Irreducible decomposition of binomial ideals

Christopher O’Neill

Duke University

musicman@math.duke.edu

Joint with Thomas Kahle and Ezra Miller

January 18, 2014
An ideal \(I \subset \mathbb{k}[x_1, \ldots, x_n] \) is a *binomial ideal* if it is generated by polynomials with at most two terms.
Definition

An ideal $I \subseteq \mathbb{k}[x_1, \ldots, x_n]$ is a binomial ideal if it is generated by polynomials with at most two terms.

Example

The following are binomial ideals in $\mathbb{k}[x, y]$:

\[
\langle x^2 - xy, xy - y^2 \rangle, \quad \langle x^2 y - xy^2, x^3, y^3 \rangle, \quad \langle x^2 - y, x^2 + y \rangle = \langle x^2, y \rangle, \quad x^2 - xy, x^3 - x^2, x^4 y^2 + xy^2 \in \langle x^2, y^2, xy \rangle.
\]
The Question

Definition

An ideal \(I \subset \mathbb{k}[x_1, \ldots , x_n] \) is a *binomial ideal* if it is generated by polynomials with at most two terms.

Example

The following are binomial ideals in \(\mathbb{k}[x, y] \):

- \(\langle x^2 - xy, xy - y^2 \rangle \),
Definition
An ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$ is a binomial ideal if it is generated by polynomials with at most two terms.

Example
The following are binomial ideals in $\mathbb{k}[x, y]$:

- $\langle x^2 - xy, xy - y^2 \rangle$,
- $\langle x^2 - xy^2, x^3, y^3 \rangle$,
The Question

Definition
An ideal \(I \subset \mathbb{k}[x_1, \ldots, x_n] \) is a binomial ideal if it is generated by polynomials with at most two terms.

Example
The following are binomial ideals in \(\mathbb{k}[x, y] \):

- \(\langle x^2 - xy, xy - y^2 \rangle \),
- \(\langle x^2y - xy^2, x^3, y^3 \rangle \),
- \(\langle x^2 - y, x^2 + y \rangle = \langle x^2, y \rangle \),
The Question

Definition

An ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$ is a binomial ideal if it is generated by polynomials with at most two terms.

Example

The following are binomial ideals in $\mathbb{k}[x, y]$:

- $\langle x^2 - xy, xy - y^2 \rangle$,
- $\langle x^2 y - xy^2, x^3, y^3 \rangle$,
- $\langle x^2 - y, x^2 + y \rangle = \langle x^2, y \rangle$,
- $x^2 - xy, x^3 - x^2, x^4 y^2 + xy^2 \in \langle x^2, y^2, xy \rangle$.
Definition

An ideal $I \subset S$ is *irreducible* if whenever $I = J_1 \cap J_2$ for ideals $J_1, J_2 \subset S$, either $I = J_1$ or $I = J_2$.

An ideal $I \subset S$ is *irreducible* if whenever $I = J_1 \cap J_2$ for ideals $J_1, J_2 \subset S$, either $I = J_1$ or $I = J_2$.

Christopher O'Neill (Duke University)
Irreducible decomposition of binomial ideals
January 18, 2014
3 / 36
The Question

Definition
An ideal \(I \subset S \) is irreducible if whenever \(I = J_1 \cap J_2 \) for ideals \(J_1, J_2 \subset S \), either \(I = J_1 \) or \(I = J_2 \).

Fact
Every ideal \(I \subset \mathbb{k}[x_1, \ldots, x_n] \) can be written as a finite intersection

\[
I = \bigcap_{i=1}^{r} J_i
\]

of irreducible ideals \(J_1, \ldots, J_r \) (an irreducible decomposition).
The Question

Question (Eisenbud-Sturmfels, 1996)

Assume \mathbb{k} is algebraically closed. Does every binomial ideal I have a binomial irreducible decomposition, that is, an expression $I = \bigcap_i J_i$ where each J_i is irreducible and binomial?
The Question

Question (Eisenbud-Sturmfels, 1996)

Assume \(k \) is algebraically closed. Does every binomial ideal \(I \) have a binomial irreducible decomposition, that is, an expression \(I = \bigcap_i J_i \) where each \(J_i \) is irreducible and binomial?

Example

If \(k = \mathbb{Q} \), then \(\langle x^4 + 4 \rangle = \langle x^2 - 2x + 2 \rangle \cap \langle x^2 + 2x + 2 \rangle \).
The Question

Assume \(k \) is algebraically closed. Does every binomial ideal \(I \) have a *binomial* irreducible decomposition, that is, an expression \(I = \bigcap_i J_i \) where each \(J_i \) is irreducible and binomial?

Example

If \(k = \mathbb{Q} \), then \(\langle x^4 + 4 \rangle = \langle x^2 - 2x + 2 \rangle \cap \langle x^2 + 2x + 2 \rangle \).

Answer (Kahle-Miller-O., 2014)

No.
The Question

Question (Eisenbud-Sturmfels, 1996)

Assume \(k \) is algebraically closed. Does every binomial ideal \(I \) have a binomial irreducible decomposition, that is, an expression \(I = \bigcap_i J_i \) where each \(J_i \) is irreducible and binomial?

Example

If \(k = \mathbb{Q} \), then \(\langle x^4 + 4 \rangle = \langle x^2 - 2x + 2 \rangle \cap \langle x^2 + 2x + 2 \rangle \).

Answer (Kahle-Miller-O., 2014)

No.

Example

\(I = \langle x^2 y - xy^2, x^3, y^3 \rangle \subset k[x, y] \).
The Question

State of affairs:
State of affairs:

- Question: easy to state
The Question

State of affairs:

- Question: easy to state
- Counter example: small

So, why was this problem open for almost 20 years?

Answer: Needed to know where to look.
The Question

State of affairs:

- Question: easy to state
- Counter example: small
- Proof: short and elementary

So, why was this problem open for almost 20 years?

Answer: Needed to know where to look.

