$

- $C = \{000, 100, 010, 001, 011\}$

$$J_C = \langle \rho_v \mid v \notin C \rangle = \langle x_1x_2(1 - x_3), x_1x_3(1 - x_2), x_1x_2x_3 \rangle$$

$$= \langle x_1x_2, x_1x_3(1 - x_2) \rangle$$
Definition (CIVCY2013)

Let J_C be a neural ideal. The *canonical form* of J_C is the set of minimal pseudomonomials in J_C with respect to division. Equivalently:

$$CF(J_C) := \{ f \in J_C \mid f \text{ is a PM and no proper divisor of } f \text{ is in } J_C \}.$$
Consider the code $C = \{00000, 10000, 01000, 00100, 00001, 11000, 10001, 01100, 00110, 00101, 00011, 11100, 00111\}$.
Consider the code \(C = \{00000, 10000, 01000, 00100, 00001, 11000, 10001,
01100, 00110, 00101, 00011, 11100, 00111\} \).

\[
J_C =
\langle x_4(1-x_1)(1-x_2)(1-x_3)(1-x_5), x_1x_3(1-x_2)(1-x_4)(1-x_5), x_1x_4(1-x_2)(1-x_3)(1-x_5),
 x_2x_4(1-x_1)(1-x_3)(1-x_5), x_2x_5(1-x_1)(1-x_3)(1-x_4), x_1x_2x_4(1-x_3)(1-x_5),
 x_1x_2x_5(1-x_3)(1-x_4), x_1x_3x_4(1-x_2)(1-x_5), x_1x_3x_5(1-x_2)(1-x_4),
 x_1x_4x_5(1-x_2)(1-x_3), x_2x_3x_4(1-x_1)(1-x_5), x_2x_3x_5(1-x_1)(1-x_4),
 x_2x_4x_5(1-x_1)(1-x_3), x_2x_3x_4x_5(1-x_1), x_1x_3x_4x_5(1-x_2),
 x_1x_2x_4x_5(1-x_3), x_1x_2x_3x_5(1-x_4), x_1x_2x_3x_4(1-x_5), x_1x_2x_3x_4x_5 \rangle
\]

Uggghhhhh!
Canonical Form and Constructing Codes

Canonical Form (Minimal description!)

\[J_C = \langle x_1 x_3 x_5, x_4 (1 - x_3)(1 - x_5), x_1 x_4, x_1 x_3 (1 - x_2), x_2 x_4, x_2 x_5 \rangle \]
Canonical Form and Constructing Codes

\[J_C = \langle x_1 x_3 x_5, x_4 (1 - x_3) (1 - x_5), x_1 x_4, x_1 x_3 (1 - x_2), x_2 x_4, x_2 x_5 \rangle \]

- \(x_1 x_3 x_5 \)
Canonical Form and Constructing Codes

\[J_C = \langle x_1 x_3 x_5, x_4 (1 - x_3)(1 - x_5), x_1 x_4, x_1 x_3(1 - x_2), x_2 x_4, x_2 x_5 \rangle \]

\[x_1 x_3 x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset, \]
Canonical Form and Constructing Codes

\[J_C = \langle x_1x_3x_5, x_4(1-x_3)(1-x_5), x_1x_4, x_1x_3(1-x_2), x_2x_4, x_2x_5 \rangle \]

\(x_1x_3x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset, \)
\(U_1 \cap U_3 \neq \emptyset, U_1 \cap U_5 \neq \emptyset, U_3 \cap U_5 \neq \emptyset. \)
Canonical Form and Constructing Codes

The picture so far:
$J_C = \langle x_1 x_3 x_5, x_4 (1 - x_3)(1 - x_5), x_1 x_4, x_1 x_3 (1 - x_2), x_2 x_4, x_2 x_5 \rangle$

$\iff x_1 x_3 x_5 \implies U_1 \cap U_3 \cap U_5 = \emptyset, \ U_1 \cap U_3 \neq \emptyset, \ U_1 \cap U_5 \neq \emptyset, \ U_3 \cap U_5 \neq \emptyset.$
Canonical Form and Constructing Codes

\[J_C = \langle x_1 x_3 x_5, x_4 (1 - x_3)(1 - x_5), x_1 x_4, x_1 x_3 (1 - x_2), x_2 x_4, x_2 x_5 \rangle \]

- \[x_1 x_3 x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset, \ U_1 \cap U_3 \neq \emptyset, \ U_1 \cap U_5 \neq \emptyset, \ U_3 \cap U_5 \neq \emptyset. \]
- \[x_4 (1 - x_3)(1 - x_5) \]
Canonical Form and Constructing Codes

\[J_C = \langle x_1 x_3 x_5, x_4 (1 - x_3) (1 - x_5), x_1 x_4, x_1 x_3 (1 - x_2), x_2 x_4, x_2 x_5 \rangle \]

