Invariants of non-unique factorization

Christopher O’Neill

Texas A&M University

coneill@math.tamu.edu

November 21, 2014
Invariants of non-unique factorization

Christopher O’Neill

Texas A&M University

coneill@math.tamu.edu

First half: Catenary degree (combinatorial)
Joint with Vadim Ponomarenko, Reuben Tate*, and Gautam Webb*

November 21, 2014
Invariants of non-unique factorization

Christopher O’Neill

Texas A&M University
coneill@math.tamu.edu

First half: Catenary degree (combinatorial)
Joint with Vadim Ponomarenko, Reuben Tate*, and Gautam Webb*

Second half: \(\omega\)-primality (algebraic)
Joint with Thomas Barron* and Roberto Pelayo

November 21, 2014
Factorial domains

Definition

An integral domain $R$ is factorial if for each non-unit $r \in R$,

1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).
Factorial domains

Definition
An integral domain $R$ is factorial if for each non-unit $r \in R$,
1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example
$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$. 
Factorial domains

Definition
An integral domain $R$ is \textit{atomic} if for each non-unit $r \in R$,
1. there is a \textit{factorization} $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example
$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$. 
Factorial domains

Definition

An integral domain $R$ is **atomic** if for each non-unit $r \in R$,

1. there is a **factorization** $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$
Definition

An integral domain $R$ is \textit{atomic} if for each non-unit $r \in R$,

1. there is a \textit{factorization} $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

To prove: define a \textit{valuation} $a + b\sqrt{-5} \mapsto a^2 + 5b^2$. 
Factorial domains

Definition

An integral domain $R$ is \textit{atomic} if for each non-unit $r \in R$,

1. there is a \textit{factorization} $r = u_1 \cdots u_k$ as a product of irreducibles, and

2. this factorization is unique (up to reordering and unit multiple).

Example

$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

To prove: define a \textit{valuation} $a + b\sqrt{-5} \mapsto a^2 + 5b^2$.

The point: it’s complicated.
**Factorial domains**

**Definition**
An integral domain $R$ is *atomic* if for each non-unit $r \in R$,

1. there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

**Example**
$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.
Factorial domains

Definition

An integral domain $R$ is atomic if for each non-unit $r \in R$,
1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

Let $R = \mathbb{C}[x^2, x^3]$.
Factorial domains

**Definition**

An integral domain \( R \) is *atomic* if for each non-unit \( r \in R \),

1. there is a factorization \( r = u_1 \cdots u_k \) as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

**Example**

\( \mathbb{Z} \) is factorial: each \( z = p_1 \cdots p_k \) for primes \( p_1 \cdots p_k \).

**Example**

Let \( R = \mathbb{C}[x^2, x^3] \).

1. \( x^2 \) and \( x^3 \) are irreducible.
Factorial domains

**Definition**

An integral domain \( R \) is *atomic* if for each non-unit \( r \in R \),

1. there is a factorization \( r = u_1 \cdots u_k \) as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

**Example**

\( \mathbb{Z} \) is factorial: each \( z = p_1 \cdots p_k \) for primes \( p_1 \cdots p_k \).

**Example**

Let \( R = \mathbb{C}[x^2, x^3] \).

1. \( x^2 \) and \( x^3 \) are irreducible.
2. \( x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \).
Definition
An integral domain $R$ is \textit{atomic} if for each non-unit $r \in R$,
1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example
$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Observation
## Factorial domains

### Definition

An integral domain $R$ is **atomic** if for each non-unit $r \in R$,

1. there is a **factorization** $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

### Example

$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

### Observation

- Where’s the addition?
Factorial domains

**Definition**
An integral domain $R$ is *atomic* if for each non-unit $r \in R$,
1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

**Example**
$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

**Observation**
- Where’s the addition?
- Factorization in (cancellative commutative) monoids:
Factorial domains

**Definition**
An integral domain $R$ is *atomic* if for each non-unit $r \in R$,
1. there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

**Example**
$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

**Observation**
- Where’s the addition?
- Factorization in (cancellerative comutative) monoids:
  $$(R, +, \cdot) \xrightarrow{\sim} (R \setminus \{0\}, \cdot)$$
Factorial domains

Definition
An integral domain $R$ is \textit{atomic} if for each non-unit $r \in R$,

1. there is a \textit{factorization} $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example
$\mathbb{Z}$ is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Observation
- Where’s the addition?
- Factorization in (cancellative commutative) monoids:
  
  $$(R, +, \cdot) \sim (R \setminus \{0\}, \cdot)$$
  
  $$(\mathbb{C}[M], +, \cdot) \sim (M, \cdot)$$
A numerical monoid $S$ is an additive submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$. 
Definition

A numerical monoid $S$ is an additive submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots \}$ under addition.
Numerical monoids

Definition

A *numerical monoid* $S$ is an *additive* submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under *addition*. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$. 

'$\Rightarrow$' $60 = 7(6) + 2(9) = 3(20)$
A numerical monoid $S$ is an additive submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$.

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2$
Numerical monoids

Definition

A numerical monoid $S$ is an additive submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \leadsto \quad 6 = 3 + 3 = 2 + 2 + 2$. 
Numerical monoids

Definition

A **numerical monoid** $S$ is an **additive** submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

$$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \leadsto \quad 6 = 3 + 3 = 2 + 2 + 2.$$ Factorizations are additive!
**Numerical monoids**

**Definition**

A *numerical monoid* $S$ is an **additive** submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$.

**Example**

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots \}$ under **addition**. \( \mathbb{C}[S] = \mathbb{C}[x^2, x^3]. \)

\[
x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \leadsto \quad 6 = 3 + 3 = 2 + 2 + 2.
\]

Factorizations are additive!

**Example**

$McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}$. 
A numerical monoid $S$ is an additive submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots \}$ under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

$$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \leadsto \quad 6 = 3 + 3 = 2 + 2 + 2.$$ Factorizations are additive!

Example

$McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}$. “McNugget Monoid”
Definition

A *numerical monoid* $S$ is an *additive* submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under *addition*. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \leadsto \quad 6 = 3 + 3 = 2 + 2 + 2$.

Factorizations are additive!

Example

$McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}$. “McNugget Monoid”

$60 = 7(6) + 2(9)$
Numerical monoids

**Definition**

A *numerical monoid* $S$ is an *additive* submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$.

**Example**

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots \}$ under *addition*. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \leadsto 6 = 3 + 3 = 2 + 2 + 2$.

Factorizations are additive!

**Example**

$McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}$. “McNugget Monoid”

$60 = 7(6) + 2(9) = 3(20)$
Numerical monoids

Definition

A numerical monoid $S$ is an additive submonoid of $\mathbb{N}$ with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

\[ x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \leadsto \quad 6 = 3 + 3 = 2 + 2 + 2. \]

Factorizations are additive!

Example

$McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}$. “McNugget Monoid”

\[ 60 = 7(6) + 2(9) \quad \leadsto \quad (7, 2, 0) \]
\[ = 3(20) \quad \leadsto \quad (0, 0, 3) \]
Define a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$, $Z_S(n) = \{ (a_1, \ldots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \cdots + a_k n_k \}$ denotes the set of factorizations of $n$.