Christopher O'Neill (Duke University)
Irreducible decomposition of binomial ideals
January 18, 2014 5 / 36
State of affairs:

- Question: easy to state
- Counter example: small
- Proof: short and elementary

So, why was this problem was open for almost 20 years?
The Question

State of affairs:

- Question: easy to state
- Counter example: small
- Proof: short and elementary

So, why was this problem was open for almost 20 years?
Answer: Needed to know where to look.
Today:
Today:

- Review primary decomposition
Today:

- Review primary decomposition
- Irreducible decomposition of monomial ideals
Today:

- Review primary decomposition
- Irreducible decomposition of monomial ideals
- Irreducible decomposition of binomial ideals
Today:

- Review primary decomposition
- Irreducible decomposition of monomial ideals
- Irreducible decomposition of binomial ideals
- Examine the counterexample, with proof (time permitting).
Definition

An ideal I is *primary* if $ab \in I$ implies $a^\ell \in I$ or $b^\ell \in I$ for some $\ell \geq 1$. If I is primary, then $p = \sqrt{I}$ is prime, and we say I is p-primary.

Fact

Any ideal in a Noetherian ring is a finite intersection of primary ideals (that is, admits a primary decomposition).

Example

Primary ideals in \mathbb{Z} are of the form $\langle p^r \rangle$ for p prime, and $\sqrt{\langle p^r \rangle} = \langle p \rangle$.

For $a = p^{r_1} \cdots p^{r_\ell} \in \mathbb{Z}$, $\langle a \rangle = \bigcap_i \langle p^{r_i} \rangle$.

Christopher O'Neill (Duke University) Irreducible decomposition of binomial ideals January 18, 2014
Primary Decomposition

Definition

An ideal I is *primary* if $ab \in I$ implies $a^\ell \in I$ or $b^\ell \in I$ for some $\ell \geq 1$.

If I is primary, then $p = \sqrt{I}$ is prime, and we say I is p-primary.
Primary Decomposition

Definition

An ideal \(I \) is *primary* if \(ab \in I \) implies \(a^\ell \in I \) or \(b^\ell \in I \) for some \(\ell \geq 1 \).

If \(I \) is primary, then \(p = \sqrt{I} \) is prime, and we say \(I \) is \(p \)-primary.

Fact

Any ideal in a Noetherian ring is a finite intersection of primary ideals (that is, admits a primary decomposition).
Primary Decomposition

Definition

An ideal I is *primary* if $ab \in I$ implies $a^\ell \in I$ or $b^\ell \in I$ for some $\ell \geq 1$.

If I is primary, then $p = \sqrt{I}$ is prime, and we say I is p-primary.

Fact

Any ideal in a Noetherian ring is a finite intersection of primary ideals (that is, admits a primary decomposition).

Example

Primary ideals in \mathbb{Z} are of the form $\langle p^r \rangle$ for p prime, and $\sqrt{\langle p^r \rangle} = \langle p \rangle$.

For $a = p_1^{r_1} \cdots p_\ell^{r_\ell} \in \mathbb{Z}$, $\langle a \rangle = \bigcap_i \langle p_i^{r_i} \rangle$.
Fact

Irreducible ideals are primary.
Irreducible Ideals

Fact

Irreducible ideals are primary.

Definition

Given a \(p \)-primary ideal \(I \subset \mathbb{k}[x_1, \ldots, x_n] \), the socle of \(I \) is the ideal

\[
\text{soc}_p(I) = \{ f : pf \subset I \} \supset I
\]

We say \(I \) has simple socle if \(\dim_{\mathbb{k}} \text{soc}_p(I)/I = 1 \).
Irreducible Ideals

Fact

Irreducible ideals are primary.

Definition

Given a p-primary ideal $I \subseteq \mathbb{k}[x_1, \ldots, x_n]$, the socle of I is the ideal

$$\text{soc}_p(I) = \{ f : pf \subseteq I \} \supset I$$

We say I has simple socle if $\dim_{\mathbb{k}} \text{soc}_p(I)/I = 1$.

Fact

A p-primary ideal I is irreducible if and only if it has simple socle.
Let $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y]$, and let $p = \langle x, y \rangle$.
Let \(I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset k[x, y], \) and let \(p = \langle x, y \rangle. \)

\[x - y \in \text{soc}_p(I) \]
Let \(I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y] \), and let \(p = \langle x, y \rangle \).

\[
x - y \in \text{soc}_p(I)
\]

\[
x^4, x^3y, x^2y^2, xy^3, y^4 \in I
\]
Let $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y]$, and let $p = \langle x, y \rangle$.

\[
x - y \in \text{soc}_p(I)
\]

\[
x^4, x^3 y, x^2 y^2, xy^3, y^4 \in I
\]

\[
\Rightarrow x^3, x^2 y, xy^2, y^3 \in \text{soc}_p(I)
\]
Irreducible Ideals

Let $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y]$, and let $p = \langle x, y \rangle$.

$x - y \in \text{soc}_p(I)$

$x^4, x^3y, x^2y^2, xy^3, y^4 \in I$

$\Rightarrow x^3, x^2y, xy^2, y^3 \in \text{soc}_p(I)$

$\text{soc}_p(I)/I = \{ f : pf \subset I \}/I$
Let \(I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subset \mathbb{k}[x, y] \), and let \(p = \langle x, y \rangle \).

\[
x - y \in \text{soc}_p(I)
\]

\[
x^4, x^3y, x^2y^2, xy^3, y^4 \in I
\]

\[
\Rightarrow x^3, x^2y, xy^2, y^3 \in \text{soc}_p(I)
\]

\[
\text{soc}_p(I)/I = \{ f : pf \subset I \}/I
\]

\[
= \{ f : xf, yf \in I \}/I
\]
Let $I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subseteq \mathbb{k}[x, y]$, and let $p = \langle x, y \rangle$.

\[x - y \in \text{soc}_p(I) \]
\[x^4, x^3y, x^2y^2, xy^3, y^4 \in I \]
\[\Rightarrow x^3, x^2y, xy^2, y^3 \in \text{soc}_p(I) \]

\[
\text{soc}_p(I)/I = \{ f : pf \subseteq I \}/I \\
= \{ f : xf, yf \in I \}/I \\
= \mathbb{k}\{ x - y, x^3 \}
\]
Let \(I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \subseteq \mathbb{k}[x, y] \), and let \(p = \langle x, y \rangle \).

\[
x - y \in \text{soc}_p(I)
\]

\[
x^4, x^3y, x^2y^2, xy^3, y^4 \in I
\]

\[
\Rightarrow x^3, x^2y, xy^2, y^3 \in \text{soc}_p(I)
\]

\[
\text{soc}_p(I)/I = \{ f : pf \subseteq I \}/I
\]

\[
= \{ f : xf, yf \in I \}/I
\]

\[
= \mathbb{k}\{ x - y, x^3 \}
\]

so \(\text{dim}_\mathbb{k}(\text{soc}_p(I)/I) = 2 \).
Long long ago, in an algebraic setting not far away...
Long long ago, in an algebraic setting not far away...