- \(x_1 x_3 x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset, U_1 \cap U_3 \neq \emptyset, U_1 \cap U_5 \neq \emptyset, U_3 \cap U_5 \neq \emptyset. \)
- \(x_4 (1 - x_3) (1 - x_5) \Rightarrow U_4 \subseteq U_3 \cup U_5, \)
Canonical Form and Constructing Codes

\[J_C = \langle x_1 x_3 x_5, x_4 (1 - x_3)(1 - x_5), x_1 x_4, x_1 x_3 (1 - x_2), x_2 x_4, x_2 x_5 \rangle \]

- \(x_1 x_3 x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset, U_1 \cap U_3 \neq \emptyset, U_1 \cap U_5 \neq \emptyset, U_3 \cap U_5 \neq \emptyset. \)
- \(x_4 (1 - x_3)(1 - x_5) \Rightarrow U_4 \subseteq U_3 \cup U_5, \)
- \(x_1 x_4 \Rightarrow U_1 \cap U_4 = \emptyset, \)
The picture so far:
Canonical Form and Constructing Codes

\[J_C = \langle x_1x_3x_5, x_4(1-x_3)(1-x_5), x_1x_4, x_1x_3(1-x_2), x_2x_4, x_2x_5 \rangle \]

- \(x_1x_3x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset, \)
- \(x_4(1-x_3)(1-x_5) \Rightarrow U_4 \subseteq U_3 \cup U_5, \)
- \(x_1x_4 \Rightarrow U_1 \cap U_4 = \emptyset, \)
Canonical Form and Constructing Codes

\[J_C = \langle x_1x_3x_5, x_4(1-x_3)(1-x_5), x_1x_4, x_1x_3(1-x_2), x_2x_4, x_2x_5 \rangle \]

- \(x_1x_3x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset \),
- \(x_4(1-x_3)(1-x_5) \Rightarrow U_4 \subseteq U_3 \cup U_5 \),
- \(x_1x_4 \Rightarrow U_1 \cap U_4 = \emptyset \),
- \(x_1x_3(1-x_2) \)
Canonical Form and Constructing Codes

\[J_C = \langle x_1x_3x_5, x_4(1 - x_3)(1 - x_5), x_1x_4, x_1x_3(1 - x_2), x_2x_4, x_2x_5 \rangle \]

- \(x_1x_3x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset, \)
- \(x_4(1 - x_3)(1 - x_5) \Rightarrow U_4 \subseteq U_3 \cup U_5, \)
- \(x_1x_4 \Rightarrow U_1 \cap U_4 = \emptyset, \)
- \(x_1x_3(1 - x_2) \Rightarrow U_1 \cap U_3 \subseteq U_2, \)
Canonical Form and Constructing Codes

\[J_C = \langle x_1 x_3 x_5, x_4 (1 - x_3) (1 - x_5), x_1 x_4, x_1 x_3 (1 - x_2), x_2 x_4, x_2 x_5 \rangle \]

- \(x_1 x_3 x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset \),
- \(x_4 (1 - x_3) (1 - x_5) \Rightarrow U_4 \subseteq U_3 \cup U_5 \),
- \(x_1 x_4 \Rightarrow U_1 \cap U_4 = \emptyset \),
- \(x_1 x_3 (1 - x_2) \Rightarrow U_1 \cap U_3 \subseteq U_2 \),
- \(x_2 x_4 \)
Canonical Form and Constructing Codes

\[J_C = \langle x_1 x_3 x_5, x_4 (1 - x_3)(1 - x_5), x_1 x_4, x_1 x_3 (1 - x_2), x_2 x_4, x_2 x_5 \rangle \]

- \(x_1 x_3 x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset \),
- \(x_4 (1 - x_3)(1 - x_5) \Rightarrow U_4 \subseteq U_3 \cup U_5 \),
- \(x_1 x_4 \Rightarrow U_1 \cap U_4 = \emptyset \),
- \(x_1 x_3 (1 - x_2) \Rightarrow U_1 \cap U_3 \subseteq U_2 \),
- \(x_2 x_4 \Rightarrow U_2 \cap U_4 = \emptyset \).
Canonical Form and Constructing Codes

\[J_C = \langle x_1 x_3 x_5, x_4(1-x_3)(1-x_5), x_1 x_4, x_1 x_3(1-x_2), x_2 x_4, x_2 x_5 \rangle \]

- \(x_1 x_3 x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset \),
- \(x_4(1-x_3)(1-x_5) \Rightarrow U_4 \subseteq U_3 \cup U_5 \),
- \(x_1 x_4 \Rightarrow U_1 \cap U_4 = \emptyset \),
- \(x_1 x_3(1-x_2) \Rightarrow U_1 \cap U_3 \subseteq U_2 \),
- \(x_2 x_4 \Rightarrow U_2 \cap U_4 = \emptyset \),
- \(x_2 x_5 \)
Canonical Form and Constructing Codes

\[J_C = \langle x_1 x_3 x_5, x_4 (1 - x_3) (1 - x_5), x_1 x_4, x_1 x_3 (1 - x_2), x_2 x_4, x_2 x_5 \rangle \]