For $f, f' \in Z_S(n)$, $|f| =$ length of $f$ and $\gcd(f, f') = (\min(f_1, f'_1), \ldots, \min(f_k, f'_k))$.

$$d(f, f') = \max\{|f - \gcd(f, f')|, |f' - \gcd(f, f')|\}$$
Factorization invariants: towards the catenary degree

Definition

Fix a numerical monoid \( S = \langle n_1, \ldots, n_k \rangle \). For \( n \in S \),

\[
Z_S(n) = \{(a_1, \ldots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \cdots + a_k n_k\}
\]
denotes the set of factorizations of \( m \).
Definition

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$,

$$Z_S(n) = \{ (a_1, \ldots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \cdots + a_k n_k \}$$

denotes the set of factorizations of $m$. For $f, f' \in Z_S(n)$,

$$|f| = f_1 + \cdots + f_k$$
Definition

Fix a numerical monoid \( S = \langle n_1, \ldots, n_k \rangle \). For \( n \in S \),

\[
Z_S(n) = \{ (a_1, \ldots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \cdots + a_k n_k \}
\]
denotes the set of factorizations of \( m \). For \( f, f' \in Z_S(n) \),

\[
|f| = f_1 + \cdots + f_k \quad \text{(length of \( f \))}
\]
Definition

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$,

$$\mathcal{Z}_S(n) = \{ (a_1, \ldots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \cdots + a_k n_k \}$$

denotes the set of factorizations of $m$. For $f, f' \in \mathcal{Z}_S(n)$,

$$|f| = f_1 + \cdots + f_k \quad (\text{length of } f)$$
$$\gcd(f, f') = (\min(f_1, f'_1), \ldots, \min(f_k, f'_k))$$
Fix a numerical monoid \( S = \langle n_1, \ldots, n_k \rangle \). For \( n \in S \),
\[
Z_S(n) = \{ (a_1, \ldots, a_k) \in \mathbb{N}^k : n = a_1 n_1 + \cdots + a_k n_k \}
\]
denotes the set of factorizations of \( m \). For \( f, f' \in Z_S(n) \),
\[
|f| = f_1 + \cdots + f_k \quad (\text{length of } f)
\]
\[
gcd(f, f') = (\min(f_1, f'_1), \ldots, \min(f_k, f'_k))
\]
\[
d(f, f') = \max \{|f - \gcd(f, f')|, |f' - \gcd(f, f')|\}
\]
Example

\[ S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \]
Example

\[ S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \quad f = (3, 1, 1), \quad f' = (1, 0, 3) \in \mathbb{Z}_S(25). \]
Example

\[ S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), \ f' = (1, 0, 3) \in \mathbb{Z}_S(25). \]
Example

\[ S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), \ f' = (1, 0, 3) \in Z_S(25). \]

- \( g = \gcd(f, f') \)
Example

\[ S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathbb{Z}_S(25). \]

\[ g = \gcd(f, f') \]
Example

$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}$, $f = (3, 1, 1)$, $f' = (1, 0, 3) \in Z_S(25)$.

- $g = \gcd(f, f') = (1, 0, 1)$. 
Example

\[ S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), \ f' = (1, 0, 3) \in \mathbb{Z}_S(25). \]

- \( g = \gcd(f, f') = (1, 0, 1) \).
- \( d(f, f') \)
Example

\[ S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), \ f' = (1, 0, 3) \in Z_S(25). \]
- \( g = \gcd(f, f') = (1, 0, 1). \)
- \( d(f, f') = \max \{|f - g|, |f' - g|\} \)
Example

\[ S = \langle 4, 6, 7 \rangle \subset \mathbb{N}, \ f = (3, 1, 1), f' = (1, 0, 3) \in \mathbb{Z}_S(25). \]

- \( g = \gcd(f, f') = (1, 0, 1). \)
- \( d(f, f') = \max\{|f - g|, |f' - g|\} \)
Example

$S = \langle 4, 6, 7 \rangle \subset \mathbb{N}$, $f = (3, 1, 1)$, $f' = (1, 0, 3) \in Z_S(25)$.

- $g = \gcd(f, f') = (1, 0, 1)$.
- $d(f, f') = \max \{|f - g|, |f' - g|\} = 3$. 

\[
\begin{array}{c}
4 \\
4 \\
4 \\
(3,1,1) \\
4 \\
7 \\
7 \\
7 \\
(1,0,3)
\end{array}
\]
Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$, define the catenary degree $c(n)$ as follows:

1. Construct a complete graph $G$ with vertex set $\mathbb{Z}_S(n)$ where each edge $(f, f')$ has label $d(f, f')$ (catenary graph).
2. Locate the largest edge weight $e$ in $G$.
3. Remove all edges from $G$ with weight $e$.
4. If $G$ is disconnected, return $e$. Otherwise, return to step 2.

If $|\mathbb{Z}_S(n)| = 1$, define $c(n) = 0$. 
The catenary degree

Definition

Fix a numerical monoid \( S = \langle n_1, \ldots, n_k \rangle \). For \( n \in S \), define the catenary degree \( c(n) \) as follows:

1. Construct a complete graph \( G \) with vertex set \( Z_S(n) \) where each edge \((f, f')\) has label \( d(f, f') \) (catenary graph).

2. Locate the largest edge weight \( e \) in \( G \).

3. Remove all edges from \( G \) with weight \( e \).

4. If \( G \) is disconnected, return \( e \). Otherwise, return to step 2.

If \( |Z_S(n)| = 1 \), define \( c(n) = 0 \).
The catenary degree

**Definition**

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$, define the *catenary degree* $c(n)$ as follows:

1. Construct a complete graph $G$ with vertex set $Z_S(n)$ where each edge $(f, f')$ has label $d(f, f')$ (*catenary graph*).
2. Locate the largest edge weight $e$ in $G$.

If $|Z_S(n)| = 1$, define $c(n) = 0$. 
The catenary degree

Definition

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$, define the catenary degree $c(n)$ as follows:

1. Construct a complete graph $G$ with vertex set $Z_S(n)$ where each edge $(f, f')$ has label $d(f, f')$ (catenary graph).
2. Locate the largest edge weight $e$ in $G$.
3. Remove all edges from $G$ with weight $e$.

If $|Z_S(n)| = 1$, define $c(n) = 0$. 

Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  6 / 23
The catenary degree

Definition

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$, define the catenary degree $c(n)$ as follows:

1. Construct a complete graph $G$ with vertex set $Z_S(n)$ where each edge $(f, f')$ has label $d(f, f')$ (catenary graph).
2. Locate the largest edge weight $e$ in $G$.
3. Remove all edges from $G$ with weight $e$.
4. If $G$ is disconnected, return $e$. Otherwise, return to step 2.

If $|Z_S(n)| = 1$, define $c(n) = 0$. 
The catenary degree

Definition

Fix a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$. For $n \in S$, define the *catenary degree* $c(n)$ as follows:

1. Construct a complete graph $G$ with vertex set $Z_S(n)$ where each edge $(f, f')$ has label $d(f, f')$ (*catenary graph*).
2. Locate the largest edge weight $e$ in $G$.
3. Remove all edges from $G$ with weight $e$.
4. If $G$ is disconnected, return $e$. Otherwise, return to step 2.