Monomial Ideals
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]
Monomial Ideals

\[I = \left\langle x^4, x^3y, x^2y^2, y^4 \right\rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in k[x_1, \ldots, x_n] \]
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \ldots, x_n] \]

\[\longleftrightarrow a = (a_1, \ldots, a_n) \in \mathbb{N}^n \]
Monomial Ideals

\[I = \langle x^4, x^3 y, x^2 y^2, y^4 \rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in k[x_1, \ldots, x_n] \]

\[\longleftrightarrow a = (a_1, \ldots, a_n) \in \mathbb{N}^n \]
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \ldots, x_n] \]
\[\iff \ a = (a_1, \ldots, a_n) \in \mathbb{N}^n \]
\[
I = \langle x^4, x^3y, x^2y^2, y^4 \rangle
\]

\[
x^a = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \ldots, x_n]
\]

\[
\leftrightarrow a = (a_1, \ldots, a_n) \in \mathbb{N}^n
\]

Connect all monomials \(x^a \in I \)
Monomial Ideals

\[I = \langle x^4, x^3 y, x^2 y^2, y^4 \rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in k[x_1, \ldots, x_n] \]
\[\longleftrightarrow a = (a_1, \ldots, a_n) \in \mathbb{N}^n \]

Connect all monomials \(x^a \in I \)
\[l = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \ldots, x_n] \]

\[\longleftrightarrow a = (a_1, \ldots, a_n) \in \mathbb{N}^n \]

Connect all monomials \(x^a \in l \)
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \ldots, x_n] \]
\[\longleftrightarrow a = (a_1, \ldots, a_n) \in \mathbb{N}^n \]

Connect all monomials \(x^a \in I \)
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \ldots, x_n] \]
\[\iff a = (a_1, \ldots, a_n) \in \mathbb{N}^n \]

Connect all monomials \(x^a \in I \)

Staircase Diagram
\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in k[x_1, \ldots, x_n] \]

\[\longleftrightarrow a = (a_1, \ldots, a_n) \in \mathbb{N}^n \]

Connect all monomials \(x^a \in I \)
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \ldots, x_n] \]
\[\longleftrightarrow a = (a_1, \ldots, a_n) \in \mathbb{N}^n \]

Connect all monomials \(x^a \in I \)

Generators of \(I \) are
“Inward-pointing corners”
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[x^a = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[x_1, \ldots, x_n] \]
\[\longleftrightarrow a = (a_1, \ldots, a_n) \in \mathbb{N}^n \]

Connect all monomials \(x^a \in I \)

Generators of \(I \) are
“Inward-pointing corners”

Staircase Diagram
Fact

If a monomial ideal \(I \) is \(\mathfrak{p} \)-primary, then \(\mathfrak{p} \) is a monomial ideal.
Monomial Ideals

Fact
If a monomial ideal I is p-primary, then p is a monomial ideal.

Fact
Any monomial ideal I admits a monomial irreducible decomposition, that is, an expression of the form

$$I = \bigcap_{i=1}^{r} J_i$$

for irreducible monomial ideals J_1, \ldots, J_r.
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]
Monomial Ideals

$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$

I is p-primary, $p = \langle x, y \rangle$
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[I \text{ is } p\text{-primary, } p = \langle x, y \rangle \]

\[\text{soc}_p(I)/I = k\{x^3, x^2y, xy^3\} \]
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\(I \) is \(p \)-primary, \(p = \langle x, y \rangle \)

\[\text{soc}_p(I)/I = \mathbb{k}\{x^3, x^2y, xy^3\} \]
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[I \text{ is } p\text{-primary, } p = \langle x, y \rangle \]

\[\text{soc}_p(I)/I = \mathbb{k}\{x^3, x^2y, xy^3\} \]
\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\(I \) is \(p \)-primary, \(p = \langle x, y \rangle \)

\[\text{soc}_p(I)/I = \mathbb{k}\{x^3, x^2y, xy^3\} \]

“Outward-pointing corners”
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\(I \) is \(p \)-primary, \(p = \langle x, y \rangle \)

\[\text{soc}_p(I)/I = \mathbb{k}\{x^3, x^2y, xy^3\} \]

"Outward-pointing corners"

Irreducible decomposition:
\[I = J_1 \cap J_2 \cap J_3 \]
Monomial Ideals

$I = \langle x^4, x^3y, x^2y^2, y^4 \rangle$

I is p-primary, $p = \langle x, y \rangle$

$\text{soc}_p(I)/I = \mathbb{k}\{x^3, x^2y, xy^3\}$

“Outward-pointing corners”

Irreducible decomposition:

$I = J_1 \cap J_2 \cap J_3$
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\(I \) is \(p \)-primary, \(p = \langle x, y \rangle \)

\[\text{soc}_p(I)/I = \mathbb{k}\{x^3, x^2y, xy^3\} \]

“Outward-pointing corners”

Irreducible decomposition:
\[I = J_1 \cap J_2 \cap J_3 \]

\[J_1 = \langle x^4, y \rangle \]
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[I \text{ is } p\text{-primary, } p = \langle x, y \rangle \]

\[\text{soc}_p(I)/I = k\{x^3, x^2y, xy^3\} \]

"Outward-pointing corners"

Irreducible decomposition:

\[I = J_1 \cap J_2 \cap J_3 \]

\[J_1 = \langle x^4, y \rangle \]

\[J_2 = \langle x^3, y^2 \rangle \]
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\(I \) is \(p \)-primary, \(p = \langle x, y \rangle \)

\[\text{soc}_p(I)/I = \mathbb{k}\{x^3, x^2y, xy^3\} \]

“Outward-pointing corners”

Irreducible decomposition:
\[I = J_1 \cap J_2 \cap J_3 \]

\[J_1 = \langle x^4, y \rangle \]
\[J_2 = \langle x^3, y^2 \rangle \]
\[J_3 = \langle x^2, y^4 \rangle \]
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\(I \) is \(p \)-primary, \(p = \langle x, y \rangle \)

\[\text{soc}_p(I)/I = \mathbb{k}\{x^3, x^2y, xy^3\} \]

"Outward-pointing corners"