- \(x_1 x_3 x_5 \Rightarrow U_1 \cap U_3 \cap U_5 = \emptyset \),
- \(x_4 (1 - x_3) (1 - x_5) \Rightarrow U_4 \subseteq U_3 \cup U_5 \),
- \(x_1 x_4 \Rightarrow U_1 \cap U_4 = \emptyset \),
- \(x_1 x_3 (1 - x_2) \Rightarrow U_1 \cap U_3 \subseteq U_2 \),
- \(x_2 x_4 \Rightarrow U_2 \cap U_4 = \emptyset \),
- \(x_2 x_5 \Rightarrow U_2 \cap U_5 = \emptyset \).
Final picture:
The Neural Ideal in Summary

\[C \rightarrow J_C \rightarrow CF(J_C) \]

We associate codes to neural ideals, and use the canonical form to compactly present the neural ideal and encode information about the code and its realizations.
We associate codes to neural ideals, and use the canonical form to compactly present the neural ideal and encode information about the code and its realizations.

We hope to understand convex codes by examining neural ideals and their canonical forms.
Definition

We say a homomorphism \(\phi : \mathbb{F}_2^n \to \mathbb{F}_2^m \) respects neural ideals if for every \(C \subseteq \{0, 1\}^n \) there exists \(D \subseteq \{0, 1\}^n \) so that

\[
\phi(J_C) = J_D.
\]

That is, if \(\phi \) maps neural ideals to neural ideals.

Can we classify all such homomorphisms? Do they have geometric meaning?
Homomorphisms Respecting Neural Ideals

Restriction: Mapping $x_i \mapsto 1$ or $x_i \mapsto 0$ for some i.

- $x_i \mapsto 1$ corresponds with replacing each U_j by $U_j \cap U_i$.
- $x_i \mapsto 0$ corresponds with replacing each U_j by $U_j \setminus U_i$.
Homomorphisms Respecting Neural Ideals

Restriction: Mapping $x_i \mapsto 1$ or $x_i \mapsto 0$ for some i.

- $x_i \mapsto 1$ corresponds with replacing each U_j by $U_j \cap U_i$.
- $x_i \mapsto 0$ corresponds with replacing each U_j by $U_j \setminus U_i$.

Graphical representation:

- U_4 interacts with U_3.
- U_2 interacts with C.
- U_3 interacts with U_2.
- $CF(J_c)$ transforms into $CF(J_{c'})$.

Diagram showing set intersections and mappings.
Homomorphisms Respecting Neural Ideals

Restriction: Mapping $x_i \mapsto 1$ or $x_i \mapsto 0$ for some i.
- $x_i \mapsto 1$ corresponds with replacing each U_j by $U_j \cap U_i$.
- $x_i \mapsto 0$ corresponds with replacing each U_j by $U_j \setminus U_i$.

Bit Flipping: Mapping $x_i \mapsto 1 - x_i$ for some i.
- Corresponds to taking the complement of U_i.

![Diagram](image-url)
Homomorphisms Respecting Neural Ideals

Restriction: Mapping \(x_i \mapsto 1 \) or \(x_i \mapsto 0 \) for some \(i \).
- \(x_i \mapsto 1 \) corresponds with replacing each \(U_j \) by \(U_j \cap U_i \).
- \(x_i \mapsto 0 \) corresponds with replacing each \(U_j \) by \(U_j \setminus U_i \).

Bit Flipping: Mapping \(x_i \mapsto 1 - x_i \) for some \(i \).
- Corresponds to taking the complement of \(U_i \).

Permutation: Permuting labels on the variables in \(\mathbb{F}_2[n] \).
- Corresponds to permuting labels on the sets in a realization.
Theorem (Jeffs, O.)

Let $\phi : \mathbb{F}_2^n \to \mathbb{F}_2^m$ be a homomorphism respecting neural ideals. Then ϕ is the composition of the three types of maps previously described:

- Permutation
- Restriction
- Bit flipping

Moreover, there is an algorithm to present ϕ as such a composition.
Homomorphisms Respecting Neural Ideals: Proof Idea

1. If $\phi : \mathbb{F}_2[n] \to \mathbb{F}_2[m]$ respects neural ideals if and only if ϕ is
 - surjective, and
 - sends pseudonomials to pseudomonomials or 0
2. $\phi(x_i) \in \{x_j, 1 - x_j, 0, 1\}$, and for every $j \in [m]$ there is a unique $i \in [n]$ so that $\phi(x_i) \in \{x_j, 1 - x_j\}$.
3. (Carefully) piece things together variable by variable.
Conclusion

In This Talk:

- We associated polynomial ideals to codes.
- We used these ideals to understand codes and their realizations.
- We described a class of homomorphisms which play nicely with these ideals. These homomorphisms can be used to understand convex codes, and also computationally construct them.
Conclusion

In This Talk:

- We associated polynomial ideals to codes.
- We used these ideals to understand codes and their realizations.
- We described a class of homomorphisms which play nicely with these ideals. These homomorphisms can be used to understand convex codes, and also computationally construct them.

What’s Next?

- How do maps respecting neural ideals affect canonical forms?
- What other algebraic techniques can be leveraged?
Thank You!