If $|Z_S(n)| = 1$, define $c(n) = 0$. 
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \, n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example

$S = \langle 11, 36, 39 \rangle, \ n = 450$
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \; n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \; n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \, n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \; n = 450 \]
A Big Example

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example

$S = \langle 11, 36, 39 \rangle$, $n = 450$, $c(n) = 16$
A Big Example, Method 2

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example, Method 2

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]

\[ (0, 6, 6) \quad (27, 1, 3) \]

\[ (3, 4, 7) \quad (24, 3, 2) \]

\[ (6, 2, 8) \quad (21, 5, 1) \]

\[ (9, 0, 9) \quad (18, 7, 0) \]
A Big Example, Method 2

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example, Method 2

$S = \langle 11, 36, 39 \rangle$, $n = 450$
A Big Example, Method 2

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
A Big Example, Method 2

\[ S = \langle 11, 36, 39 \rangle, \ n = 450 \]
\[ S = \langle 11, 36, 39 \rangle, \quad n = 450, \quad c(n) = 16 \]
Betti elements

Definition
For an element $n \in S = \langle n_1, \ldots, n_k \rangle$, let $\nabla_n$ denote the subgraph of the catenary graph in which only edges $(f, f')$ with $\gcd(f, f') \neq 0$ are drawn.

Example
$S = \langle 10, 15, 17 \rangle$ has Betti elements 30 and 85.

$\nabla_{30}$:
\[(0, 2, 0)\]

$\nabla_{85}$:
\[(3, 0, 0)\]
\[(0, 2, 0)\]
\[(3, 0, 0)\]
\[(0, 0, 5)\]
\[(7, 1, 0)\]
\[(4, 3, 0)\]
\[(1, 5, 0)\]
Betti elements

**Definition**

For an element \( n \in S = \langle n_1, \ldots, n_k \rangle \), let \( \nabla_n \) denote the subgraph of the catenary graph in which only edges \((f, f')\) with \( \gcd(f, f') \neq 0 \) are drawn. We say \( n \) is a *Betti element* of \( S \) if \( \nabla_n \) is disconnected.

Example

\[ S = \langle 10, 15, 17 \rangle \] has Betti elements 30 and 85.

\[ \nabla_{30} : (0,2,0) \]

\[ \nabla_{85} : (3,0,0) \]

Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014 9 / 23
Betti elements

Definition

For an element $n \in S = \langle n_1, \ldots, n_k \rangle$, let $\nabla_n$ denote the subgraph of the catenary graph in which only edges $(f, f')$ with $\gcd(f, f') \neq 0$ are drawn. We say $n$ is a Betti element of $S$ if $\nabla_n$ is disconnected.

Example

$S = \langle 10, 15, 17 \rangle$ has Betti elements 30 and 85.
Betti elements

Definition
For an element $n \in S = \langle n_1, \ldots, n_k \rangle$, let $\nabla_n$ denote the subgraph of the catenary graph in which only edges $(f, f')$ with $\gcd(f, f') \neq 0$ are drawn. We say $n$ is a Betti element of $S$ if $\nabla_n$ is disconnected.

Example
$S = \langle 10, 15, 17 \rangle$ has Betti elements 30 and 85.

$\nabla_{30}$:

- $(3,0,0)$
- $(0,2,0)$

$\nabla_{85}$:

- $(0,0,5)$
- $(7,1,0)$
- $(4,3,0)$
- $(1,5,0)$

Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  9 / 23
Maximal catenary degree in $S$

**Theorem**

$$\max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}.$$
Maximal catenary degree in $S$

**Theorem**

$$\max \{ c(n) : n \in S \} = \max \{ c(b) : b \text{ Betti element of } S \}.$$  

Key concept: Cover morphisms.
Maximal catenary degree in $S$

**Theorem**

$$\max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}.$$  

Key concept: Cover morphisms.
Maximal catenary degree in $S$

**Theorem**

$$\max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}.$$  

Key concept: Cover morphisms.
Theorem

\[ \max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}. \]

Key concept: Cover morphisms.
Theorem
\[ \max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}. \]

Key concept: Cover morphisms.
Maximal catenary degree in $S$

**Theorem**

$max\{c(n) : n \in S\} = max\{c(b) : b \text{ Betti element of } S\}.$

Key concept: Cover morphisms.

$Z_S(n) \xrightarrow{f} Z_S(n + n_i) \xrightarrow{f + e_i}$
Maximal catenary degree in $S$

**Theorem**

\[ \max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}. \]

Key concept: Cover morphisms.

\[ Z_S(n) \]

\[ f \]

\[ Z_S(n + n_i) \]

\[ f + e_i \]
Theorem

\[ \max \{ c(n) : n \in S \} = \max \{ c(b) : b \text{ Betti element of } S \}. \]
Maximal catenary degree in $S$

**Theorem**

$$\max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}.$$

Idea for proof: Certain edges (determined by Betti elements) connect the catenary graph of each $n \in S$. 
Maximal catenary degree in $S$

**Theorem**

$$\max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}.$$ 

Idea for proof: Certain edges (determined by Betti elements) connect the catenary graph of each $n \in S$. 

\[ \text{Z}(n) \]
Maximal catenary degree in $S$

**Theorem**

$$\max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}.$$ 

Idea for proof: Certain edges (determined by Betti elements) connect the catenary graph of each $n \in S$. 

![Diagram showing connections between $Z(b_1)$ and $Z(n)$]
Maximal catenary degree in $S$

**Theorem**
\[
\max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}.
\]

Idea for proof: Certain edges (determined by Betti elements) connect the catenary graph of each $n \in S$.\[\begin{align*}
\text{Z}(b_1) & \quad \rightarrow \quad \text{Z}(n) \\
\text{Z}(b_2) & \quad \rightarrow \\
\end{align*}\]
Maximal catenary degree in $S$

**Theorem**

\[
\max\{c(n) : n \in S\} = \max\{c(b) : b \text{ Betti element of } S\}.
\]

Idea for proof: Certain edges (determined by Betti elements) connect the catenary graph of each $n \in S$. 

\[\begin{array}{ccc}
Z(b_1) & \rightarrow & Z(n) \\
\downarrow & & \downarrow \\
Z(b_2) & \rightarrow & Z(b_3)
\end{array}\]
Conjecture

\[ \min \{ c(n) > 0 : n \in S \} = \min \{ c(b) : b \text{ Betti element of } S \} \].
**Conjecture Theorem (O., Ponomarenko, Tate, Webb)**

\[
\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.
\]
**Conjecture Theorem (O., Ponomarenko, Tate, Webb)**

\[
\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.
\]

\[B = \min\{c(b) : b \text{ Betti element of } S\}.\]
**Conjecture** Theorem (O., Ponomarenko, Tate, Webb)

\[ \min \{ c(n) > 0 : n \in S \} = \min \{ c(b) : b \text{ Betti element of } S \}. \]

**Lemma**

If \( f, f' \in \mathbb{Z}_S(n) \)

\[ f \bullet \]

\[ f' \bullet \]
Minimal (nonzero) catenary degree in $S$

**Conjecture Theorem (O., Ponomarenko, Tate, Webb)**

\[
\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.
\]

\[B = \min\{c(b) : b \text{ Betti element of } S\}.
\]