Irreducible decomposition:
\[I = J_1 \cap J_2 \cap J_3 \]

\[J_1 = \langle x^4, y \rangle \]
\[J_2 = \langle x^3, y^2 \rangle \]
\[J_3 = \langle x^2, y^4 \rangle \]
Monomial Ideals

\[I = \langle x^4, x^3y, x^2y^2, y^4 \rangle \]

\[I \text{ is } p\text{-primary}, \quad p = \langle x, y \rangle \]

\[\text{soc}_p(I)/I = \mathbb{k}\{x^3, x^2y, xy^3\} \]

“Outward-pointing corners”

Irreducible decomposition:

\[I = J_1 \cap J_2 \cap J_3 \]

\[J_1 = \langle x^4, y \rangle \]

\[J_2 = \langle x^3, y^2 \rangle \]

\[J_3 = \langle x^2, y^4 \rangle \]
Fix an *irredundant* irreducible decomposition

\[I = \bigcap_{i=1}^{r} J_i \]

for a \(p \)-primary ideal \(I \).
Irreducible Decomposition

Facts

Fix an *irredundant* irreducible decomposition

\[I = \bigcap_{i=1}^{r} J_i \]

for a \(p \)-primary ideal \(I \).

- \(r = \dim_{\mathbb{k}} \text{soc}_p(I)/I \).
Fix an \textit{irredundant} irreducible decomposition

\[I = \bigcap_{i=1}^{r} J_i \]

for a \(p \)-primary ideal \(I \).

- \(r = \dim_{\mathbb{k}} \soc_p(I)/I \).
- For each \(i \), the map \(R/I \to R/J_i \) induces a nonzero map on socles.
Irreducible Decomposition

Facts

Fix an \textit{irredundant} irreducible decomposition

\[I = \bigcap_{i=1}^{r} J_i \]

for a \(p \)-primary ideal \(I \).

- \(r = \dim_{\mathbb{k}} \soc_p(I)/I \).
- For each \(i \), the map \(R/I \rightarrow R/J_i \) induces a nonzero map on socles.
- More generally, \(\soc_p(I)/I \cong \bigoplus_{i=1}^{r} \soc_p(J_i)/J_i \).
Facts

Fix an *irredundant* irreducible decomposition

\[I = \bigcap_{i=1}^{r} J_i \]

for a \(p \)-primary ideal \(I \).

- \(r = \dim_{\mathbb{k}} \text{soc}_p(I)/I \).
- For each \(i \), the map \(R/I \rightarrow R/J_i \) induces a nonzero map on socles.
- More generally, \(\text{soc}_p(I)/I \cong \bigoplus_{i=1}^{r} \text{soc}_p(J_i)/J_i \).
- If \(I \) is monomial ideal, then \(\text{soc}_p(I) \) is monomial.
And now, back to our original programming...
And now, back to our original programming...

Binomial ideals
Theorem (Eisenbud-Sturmfels, 1996)

If $k = \overline{k}$, every binomial ideal admits a binomial primary decomposition.
Theorem (Eisenbud-Sturmfels, 1996)

If $\mathbb{k} = \overline{\mathbb{k}}$, every binomial ideal admits a binomial primary decomposition.

Question (Eisenbud-Sturmfels, 1996)

Does the same hold for irreducible decomposition?
Theorem (Eisenbud-Sturmfels, 1996)

If $k = \bar{k}$, every binomial ideal admits a binomial primary decomposition.

Question (Eisenbud-Sturmfels, 1996)

Does the same hold for irreducible decomposition?

- In 2008, Dickenstein, Matusevich and Miller investigate the combinatorics of binomial primary decomposition.
Theorem (Eisenbud-Sturmfels, 1996)

If $k = \overline{k}$, every binomial ideal admits a binomial primary decomposition.

Question (Eisenbud-Sturmfels, 1996)

Does the same hold for irreducible decomposition?

- In 2008, Dickenstein, Matuschevich and Miller investigate the combinatorics of binomial primary decomposition.
- In 2013, Kahle and Miller give a combinatorial method of explicitly constructing binomial primary decomposition.
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]
\[\mathcal{I} = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[x^a \in k[x_1, \ldots, x_n] \leftrightarrow a \in \mathbb{N}^n \]
Binomial Ideals

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[x^a \in k[x_1, \ldots, x_n] \leftrightarrow a \in \mathbb{N}^n \]

Define relation \(\sim_I \) on \(\mathbb{N}^n \):
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[x^a \in \mathbb{k}[x_1, \ldots, x_n] \iff a \in \mathbb{N}^n \]

Define relation \(\sim_I \) on \(\mathbb{N}^n \):

\[a \sim_I b \in \mathbb{N}^n \iff x^a - \lambda x^b \in I \]

for some nonzero \(\lambda \in \mathbb{k} \)
$$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$$

$$x^a \in \mathbb{k}[x_1, \ldots, x_n] \iff a \in \mathbb{N}^n$$

Define relation \sim_I on \mathbb{N}^n:

$$a \sim_I b \in \mathbb{N}^n \iff x^a - \lambda x^b \in I$$

for some nonzero $\lambda \in \mathbb{k}$

$$x^2 - xy \in I,$$
\[l = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[x^a \in \mathbb{k}[x_1, \ldots, x_n] \leftrightarrow a \in \mathbb{N}^n \]

Define relation \(\sim_I \) on \(\mathbb{N}^n \):

\[a \sim_I b \in \mathbb{N}^n \leftrightarrow x^a - \lambda x^b \in l \]

for some nonzero \(\lambda \in \mathbb{k} \)

\[x^2 - xy \in l, \ xy - y^2 \in l, \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[\mathbf{x}^a \in k[x_1, \ldots, x_n] \longleftrightarrow a \in \mathbb{N}^n \]

Define relation \(\sim_I \) on \(\mathbb{N}^n \):

\[a \sim_I b \in \mathbb{N}^n \longleftrightarrow \mathbf{x}^a - \lambda \mathbf{x}^b \in I \]

for some nonzero \(\lambda \in k \)

\[x^2 - xy \in I, \ xy - y^2 \in I, \ x(x^2 - xy) = x^3 - x^2 y \in I, \]
Binomial Ideals

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[x^a \in k[x_1, \ldots, x_n] \iff a \in \mathbb{N}^n \]

Define relation \(\sim_I \) on \(\mathbb{N}^n \):

\[a \sim_I b \in \mathbb{N}^n \iff x^a - \lambda x^b \in I \]

for some nonzero \(\lambda \in k \)

\[x^2 - xy \in I, \ xy - y^2 \in I, \]
\[x(x^2 - xy) = x^3 - x^2y \in I, \ldots \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[x^a \in \mathbb{k}[x_1, \ldots, x_n] \iff a \in \mathbb{N}^n \]