**Lemma**

*If* $f, f' \in \mathbb{Z}_S(n)$ *and* $d(f, f') < B$,
**Conjecture Theorem** (O., Ponomarenko, Tate, Webb)

\[
\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.
\]

\[
B = \min\{c(b) : b \text{ Betti element of } S\}.
\]

**Lemma**

If \( f, f' \in Z_S(n) \) and \( d(f, f') < B \), then there exists \( f'' \in Z_S(n) \)
Conjecture Theorem (O., Ponomarenko, Tate, Webb)

\[
\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.
\]

\[B = \min\{c(b) : b \text{ Betti element of } S\}.
\]

**Lemma**

If \( f, f' \in Z_S(n) \) and \( d(f, f') < B \), then there exists \( f'' \in Z_S(n) \) with

\[
\max\{|f|, |f'|\} < |f''|.
\]

\[f\]

\[f'\]

\[f''\]
Conjecture Theorem (O., Ponomarenko, Tate, Webb)

\( \min \{ c(n) > 0 : n \in S \} = \min \{ c(b) : b \text{ Betti element of } S \}. \)
Minimal (nonzero) catenary degree in $S$

**Conjecture Theorem (O., Ponomarenko, Tate, Webb)**

$$\min \{ c(n) > 0 : n \in S \} = \min \{ c(b) : b \text{ Betti element of } S \}.$$ 

**Proof of theorem:**

- Draw edges with weight $\langle B \rangle \in \mathbb{Z}^S(n)$ with $|f|_{\text{maximal}}$.
- $\Rightarrow |f''| > |f|$.
- Maximality of $|f| \Rightarrow f''$ has no edges!
Conjecture Theorem (O., Ponomarenko, Tate, Webb)

\[ \min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}. \]

Proof of theorem:

- Fix \( n \in S \)
Conjecture Theorem (O., Ponomarenko, Tate, Webb)

\[
\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.
\]

Proof of theorem:

- Fix \( n \in S \)

Catenary graph of \( n \):
Minimal (nonzero) catenary degree in $S$

**Conjecture Theorem (O., Ponomarenko, Tate, Webb)**

$$\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$$ 

**Proof of theorem:**

- Fix $n \in S$
- Draw edges with weight $< B$

Catenary graph of $n$: 

![Catenary graph image]
Minimal (nonzero) catenary degree in $S$

**Conjecture Theorem (O., Ponomarenko, Tate, Webb)**

$$\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.$$ 

Proof of theorem:

- Fix $n \in S$
- Draw edges with weight $< B$
- $f \in Z_S(n)$ with $|f|$ maximal
Conjecture Theorem (O., Ponomarenko, Tate, Webb)

\[ \min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}. \]

Proof of theorem:

1. Fix \( n \in S \)
2. Draw edges with weight \(< B\)
3. \( f \in Z_S(n) \) with \(|f| \) maximal
4. \( f' \in Z_S(n) \) with \( d(f, f') < B \)

Catenary graph of \( n \):
Minimal (nonzero) catenary degree in $S$

**Conjecture Theorem (O., Ponomarenko, Tate, Webb)**

\[
\min\{c(n) > 0 : n \in S\} = \min\{c(b) : b \text{ Betti element of } S\}.
\]

Proof of theorem:

- Fix $n \in S$
- Draw edges with weight $< B$
- $f \in Z_S(n)$ with $|f|$ maximal
- $f' \in Z_S(n)$ with $d(f, f') < B$
- Lemma $\Rightarrow |f''| > |f|$

Catenary graph of $n$:
Minimal (nonzero) catenary degree in $S$

**Conjecture Theorem (O., Ponomarenko, Tate, Webb)**

$$\min \{ c(n) > 0 : n \in S \} = \min \{ c(b) : b \text{ Betti element of } S \}.$$ 

**Proof of theorem:**

- Fix $n \in S$
- Draw edges with weight $< B$
- $f \in Z_S(n)$ with $|f|$ maximal
- $f' \in Z_S(n)$ with $d(f, f') < B$
- Lemma $\Rightarrow |f''| > |f|$  
- Maximality of $|f| \Rightarrow f''$ has no edges!

Catenary graph of $n$: 

- Nodes representing elements of $S$
- Edges connecting elements with weight less than $B$
- Blue node indicating the maximality of $f'$. 

Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  12 / 23
Switching gears: $\omega$-primality

Definition ($\omega$-primality)

Fix a cancellative, commutative, atomic monoid $M$. For $x \in M$, $\omega(x)$ is the smallest positive integer $m$ such that whenever $x \mid \prod_{r > m} u_i$ for $r > m$, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$. 
Switching gears: \( \omega \)-primality

**Definition (\( \omega \)-primality)**

Fix a cancellative, commutative, atomic monoid \( M \). For \( x \in M \), \( \omega(x) \) is the smallest positive integer \( m \) such that whenever \( x \mid \prod_{i=1}^{r} u_i \) for \( r > m \), there exists a subset \( T \subset \{1, \ldots, r\} \) with \( |T| \leq m \) such that \( x \mid \prod_{i \in T} u_i \).
Switching gears: \( \omega \)-primality

**Definition (\( \omega \)-primality)**

Fix a cancellative, commutative, atomic monoid \( M \). For \( x \in M \), \( \omega(x) \) is the smallest positive integer \( m \) such that whenever \( x \mid \prod_{i=1}^{r} u_i \) for \( r > m \), there exists a subset \( T \subset \{1, \ldots, r\} \) with \( |T| \leq m \) such that \( x \mid \prod_{i \in T} u_i \).

**Fact**

\( \omega(x) = 1 \) if and only if \( x \) is prime (i.e. \( x \mid ab \) implies \( x \mid a \) or \( x \mid b \)).
Switching gears: \( \omega \)-primality

**Definition (\( \omega \)-primality)**

Fix a cancellative, commutative, atomic monoid \( M \). For \( x \in M \), \( \omega(x) \) is the smallest positive integer \( m \) such that whenever \( x \mid \prod_{i=1}^{r} u_i \) for \( r > m \), there exists a subset \( T \subset \{1, \ldots, r\} \) with \( |T| \leq m \) such that \( x \mid \prod_{i \in T} u_i \).

**Fact**

\( \omega(x) = 1 \) if and only if \( x \) is prime (i.e. \( x \mid ab \) implies \( x \mid a \) or \( x \mid b \)).

**Fact**

\( M \) is factorial if and only if every irreducible element \( u \in M \) is prime. Moreover, \( \omega(p_1 \cdots p_r) = r \) for any primes \( p_1, \ldots, p_r \in M \).
Switching gears: \( \omega \)-primality

**Definition \((\omega\text{-}primality)\)**

Fix a cancellative, commutative, atomic monoid \( M \). For \( x \in M \), \( \omega(x) \) is the smallest positive integer \( m \) such that whenever \( x \mid \prod_{i=1}^{r} u_i \) for \( r > m \), there exists a subset \( T \subset \{1, \ldots, r\} \) with \( |T| \leq m \) such that \( x \mid \prod_{i \in T} u_i \).

**Example**

\[ x^2 \mid x^2, \quad x^2 \mid x^3 \cdot x^3 \text{ since } x^4 \in R, \quad x^2 \mid u_1 u_2 u_3 \] with each \( u_i = x^2 \) or \( x^3 \).

\( \omega(x^2) = 2. \)
Switching gears: $\omega$-primality

**Definition ($\omega$-primality)**

Fix a cancellative, commutative, atomic monoid $M$. For $x \in M$, $\omega(x)$ is the smallest positive integer $m$ such that whenever $x \mid \prod_{i=1}^{r} u_i$ for $r > m$, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

**Example**

$R = \mathbb{C}[x^2, x^3]$
Switching gears: $\omega$-primality

**Definition ($\omega$-primality)**

Fix a cancellative, commutative, atomic monoid $M$. For $x \in M$, $\omega(x)$ is the smallest positive integer $m$ such that whenever $x \mid \prod_{i=1}^{r} u_i$ for $r > m$, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

**Example**

$R = \mathbb{C}[x^2, x^3]$ (think $S = \langle 2, 3 \rangle \subset \mathbb{N}$).
Swapping gears: $\omega$-primality

**Definition ($\omega$-primality)**

Fix a cancellative, commutative, atomic monoid $M$. For $x \in M$, $\omega(x)$ is the smallest positive integer $m$ such that whenever $x \mid \prod_{i=1}^{r} u_i$ for $r > m$, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

**Example**

$R = \mathbb{C}[x^2, x^3]$ (think $S = \langle 2, 3 \rangle \subset \mathbb{N}$). To compute $\omega(x^2)$:
Switching gears: $\omega$-primality

**Definition ($\omega$-primality)**

Fix a cancellative, commutative, atomic monoid $M$. For $x \in M$, $\omega(x)$ is the smallest positive integer $m$ such that whenever $x \mid \prod_{i=1}^{r} u_i$ for $r > m$, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

**Example**

$R = \mathbb{C}[x^2, x^3]$ (think $S = \langle 2, 3 \rangle \subset \mathbb{N}$). To compute $\omega(x^2)$:

- $x^2 \mid x^2$, 

Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  13 / 23
Switching gears: $\omega$-primality

**Definition ($\omega$-primality)**

Fix a cancellative, commutative, atomic monoid $M$. For $x \in M$, $\omega(x)$ is the smallest positive integer $m$ such that whenever $x \mid \prod_{i=1}^{r} u_i$ for $r > m$, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

**Example**

$R = \mathbb{C}[x^2, x^3]$ (think $S = \langle 2, 3 \rangle \subset \mathbb{N}$). To compute $\omega(x^2)$:

- $x^2 \mid x^2$,
- $x^2 \mid x^3 \cdot x^3$ since $x^4 \in R$, 

Switching gears: \( \omega \)-primality

**Definition (\( \omega \)-primality)**

Fix a cancellative, commutative, atomic monoid \( M \). For \( x \in M \), \( \omega(x) \) is the smallest positive integer \( m \) such that whenever \( x \mid \prod_{i=1}^{r} u_i \) for \( r > m \), there exists a subset \( T \subset \{1, \ldots, r\} \) with \( |T| \leq m \) such that \( x \mid \prod_{i \in T} u_i \).

**Example**

\( R = \mathbb{C}[x^2, x^3] \) (think \( S = \langle 2, 3 \rangle \subset \mathbb{N} \)). To compute \( \omega(x^2) \):

- \( x^2 \mid x^2 \),
- \( x^2 \mid x^3 \cdot x^3 \) since \( x^4 \in R \),
- \( x^2 \mid u_1 u_2 u_3 \) with each \( u_i = x^2 \) or \( x^3 \)
Switching gears: $\omega$-primality

**Definition ($\omega$-primality)**

Fix a cancellative, commutative, atomic monoid $M$. For $x \in M$, $\omega(x)$ is the smallest positive integer $m$ such that whenever $x | \prod_{i=1}^{r} u_i$ for $r > m$, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x | \prod_{i \in T} u_i$.

**Example**

$R = \mathbb{C}[x^2, x^3]$ (think $S = \langle 2, 3 \rangle \subset \mathbb{N}$). To compute $\omega(x^2)$:

- $x^2 | x^2$,
- $x^2 | x^3 \cdot x^3$ since $x^4 \in R$,
- $x^2 | u_1 u_2 u_3$ with each $u_i = x^2$ or $x^3 \Rightarrow$ some $u_i$ can be omitted.
Switching gears: $\omega$-primality

**Definition ($\omega$-primality)**

Fix a cancellative, commutative, atomic monoid $M$. For $x \in M$, $\omega(x)$ is the smallest positive integer $m$ such that whenever $x \mid \prod_{i=1}^{r} u_i$ for $r > m$, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} u_i$.

**Example**

$R = \mathbb{C}[x^2, x^3]$ (think $S = \langle 2, 3 \rangle \subset \mathbb{N}$). To compute $\omega(x^2)$:

- $x^2 \mid x^2$,
- $x^2 \mid x^3 \cdot x^3$ since $x^4 \in R$,
- $x^2 \mid u_1 u_2 u_3$ with each $u_i = x^2$ or $x^3 \Rightarrow$ some $u_i$ can be omitted.
- $\omega(x^2) = 2$. 
Switching gears: \( \omega \)-primality

**Definition (\( \omega \)-primality)**

Fix a cancellative, commutative, atomic monoid \( M \). For \( x \in M \), \( \omega(x) \) is the smallest positive integer \( m \) such that whenever \( x \mid \prod_{i=1}^{r} u_i \) for \( r > m \), there exists a subset \( T \subset \{1, \ldots, r\} \) with \( |T| \leq m \) such that \( x \mid \prod_{i \in T} u_i \).
Switching gears: $\omega$-primality

**Definition ($\omega$-primality)**

Fix a cancellative, commutative, atomic monoid $M$. For $x \in M$, $\omega(x)$ is the smallest positive integer $m$ such that whenever $x | \prod_{i=1}^{r} u_i$ for $r > m$, there exists a subset $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ such that $x | \prod_{i \in T} u_i$.

**Definition**

A *bullet* for $x \in M$ is a product $u_1 \cdots u_r$ of irreducible elements such that (i) $x$ divides $u_1 \cdots u_r$, and (ii) $x$ does not divide $u_1 \cdots u_r / u_i$ for each $i \leq r$. The set of bullets of $x$ is denoted $\text{bul}(x)$. 

Christopher O’Neill (Texas A&M University)  
Invariants of non-unique factorization  
November 21, 2014  
13 / 23
Switching gears: \(\omega\)-primality

**Definition (\(\omega\)-primality)**

Fix a cancellative, commutative, atomic monoid \(M\). For \(x \in M\), \(\omega(x)\) is the smallest positive integer \(m\) such that whenever \(x \mid \prod_{i=1}^{r} u_i\) for \(r > m\), there exists a subset \(T \subset \{1, \ldots, r\}\) with \(|T| \leq m\) such that \(x \mid \prod_{i \in T} u_i\).

**Definition**

A *bullet* for \(x \in M\) is a product \(u_1 \cdots u_r\) of irreducible elements such that (i) \(x\) divides \(u_1 \cdots u_r\), and (ii) \(x\) does not divide \(u_1 \cdots u_r/u_i\) for each \(i \leq r\). The set of bullets of \(x\) is denoted \(\text{bul}(x)\).