Define relation \(\sim_I \) on \(\mathbb{N}^n \):

\[a \sim_I b \in \mathbb{N}^n \iff x^a - \lambda x^b \in \mathcal{I} \]

for some nonzero \(\lambda \in \mathbb{k} \)

\[x^2 - xy \in \mathcal{I}, \ xy - y^2 \in \mathcal{I}, \]

\[x(x^2 - xy) = x^3 - x^2y \in \mathcal{I}, \ldots \]

\[x^a, x^b \in \mathcal{I} \Rightarrow x^a - x^b \in \mathcal{I} \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[x^a \in \mathbb{k}[x_1, \ldots, x_n] \iff a \in \mathbb{N}^n \]

Define relation \(\sim_I \) on \(\mathbb{N}^n \):

\[a \sim_I b \in \mathbb{N}^n \iff x^a - \lambda x^b \in I \]

for some nonzero \(\lambda \in \mathbb{k} \)

\[x^2 - xy \in I, \quad xy - y^2 \in I, \quad x(x^2 - xy) = x^3 - x^2y \in I, \ldots \]

\[x^a, x^b \in I \Rightarrow x^a - x^b \in I \]
Binomial Ideals

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[x^a \in \mathbb{k}[x_1, \ldots, x_n] \iff a \in \mathbb{N}^n \]

Define relation \(\sim_I \) on \(\mathbb{N}^n \):

\[a \sim_I b \in \mathbb{N}^n \iff x^a - \lambda x^b \in I \]

for some nonzero \(\lambda \in \mathbb{k} \)

\[x^2 - xy \in I, \, xy - y^2 \in I, \]

\[x(x^2 - xy) = x^3 - x^2 y \in I, \ldots \]

\[x^a, x^b \in I \Rightarrow x^a - x^b \in I \]

\[(x^2 = xy \text{ in } \mathbb{k}[x, y]/I) \]
Fix a binomial ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$.
Fix a binomial ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$.

- The equivalence relation \sim_I induced by I on \mathbb{N}^n is a congruence:

 $a \sim_I b$ implies $a + c \sim_I b + c$

 for $a, b, c \in \mathbb{N}^n$. In particular, $(\mathbb{N}^n/\sim_I, +)$ is well defined.
Fix a binomial ideal \(I \subset k[x_1, \ldots, x_n] \).

- The equivalence relation \(\sim_I \) induced by \(I \) on \(\mathbb{N}^n \) is a congruence:
 \[
 a \sim_I b \implies a + c \sim_I b + c
 \]
 for \(a, b, c \in \mathbb{N}^n \). In particular, \((\mathbb{N}^n/\sim_I, +) \) is well defined.
- The monomials in \(I \) form a single class \(\infty \in \mathbb{N}^n/\sim_I \), called the nil.
Fix a binomial ideal $I \subset \mathbb{k}[x_1, \ldots, x_n]$.

- The equivalence relation \sim_I induced by I on \mathbb{N}^n is a congruence:
 \[a \sim_I b \text{ implies } a + c \sim_I b + c \]
 for $a, b, c \in \mathbb{N}^n$. In particular, $(\mathbb{N}^n/\sim_I, +)$ is well defined.

- The monomials in I form a single class $\infty \in \mathbb{N}^n/\sim_I$, called the nil.

- The nil ∞ corresponds to 0 in the quotient $\mathbb{k}[x_1, \ldots, x_n]/I$.
Fix a binomial ideal \(I \subset k[x_1, \ldots, x_n] \).

- The equivalence relation \(\sim_I \) induced by \(I \) on \(\mathbb{N}^n \) is a congruence:

\[
a \sim_I b \implies a + c \sim_I b + c
\]

for \(a, b, c \in \mathbb{N}^n \). In particular, \((\mathbb{N}^n/\sim_I, +)\) is well defined.

- The monomials in \(I \) form a single class \(\infty \in \mathbb{N}^n/\sim_I \), called the nil.

- The nil \(\infty \) corresponds to 0 in the quotient \(k[x_1, \ldots, x_n]/I \).

- Each non-nil \(\bar{a} \in \mathbb{N}^n/\sim_I \) represents a distinct monomial modulo \(I \).
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]
Binomial Ideals

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Monoid \(\mathbb{N}^2 / \sim_I \)
Theorem (Kahle-Miller, 2013)

For $k = \overline{k}$, every binomial ideal has an expression of the form

$$I = \bigcap_{i=1}^{r} J_i$$

where each J_i is binomial, primary, and has a unique monomial in its socle.
Theorem (Kahle-Miller, 2013)

For $k = \overline{k}$, every binomial ideal has an expression of the form

$$I = \bigcap_{i=1}^{r} J_i$$

where each J_i is binomial, primary, and has a unique monomial in its socle.

To construct a binomial irreducible decomposition for I, we can assume
Theorem (Kahle-Miller, 2013)

For $k = \overline{k}$, every binomial ideal has an expression of the form

$$I = \bigcap_{i=1}^{r} J_i$$

where each J_i is binomial, primary, and has a unique monomial in its socle.

To construct a binomial irreducible decomposition for I, we can assume

- I is primary to the maximal ideal \mathfrak{m},
Theorem (Kahle-Miller, 2013)

For $k = \overline{k}$, every binomial ideal has an expression of the form

$$I = \bigcap_{i=1}^{r} J_i$$

where each J_i is binomial, primary, and has a unique monomial in its socle.

To construct a binomial irreducible decomposition for I, we can assume

- I is primary to the maximal ideal m,
- $\text{soc}_m(I)/I$ has a unique monomial.
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]
Binomial Ideals

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[\mathbb{N}^n / \sim_I \leftrightarrow \text{monomials mod } I \]
Binomial Ideals

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[\mathbb{N}^n / \sim_I \leftrightarrow \text{monomials mod } I \]

\[\text{soc}_m(I) / I = \mathbb{k}\{x^3, x - y\} \]
$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$

$\mathbb{N}^n / \sim_I \leftrightarrow \text{monomials mod } I$

$\text{soc}_m(I) / I = \mathbb{k}\{x^3, x - y\}$
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[\mathbb{N}^n / \sim_I \longleftrightarrow \text{monomials mod } I \]

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x - y\} \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[\mathbb{N}^n / \sim_I \leftrightarrow \text{monomials mod } I \]

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x - y\} \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[\mathbb{N}^n / \sim_I \leftrightarrow \text{monomials mod } I \]

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x - y\} \]
I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle

\mathbb{N}^n/\sim_I \longleftrightarrow \text{monomials mod } I

\text{soc}_m(I)/I = \mathbb{k}\{x^3, x - y\}

\text{witnesses: monomials that merge with something in each direction}
\begin{align*}
I &= \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \\
\mathbb{N}^n / \sim_I &\longleftrightarrow \text{monomials mod } I \\
\text{soc}_m(I)/I &= \mathbb{k}\{x^3, x - y\} \\
\text{witnesses: monomials that merge with something in each direction} \\
I\text{-witnesses: } x^3, x, y
\end{align*}
A monomial x^a is a *witness* for I if for each $x^p \in p$,

$$p + a \sim_I p + a'$$

for some $a' \not\sim_I a$,

that is, x^a merges with another monomial modulo I when multiplied by any monomial in p.

Theorem (Kahle-Miller, 2013)

For any p-primary binomial ideal I, any $f \in \text{soc}_p(I)/I$ is a sum of witnesses.
Definition

A monomial x^a is a *witness* for I if for each $x^p \in p$,

$$p + a \sim_I p + a'$$

for some $a' \not\sim_I a$,

that is, x^a merges with another monomial modulo I when multiplied by any monomial in p.

Theorem (Kahle-Miller, 2013)

For any p-primary binomial ideal I, any $f \in \text{soc}_p(I)/I$ is a sum of witnesses.
Binomial Ideals

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[\text{soc}_m(I)/I = \mathbb{K}\{x^3, x - y\} \]
$I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle$

$\text{soc}_m(I)/I = \mathbb{k}\{x^3, x - y\}$

soccularize I: “Force simple socle”
Binomial Ideals

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x - y\} \]

soccularize \(I \): “Force simple socle”
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x - y\} \]

soccularize \(I \): “Force simple socle”

\[J = \langle x - y, x^4, y^4 \rangle \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x - y\} \]

soccularize \(I \): “Force simple socle”

\[J = \langle x - y, x^4, y^4 \rangle \]

\[\text{soc}_m(J)/J = \mathbb{k}\{x^3\} \]
Plan of attack:
Plan of attack:

- One irreducible component per witness monomial.
Soccular Decomposition

Plan of attack:

- One irreducible component per witness monomial.
- For each component, force chosen witness to be maximal.
Plan of attack:

- One irreducible component per witness monomial.
- For each component, force chosen witness to be maximal.
- Soccularize to remove other socle elements.
I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle
Soccular Decomposition

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)
Soccular Decomposition

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)
Soccular Decomposition

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle, \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle, \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle, \]

\[J_2 = \langle x^2, y \rangle, \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3 \), \(x \), \(y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle, \]

\[J_2 = \langle x^2, y \rangle, \]
Soccer Decomposition

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle, \]
\[J_2 = \langle x^2, y \rangle, J_3 = \langle x, y^2 \rangle \]
\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle, \]
\[J_2 = \langle x^2, y \rangle, \quad J_3 = \langle x, y^2 \rangle \]

\[I = J_1 \cap J_2 \cap J_3 \]
Soccular Decomposition

\[I = \langle x^2 - xy, xy - y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle, \]
\[J_2 = \langle x^2, y \rangle, J_3 = \langle x, y^2 \rangle \]

\[I = J_1 \cap J_2 \cap J_3 = J_1 \cap J_2 \]
Soccular Decomposition

\[I = \langle x^2 - xy, xy + y^2, x^4, y^4 \rangle \]
I = \langle x^2 - xy, xy + y^2, x^4, y^4 \rangle
\[I = \langle x^2 - xy, xy + y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)
\[I = \langle x^2 - xy, xy + y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3\} \]
Soccular Decomposition

\[I = \langle x^2 - xy, xy + y^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x, y \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3\} \]

\[I = I \cap \langle x^2, y \rangle \cap \langle x, y^2 \rangle \]
Soccular Decomposition

\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]
Soccular Decomposition

\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]
Soccular Decomposition

\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)
Soccular Decomposition

\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

 Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]
Soccular Decomposition

\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]

Soccularize:

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]
I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle

Witnesses: x^3, x^2, xy

soc_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\}

Soccularize:
$I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle$

Witnesses: x^3, x^2, xy

$soc_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\}$

Soccularize:
Soccular Decomposition

\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]

Soccularize: New witnesses!
\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]

Soccularize: New witnesses!

Protected witnesses: \(x, y \)
Soccular Decomposition

\[l = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(l)/l = \mathbb{k}\{x^3, x^2 - xy\} \]

Soccularize: New witnesses!

Protected witnesses: \(x, y \)
Soccular Decomposition

\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]

Soccularize: New witnesses!

Protected witnesses: \(x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle \]
\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]

Soccularize: New witnesses!

Protected witnesses: \(x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle \]
Soccular Decomposition

\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]

Soccularize: New witnesses!

Protected witnesses: \(x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle \]

\[J_2 = \langle x^3, y \rangle \]
Soccular Decomposition

\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]

Soccularize: New witnesses!

Protected witnesses: \(x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle \]
\[J_2 = \langle x^3, y \rangle \]
\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]

Soccularize: New witnesses!

Protected witnesses: \(x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle \]
\[J_2 = \langle x^3, y \rangle \]
\[J_3 = \langle xy - y^2, x^2, y^3 \rangle \]
Soccular Decomposition

\[I = \langle xy - y^2, x^3 - xy^2, x^4, y^4 \rangle \]

Witnesses: \(x^3, x^2, xy \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^3, x^2 - xy\} \]

Soccularize: New witnesses!

Protected witnesses: \(x, y \)

\[J_1 = \langle x - y, x^4, y^4 \rangle \]
\[J_2 = \langle x^3, y \rangle \]
\[J_3 = \langle xy - y^2, x^2, y^3 \rangle \]

\[I = J_1 \cap J_2 \cap J_3 \]
Algorithm for decomposing a binomial ideal I:

1. **Soccular Decomposition**
 - One component for each I-witness.
 - For the component at a witness w:
 - Add monomials not below w, so w is a unique monomial socle element.
 - "Soccularize" by merging witness pairs below w.
 - Repeat with protected witnesses until no new witness pairs are created.