**Proposition**

\[\omega_M(x) = \max\{r : u_1 \cdots u_r \in \text{bul}(x)\}.\]
Algorithms to compute $\omega$-primality

$\omega$-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:
ω-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:

$$b_1 n_1 + \cdots + b_k n_k \in \text{bul}(n)$$
Algorithms to compute $\omega$-primality

$\omega$-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:

$$b_1 n_1 + \cdots + b_k n_k \in \text{bul}(n) \quad \longleftrightarrow \quad \vec{b} = (b_1, \ldots, b_k) \in \mathbb{N}^k$$
ω-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:

$$b_1 n_1 + \cdots + b_k n_k \in \text{bul}(n) \iff \vec{b} = (b_1, \ldots, b_k) \in \mathbb{N}^k$$

$$(b_1 n_1 + \cdots + b_k n_k - n \in S)$$
Algorithms to compute $\omega$-primality

$\omega$-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:

$b_1 n_1 + \cdots + b_k n_k \in \text{bul}(n) \iff \vec{b} = (b_1, \ldots, b_k) \in \mathbb{N}^k$

$(b_1 n_1 + \cdots + b_k n_k - n \in S)$

**Example**

$S = \langle 6, 9, 20 \rangle$. 

---
 Algorithms to compute $\omega$-primality

$\omega$-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:  

$$b_1 n_1 + \cdots + b_k n_k \in \text{bul}(n) \iff \vec{b} = (b_1, \ldots, b_k) \in \mathbb{N}^k$$

$$(b_1 n_1 + \cdots + b_k n_k - n \in S)$$

Example

$S = \langle 6, 9, 20 \rangle$. \text{bul}(54) = \{(9, 0, 0), (6, 2, 0), (0, 6, 0), (3, 4, 0), (0, 0, 3)\}.$
Algorithms to compute $\omega$-primality

$\omega$-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:

$$b_1 n_1 + \cdots + b_k n_k \in \text{bul}(n) \iff \vec{b} = (b_1, \ldots, b_k) \in \mathbb{N}^k$$

$$(b_1 n_1 + \cdots + b_k n_k - n \in S)$$

Example

$S = \langle 6, 9, 20 \rangle$. $\text{bul}(54) = \{(9, 0, 0), (6, 2, 0), (0, 6, 0), (3, 4, 0), (0, 0, 3)\}$. Here, $(0, 0, 3) \in \text{bul}(54)$ since $3(20) - 54 \in S$. 

Remark

Several improvements on this algorithm exist.

Christopher O’Neill (Texas A&M University) Invariants of non-unique factorization November 21, 2014 14 / 23
Algorithms to compute $\omega$-primality

$\omega$-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:

$$b_1 n_1 + \cdots + b_k n_k \in \text{bul}(n) \iff \vec{b} = (b_1, \ldots, b_k) \in \mathbb{N}^k$$

$$(b_1 n_1 + \cdots + b_k n_k - n \in S)$$

**Example**

$S = \langle 6, 9, 20 \rangle$. $\text{bul}(54) = \{(9, 0, 0), (6, 2, 0), (0, 6, 0), (3, 4, 0), (0, 0, 3)\}$. Here, $(0, 0, 3) \in \text{bul}(54)$ since $3(20) - 54 \in S$. 
Algorithms to compute $\omega$-primality

$\omega$-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:

$b_1 n_1 + \cdots + b_k n_k \in \text{bul}(n) \iff \vec{b} = (b_1, \ldots, b_k) \in \mathbb{N}^k$

$(b_1 n_1 + \cdots + b_k n_k - n \in S)$

Example

$S = \langle 6, 9, 20 \rangle$. $\text{bul}(54) = \{ (9, 0, 0), (6, 2, 0), (0, 6, 0), (3, 4, 0), (0, 0, 3) \}$. Here, $(0, 0, 3) \in \text{bul}(54)$ since $3(20) - 54 \in S$.

In general: For each $i \leq k$, we have $c_i \vec{e}_i \in \text{bul}(n)$ for some $c_i > 0$. 
Algorithms to compute $\omega$-primality

$\omega$-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:

\[ b_1 n_1 + \cdots + b_k n_k \in \text{bul}(n) \iff \vec{b} = (b_1, \ldots, b_k) \in \mathbb{N}^k \]

\[ (b_1 n_1 + \cdots + b_k n_k - n \in S) \]

Example

$S = \langle 6, 9, 20 \rangle$. $\text{bul}(54) = \{(9, 0, 0), (6, 2, 0), (0, 6, 0), (3, 4, 0), (0, 0, 3)\}$. Here, $(0, 0, 3) \in \text{bul}(54)$ since $3(20) - 54 \in S$.

In general: For each $i \leq k$, we have $c_i \vec{e}_i \in \text{bul}(n)$ for some $c_i > 0$.

Algorithm

Search $\prod_{i=1}^{k}[0, c_i]$ for bullets, compute $\omega(n) = \max\{|\vec{b}| : \vec{b} \in \text{bul}(n)\}$. 

Remark: Several improvements on this algorithm exist.
Algorithms to compute $\omega$-primality

$\omega$-primality in a numerical monoid $S = \langle n_1, \ldots, n_k \rangle$:

$$b_1 n_1 + \cdots + b_k n_k \in \text{bul}(n) \iff \vec{b} = (b_1, \ldots, b_k) \in \mathbb{N}^k$$

$$(b_1 n_1 + \cdots + b_k n_k - n \in S)$$

Example

$S = \langle 6, 9, 20 \rangle$. $\text{bul}(54) = \{(9, 0, 0), (6, 2, 0), (0, 6, 0), (3, 4, 0), (0, 0, 3)\}$. Here, $(0, 0, 3) \in \text{bul}(54)$ since $3(20) - 54 \in S$.

In general: For each $i \leq k$, we have $c_i \bar{e}_i \in \text{bul}(n)$ for some $c_i > 0$.

Algorithm

Search $\prod_{i=1}^k [0, c_i]$ for bullets, compute $\omega(n) = \max\{|\vec{b}| : \vec{b} \in \text{bul}(n)\}$.

Remark

Several improvements on this algorithm exist.
Theorem ((O.–Pelayo, 2013), (García-García et.al., 2013))

\[ \omega_{S}(n) = \frac{1}{n_1} n + a_0(n) \text{ for } n \gg 0, \text{ where } a_0(n) \text{ periodic with period } n_1. \]
Theorem ((O.–Pelayo, 2013), (García-García et.al., 2013))

\[ \omega_S(n) = \frac{1}{n_1} n + a_0(n) \text{ for } n \gg 0, \text{ where } a_0(n) \text{ periodic with period } n_1. \]

\[ S = \langle 3, 7 \rangle \]

\[ McN = \langle 6, 9, 20 \rangle \]
Quasilinearity for numerical monoids

*Dissonance point*: minimum $N_0$ such that $\omega(n)$ is quasilinear for $n > N_0$. 

Question (O.-Pelayo, 2013)
The upper bound for dissonance point is large. Can we do better?

Roadblock
Existing algorithms are slow for large $n$.

Question (O.–Pelayo, 2014)
Can we dynamically (inductively) compute several $\omega$-values at once?

Answer (Barron-O.–Pelayo, 2014)
Yes!
**Dissonance point**: minimum $N_0$ such that $\omega(n)$ is quasilinear for $n > N_0$.

**Question (O.-Pelayo, 2013)**

The upper bound for dissonance point is large. Can we do better?
**Dissonance point**: minimum $N_0$ such that $\omega(n)$ is quasilinear for $n > N_0$.