Theorem (Kahle-Miller-O., 2014)
For $k = k$, any binomial ideal I can be written as

$$I = \bigcap_{i=1}^{r} J_i,$$

where each J_i is binomial and p_i-primary, and the socle $soc_{p_i}(J_i) / J_i$ contains a unique monomial and no other binomials.
Algorithm for decomposing a binomial ideal I:

- One component for each I-witness.
Algorithm for decomposing a binomial ideal I:

- One component for each I-witness.
- For the component at a witness w:

 - Add monomials not below w, so w is a unique monomial socle element.
 - "Soccularize" by merging witness pairs below w.
 - Repeat with protected witnesses until no new witness pairs are created.

Theorem (Kahle-Miller-O., 2014)

For $k = k$, any binomial ideal I can be written as $I = \bigcap_{i=1}^{r} J_i$, where each J_i is binomial and p_i-primary, and the socle $soc_{p_i}(J_i)/J_i$ contains a unique monomial and no other binomials.
Algorithm for decomposing a binomial ideal I:

- One component for each I-witness.
- For the component at a witness w:
 - Add monomials not below w, so w is a unique monomial socle element.
Algorithm for decomposing a binomial ideal I:

- One component for each I-witness.

- For the component at a witness w:
 - Add monomials not below w, so w is a unique monomial socle element.
 - “Soccularize” by merging witness pairs below w.

Theorem (Kahle-Miller-O., 2014)

For $k = k$, any binomial ideal I can be written as $I = \bigcap_{i=1}^{r} J_i$, where each J_i is binomial and p_i-primary, and the socle $\text{soc}_p(J_i)/J_i$ contains a unique monomial and no other binomials.
Algorithm for decomposing a binomial ideal I:

- One component for each I-witness.
- For the component at a witness w:
 - Add monomials not below w, so w is a unique monomial socle element.
 - “Soccularize” by merging witness pairs below w.
 - Repeat with protected witnesses until no new witness pairs are created.
Algorithm for decomposing a binomial ideal I:

- One component for each I-witness.
- For the component at a witness w:
 - Add monomials not below w, so w is a unique monomial socle element.
 - “Soccularize” by merging witness pairs below w.
 - Repeat with protected witnesses until no new witness pairs are created.

Theorem (Kahle-Miller-O., 2014)

For $k = \overline{k}$, any binomial ideal I can be written as $I = \bigcap_{i=1}^{r} J_i$, where each J_i is binomial and p_i-primary, and the socle $\text{soc}_{p_i}(J_i)/J_i$ contains a unique monomial and no other binomials.
The Counterexample

\[I = \langle x^2y - xy^2, x^3, y^3 \rangle \]
The Counterexample

\[I = \langle x^2y - xy^2, x^3, y^3 \rangle \]
The Counterexample

\[I = \langle x^2y - xy^2, x^3, y^3 \rangle \]

Witnesses: \(x^2y, x^2, xy, y^2 \)
The Counterexample

\[I = \langle x^2y - xy^2, x^3, y^3 \rangle \]

Witnesses: \(x^2y, x^2, xy, y^2 \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^2y, x^2 + y^2 - xy\} \]
The Counterexample

\[I = \langle x^2 y - xy^2, x^3, y^3 \rangle \]

Witnesses: \(x^2 y, x^2, xy, y^2 \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^2 y, x^2 + y^2 - xy\} \]
The Counterexample

\[I = \langle x^2y - xy^2, x^3, y^3 \rangle \]

Witnesses: \(x^2y, x^2, xy, y^2 \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^2y, x^2 + y^2 - xy\} \]
The Counterexample

\[I = \langle x^2y - xy^2, x^3, y^3 \rangle \]

Witnesses: \(x^2y, x^2, xy, y^2 \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^2y, x^2 + y^2 - xy\} \]
The Counterexample

\[I = \langle x^2y - xy^2, x^3, y^3 \rangle \]

Witnesses: \(x^2y, x^2, xy, y^2\)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^2y, x^2 + y^2 - xy\} \]
\[I = \langle x^2 y - xy^2, x^3, y^3 \rangle \]

Witnesses: \(x^2 y, x^2, xy, y^2 \)

\[\text{soc}_m(I)/I = \mathbb{k}\{x^2 y, x^2 + y^2 - xy\} \]

\[I = \langle x^2 + y^2 - xy, x^3, y^3 \rangle \cap \langle x^3, y \rangle \]
The Counterexample

Theorem (Kahle-Miller-O., 2014)

\(I = \langle x^2 y - xy^2, x^3, y^3 \rangle \) admits no binomial irreducible decomposition.
The Counterexample

Theorem (Kahle-Miller-O., 2014)

\[I = \langle x^2y - xy^2, x^3, y^3 \rangle \] admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition \(I = \bigcap_{i=1}^{r} J_i \).
The Counterexample

Theorem (Kahle-Miller-O., 2014)

\[I = \langle x^2y - xy^2, x^3, y^3 \rangle \] admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition \(I = \bigcap_{i=1}^{r} J_i \).

We have \(r = \dim_k (\text{soc}_m(I)/I) = 2 \), so \(I = J_1 \cap J_2 \).
The Counterexample

Theorem (Kahle-Miller-O., 2014)

\[I = \langle x^2 y - xy^2, x^3, y^3 \rangle \text{ admits no binomial irreducible decomposition.} \]

Proof.

Fix an irredundant irreducible decomposition \(I = \bigcap_{i=1}^{r} J_i \).

We have \(r = \dim_k(\text{soc}_m(I)/I) = 2 \), so \(I = J_1 \cap J_2 \).

Write \(\alpha = x^2 + y^2 - xy \), \(\beta = x^2 y \), so \(\text{soc}_m(I)/I = k\{\alpha, \beta\} \).
The Counterexample

Theorem (Kahle-Miller-O., 2014)

\[I = \langle x^2y - xy^2, x^3, y^3 \rangle \] admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition \(I = \bigcap_{i=1}^{r} J_i \).
We have \(r = \dim_k (\text{soc}_m(I)/I) = 2 \), so \(I = J_1 \cap J_2 \).
Write \(\alpha = x^2 + y^2 - xy, \beta = x^2y \), so \(\text{soc}_m(I)/I = k\{\alpha, \beta\} \).
We know
\[\text{soc}_m(I)/I \cong \text{soc}_m(J_1)/J_1 \oplus \text{soc}_m(J_2)/J_2, \]
so we have \(\alpha + \lambda \beta \in \text{soc}_m(J_i)/J_i \) for some \(i \), say \(i = 1 \).
The Counterexample

Theorem (Kahle-Miller-O., 2014)

\[I = \langle x^2 y - xy^2, x^3, y^3 \rangle \text{ admits no binomial irreducible decomposition.} \]

Proof.

Fix an irredundant irreducible decomposition \(I = \bigcap_{i=1}^{r} J_i \).
We have \(r = \dim_k (\text{soc}_m(I)/I) = 2 \), so \(I = J_1 \cap J_2 \).
Write \(\alpha = x^2 + y^2 - xy \), \(\beta = x^2 y \), so \(\text{soc}_m(I)/I = k\{\alpha, \beta\} \).
We know

\[\text{soc}_m(I)/I \cong \text{soc}_m(J_1)/J_1 \oplus \text{soc}_m(J_2)/J_2, \]

so we have \(\alpha + \lambda \beta \in \text{soc}_m(J_i)/J_i \) for some \(i \), say \(i = 1 \).
This means \(I + \langle \alpha + \lambda \beta \rangle \subset J_1 \).
The Counterexample

Theorem (Kahle-Miller-O., 2014)

$I = \langle x^2y - xy^2, x^3, y^3 \rangle$ admits no binomial irreducible decomposition.

Proof.

Fix an irredundant irreducible decomposition $I = \bigcap_{i=1}^{r} J_i$. We have $r = \dim_{k}(\text{soc}_m(I)/I) = 2$, so $I = J_1 \cap J_2$.

Write $\alpha = x^2 + y^2 - xy$, $\beta = x^2y$, so $\text{soc}_m(I)/I = k\{\alpha, \beta\}$.

We know

$$\text{soc}_m(I)/I \cong \text{soc}_m(J_1)/J_1 \oplus \text{soc}_m(J_2)/J_2,$$

so we have $\alpha + \lambda \beta \in \text{soc}_m(J_i)/J_i$ for some i, say $i = 1$.

This means $I + \langle \alpha + \lambda \beta \rangle \subset J_1$.

But $I + \langle \alpha + \lambda \beta \rangle$ already has simple socle, so $J_1 = I + \langle \alpha + \lambda \beta \rangle$.

Christopher O'Neill (Duke University) Irreducible decomposition of binomial ideals January 18, 2014 33 / 36
References

David Eisenbud, Bernd Sturmfels (1996)
Binomial ideals.

Ezra Miller, Bernd Sturmfels (2005)
Combinatorial commutative algebra.

Thomas Kahle, Ezra Miller (2013)
Decompositions of commutative monoid congruences and binomial ideals.
arXiv:1107.4699 [math].

Thomas Kahle, Ezra Miller, Christopher O'Neill (2014)
Irreducible decompositions of binomial ideals.
To appear.
References

David Eisenbud, Bernd Sturmfels (1996)
Binomial ideals.

Ezra Miller, Bernd Sturmfels (2005)
Combinatorial commutative algebra.

Thomas Kahle, Ezra Miller (2013)
Decompositions of commutative monoid congruences and binomial ideals.

arXiv:1107.4699 [math].

Thomas Kahle, Ezra Miller, Christopher O'Neill (2014)
Irreducible decompositions of binomial ideals.
To appear.

Thanks!
When do they exist?

\[I = \langle x^2 y - xy^2, x^4 - x^3 y, xy^3 - y^4, x^5, y^5 \rangle \]
When do they exist?

\[I = \langle x^2y - xy^2, x^4 - x^3y, xy^3 - y^4, x^5, y^5 \rangle \]

Witnesses: \(x^4, x^3, x^2y, y^3 \)
When do they exist?

\[I = \langle x^2 y - xy^2, x^4 - x^3 y, xy^3 - y^4, x^5, y^5 \rangle \]

Witnesses: \(x^4, x^3, x^2 y, y^3 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \]
When do they exist?

\[I = \langle x^2y - xy^2, x^4 - x^3y, xy^3 - y^4, x^5, y^5 \rangle \]

Witnesses: \(x^4, x^3, x^2y, y^3 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \]

\(J_3 \) not binomial
When do they exist?

\[I = \langle x^2y - xy^2, x^4 - x^3y, xy^3 - y^4, x^5, y^5 \rangle \]

Witnesses: \(x^4, x^3, x^2y, y^3 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \]

\(J_3 \) not binomial
When do they exist?

\[I = \langle x^2 y - xy^2, x^4 - x^3 y, xy^3 - y^4, x^5, y^5 \rangle \]

Witnesses: \(x^4, x^3, x^2 y, y^3 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \]

\(J_3 \) not binomial
When do they exist?

\[I = \langle x^2 y - xy^2, x^4 - x^3 y, xy^3 - y^4, x^5, y^5 \rangle \]

Witnesses: \(x^4, x^3, x^2 y, y^3 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \]

\(J_3 \) not binomial

Can omit one of \(J_2, J_3, J_4 \)
When do they exist?

$$I' = \langle \text{whatever is necessary} \rangle$$
When do they exist?

\[I' = \langle \text{whatever is necessary} \rangle \]

Witnesses: \(x^6, x^5, x^4y, xy^4, y^5 \)
When do they exist?

\[I' = \langle \text{whatever is necessary} \rangle \]

Witnesses: \(x^6, x^5, x^4y, xy^4, y^5 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \cap J_5 \]
When do they exist?

\[I' = \langle \text{whatever is necessary} \rangle \]

Witnesses: \(x^6, x^5, x^4y, xy^4, y^5 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \cap J_5 \]

\(J_3, J_4 \) not binomial
When do they exist?

\[I' = \langle \text{whatever is necessary} \rangle \]

Witnesses: \(x^6, x^5, x^4y, xy^4, y^5 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \cap J_5 \]

\(J_3, J_4 \) not binomial
When do they exist?

\[I' = \langle \text{whatever is necessary} \rangle \]

Witnesses: \(x^6, x^5, x^4y, xy^4, y^5 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \cap J_5 \]

\(J_3, J_4 \) not binomial
When do they exist?

\[I' = \langle \text{whatever is necessary} \rangle \]

Witnesses: \(x^6, x^5, x^4 y, xy^4, y^5 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \cap J_5 \]

\(J_3, J_4 \) not binomial
When do they exist?

\[I' = \langle \text{whatever is necessary} \rangle \]

Witnesses: \(x^6, x^5, x^4y, xy^4, y^5 \)

\[I = J_1 \cap J_2 \cap J_3 \cap J_4 \cap J_5 \]

\(J_3, J_4 \) not binomial

Can omit one of \(J_2, J_3, J_4, J_5 \)