**Question (O.-Pelayo, 2013)**

The upper bound for dissonance point is large. Can we do better?

**Roadblock**

Existing algorithms are slow for large $n$. 

---

Christopher O’Neill  (Texas A&M University)  
Invariants of non-unique factorization  
November 21, 2014  
16 / 23
Dissonance point: minimum $N_0$ such that $\omega(n)$ is quasilinear for $n > N_0$.

Question (O.-Pelayo, 2013)
The upper bound for dissonance point is large. Can we do better?

Roadblock
Existing algorithms are slow for large $n$.

Question (O.–Pelayo, 2014)
Can we dynamically (inductively) compute several $\omega$-values at once?
Dissonance point: minimum $N_0$ such that $\omega(n)$ is quasilinear for $n > N_0$.

Question (O.-Pelayo, 2013)
The upper bound for dissonance point is large. Can we do better?

Roadblock
Existing algorithms are slow for large $n$.

Question (O.–Pelayo, 2014)
Can we dynamically (inductively) compute several $\omega$-values at once?

Answer (Barron-O.-Pelayo, 2014)
Yes!
Toward a dynamic algorithm... the inductive step

For $n \in S$, let $Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^{k} a_i n_i = n \}$. 
Toward a dynamic algorithm... the inductive step

For \( n \in S \), let \( Z(n) = \{ \bar{a} \in \mathbb{N}^k : \sum_{i=1}^{k} a_i n_i = n \} \).
For each \( i \leq k \),
Toward a dynamic algorithm... the inductive step

For $n \in S$, let $Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^k a_in_i = n \}$.

For each $i \leq k$,

$$\phi_i : Z(n - n_i) \rightarrow Z(n)$$

$$\vec{a} \mapsto \vec{a} + e_i.$$
For \( n \in S \), let \( Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^{k} a_i n_i = n \} \).

For each \( i \leq k \),

\[
\phi_i : Z(n - n_i) \longrightarrow Z(n) \\
\vec{a} \longmapsto \vec{a} + \vec{e}_i.
\]

In particular,

\[
Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i)).
\]
Toward a dynamic algorithm... the inductive step

For \( n \in S \), let \( Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \} \).

For each \( i \leq k \),

\[
    \phi_i : Z(n - n_i) \longrightarrow Z(n) \\
    \vec{a} \longmapsto \vec{a} + e_i.
\]

In particular,

\[
    Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))
\]

\( S = \langle 6, 9, 20 \rangle \):
For \( n \in S \), let \( Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^{k} a_i n_i = n \} \).

For each \( i \leq k \),
\[
\phi_i : Z(n - n_i) \rightarrow Z(n)
\]
\[
\vec{a} \mapsto \vec{a} + \vec{e}_i.
\]

In particular,
\[
Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))
\]

\( S = \langle 6, 9, 20 \rangle \):
For $n \in S$, let $Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^{k} a_i n_i = n \}$.

For each $i \leq k$,

$$\phi_i : Z(n - n_i) \rightarrow Z(n)$$

$$\vec{a} \mapsto \vec{a} + e_i.$$

In particular,

$$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i)).$$

$S = \langle 6, 9, 20 \rangle$:
Toward a dynamic algorithm... the inductive step

For \( n \in S \), let \( Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \} \).

For each \( i \leq k \),

\[
\phi_i : Z(n - n_i) \rightarrow Z(n) \quad \vec{a} \mapsto \vec{a} + \vec{e}_i.
\]

In particular,

\[
Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))
\]

\( S = \langle 6, 9, 20 \rangle : \)

\[
\begin{align*}
Z(n - 6) & \quad \rightarrow \quad Z(n) \\
Z(n - 9) & \quad \rightarrow \quad Z(n)
\end{align*}
\]
Toward a dynamic algorithm... the inductive step

For $n \in S$, let $Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \}$. For each $i \leq k$,

$$\phi_i : Z(n - n_i) \rightarrow Z(n)$$

$$\vec{a} \mapsto \vec{a} + e_i.$$

In particular,

$$Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))$$

$S = \langle 6, 9, 20 \rangle$:
Toward a dynamic algorithm... the inductive step

For \( n \in S \), let
\[
Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^{k} a_i n_i = n \}.
\]
For each \( i \leq k \),
\[
\phi_i : Z(n - n_i) \rightarrow Z(n)
\]
\[
\vec{a} \mapsto \vec{a} + \vec{e}_i.
\]
In particular,
\[
Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i)).
\]
Toward a dynamic algorithm... the inductive step

For \( n \in S \), let \( Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^k a_in_i = n \} \).

For each \( i \leq k \),

\[ \phi_i : Z(n - n_i) \rightarrow Z(n) \]
\[ \vec{a} \mapsto \vec{a} + \vec{e}_i. \]

In particular,

\[ Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i)) \]

Definition/Proposition (Cover morphisms)

Fix \( n \in S \) and \( i \leq k \). The \( i \)-th cover morphism for \( n \) is the map

\[ \psi_i : \text{bul}(n - n_i) \rightarrow \text{bul}(n) \]
Toward a dynamic algorithm... the inductive step

For \( n \in S \), let \( Z(n) = \{ \vec{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \} \).

For each \( i \leq k \),

\[
\phi_i : Z(n - n_i) \rightarrow Z(n) \\
\vec{a} \mapsto \vec{a} + \vec{e}_i.
\]

In particular,

\[
Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i)).
\]

**Definition/Proposition (Cover morphisms)**

Fix \( n \in S \) and \( i \leq k \). The \( i \)-th cover morphism for \( n \) is the map

\[
\psi_i : \text{bul}(n - n_i) \rightarrow \text{bul}(n)
\]

given by

\[
\vec{b} \mapsto \begin{cases} 
\vec{b} + \vec{e}_i & \sum_{j=1}^k b_j n_j - n - n_i \notin S \\
\vec{b} & \sum_{j=1}^k b_j n_j - n - n_i \in S
\end{cases}
\]
Toward a dynamic algorithm... the inductive step

For \( n \in S \), let \( Z(n) = \{ \bar{a} \in \mathbb{N}^k : \sum_{i=1}^k a_i n_i = n \} \).

For each \( i \leq k \),

\[
\phi_i : Z(n - n_i) \rightarrow Z(n)
\]
\[
\bar{a} \mapsto \bar{a} + \bar{e}_i.
\]

In particular,

\[
Z(n) = \bigcup_{i \leq k} \phi_i(Z(n - n_i))
\]

Definition/Proposition (Cover morphisms)

Fix \( n \in S \) and \( i \leq k \). The \( i \)-th cover morphism for \( n \) is the map

\( \psi_i : \text{bul}(n - n_i) \rightarrow \text{bul}(n) \)

given by

\[
\bar{b} \mapsto \begin{cases} 
\bar{b} + e_i & \sum_{j=1}^k b_j n_j - n - n_i \notin S \\
\bar{b} & \sum_{j=1}^k b_j n_j - n - n_i \in S
\end{cases}
\]

Moreover, \( \text{bul}(n) = \bigcup_{i \leq k} \psi_i(\text{bul}(n - n_i)) \).**
Toward a dynamic algorithm... the base case

**Definition (ω-primality in numerical monoids)**

Fix a numerical monoid $S$ and $n \in S$. 
Toward a dynamic algorithm... the base case

Definition (ω-primality in numerical monoids)

Fix a numerical monoid $S$ and $n \in S$. 

$\omega_S(n)$ is the minimal $m$ such that whenever $(\sum_{i=1}^{r} n_{ji}) - n \in S$ for $r > m$, there exists $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ and $(\sum_{i \in T} n_{ji}) - n \in S$. 

Remark: All properties of $\omega$ extend from $S$ to $\mathbb{Z}$. 

Proposition: For $n \in \mathbb{Z}$, the following are equivalent: 

(i) $\omega(n) = 0$, 
(ii) $\text{bul}(n) = \{\vec{0}\}$, 
(iii) $-n \in S$. 

$S = \langle 3, 5 \rangle$: 

Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  18 / 23
Toward a dynamic algorithm... the base case

**Definition (\(\omega\)-primality in numerical monoids)**

Fix a numerical monoid \(S\) and \(n \in S\).
\(\omega_S(n)\) is the minimal \(m\) such that whenever \((\sum_{i=1}^{r} n_j) - n \in S\) for \(r > m\), there exists \(T \subset \{1, \ldots, r\}\) with \(|T| \leq m\) and \((\sum_{i \in T} n_j) - n \in S\).
Toward a dynamic algorithm... the base case

**Definition (ω-primality in numerical monoids)**

Fix a numerical monoid $S$ and $n \in \mathbb{Z} = q(S)$. 

$\omega_S(n)$ is the minimal $m$ such that whenever \((\sum_{i=1}^{r} n_{i}) - n \in S\) for $r > m$, there exists $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ and \((\sum_{i \in T} n_{i}) - n \in S\).
Toward a dynamic algorithm... the base case

**Definition (ω-primality in numerical monoids)**

Fix a numerical monoid \( S \) and \( n \in \mathbb{Z} = q(S) \).
\( \omega_S(n) \) is the minimal \( m \) such that whenever \( (\sum_{i=1}^{r} n_{j_i}) - n \in S \) for \( r > m \), there exists \( T \subset \{1, \ldots, r\} \) with \( |T| \leq m \) and \( (\sum_{i \in T} n_{j_i}) - n \in S \).

**Remark**

All properties of \( \omega \) extend from \( S \) to \( \mathbb{Z} \).
Toward a dynamic algorithm... the base case

Definition ($\omega$-primality in numerical monoids)

Fix a numerical monoid $S$ and $n \in \mathbb{Z} = \mathcal{q}(S)$. $\omega_S(n)$ is the minimal $m$ such that whenever $(\sum_{i=1}^{r} n_{j_i}) - n \in S$ for $r > m$, there exists $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ and $(\sum_{i \in T} n_{j_i}) - n \in S$.

Remark

All properties of $\omega$ extend from $S$ to $\mathbb{Z}$.

Proposition

For $n \in \mathbb{Z}$, the following are equivalent:

(i) $\omega(n) = 0$,  
(ii) $\text{bul}(n) = \{\vec{0}\}$,  
(iii) $-n \in S$. 

Christopher O’Neill  (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  18 / 23
Definition (\(\omega\)-primality in numerical monoids)

Fix a numerical monoid \(S\) and \(n \in \mathbb{Z} = q(S)\).
\(\omega_S(n)\) is the minimal \(m\) such that whenever \((\sum_{i=1}^{r} n_{ji}) - n \in S\) for \(r > m\), there exists \(T \subset \{1, \ldots, r\}\) with \(|T| \leq m\) and \((\sum_{i \in T} n_{ji}) - n \in S\).

Remark

All properties of \(\omega\) extend from \(S\) to \(\mathbb{Z}\).

Proposition

For \(n \in \mathbb{Z}\), the following are equivalent:
(i) \(\omega(n) = 0\),
(ii) \(\text{bul}(n) = \{\vec{0}\}\),
(iii) \(-n \in S\).

\(S = \langle 3, 5 \rangle\):
Toward a dynamic algorithm... the base case

**Definition (ω-primality in numerical monoids)**

Fix a numerical monoid $S$ and $n \in \mathbb{Z} = q(S)$. $\omega_S(n)$ is the minimal $m$ such that whenever $(\sum_{i=1}^{r} n_{j_i}) - n \in S$ for $r > m$, there exists $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ and $(\sum_{i \in T} n_{j_i}) - n \in S$.

**Remark**

All properties of $\omega$ extend from $S$ to $\mathbb{Z}$.

**Proposition**

For $n \in \mathbb{Z}$, the following are equivalent:

(i) $\omega(n) = 0$,  
(ii) $\text{bul}(n) = \{\vec{0}\}$,  
(iii) $-n \in S$.

$S = \langle 3, 5 \rangle$:  

\[ \begin{array}{c}
\bullet & \bullet \\
\bullet & \bullet \\
\end{array} \]
Toward a dynamic algorithm... the base case

**Definition (ω-primality in numerical monoids)**

Fix a numerical monoid $S$ and $n \in \mathbb{Z} = q(S)$. $\omega_S(n)$ is the minimal $m$ such that whenever $(\sum_{i=1}^{r} n_{ji}) - n \in S$ for $r > m$, there exists $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ and $(\sum_{i \in T} n_{ji}) - n \in S$.

**Remark**

All properties of $\omega$ extend from $S$ to $\mathbb{Z}$.

**Proposition**

For $n \in \mathbb{Z}$, the following are equivalent:
(i) $\omega(n) = 0$,  
(ii) $\text{bul}(n) = \{\vec{0}\}$,  
(iii) $-n \in S$.

$S = \langle 3, 5 \rangle$: 

---

Christopher O’Neill  (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  18 / 23
Toward a dynamic algorithm... the base case

**Definition (\(\omega\)-primality in numerical monoids)**

Fix a numerical monoid \(S\) and \(n \in \mathbb{Z} = q(S)\).
\(\omega_S(n)\) is the minimal \(m\) such that whenever \((\sum_{i=1}^{r} n_{ji}) - n \in S\) for \(r > m\), there exists \(T \subset \{1, \ldots, r\}\) with \(|T| \leq m\) and \((\sum_{i \in T} n_{ji}) - n \in S\).

**Remark**

All properties of \(\omega\) extend from \(S\) to \(\mathbb{Z}\).

**Proposition**

For \(n \in \mathbb{Z}\), the following are equivalent:
(i) \(\omega(n) = 0\), (ii) \(\text{bul}(n) = \{\overrightarrow{0}\}\), (iii) \(-n \in S\).
Toward a dynamic algorithm... the base case

Definition ($\omega$-primality in numerical monoids)

Fix a numerical monoid $S$ and $n \in \mathbb{Z} = \mathbb{q}(S)$. $\omega_S(n)$ is the minimal $m$ such that whenever $(\sum_{i=1}^{r} n_{ji}) - n \in S$ for $r > m$, there exists $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ and $(\sum_{i \in T} n_{ji}) - n \in S$.

Remark

All properties of $\omega$ extend from $S$ to $\mathbb{Z}$.

Proposition

For $n \in \mathbb{Z}$, the following are equivalent:

(i) $\omega(n) = 0$,  
(ii) $\text{bul}(n) = \{\vec{0}\}$,  
(iii) $-n \in S$.

$S = \langle 3, 5 \rangle$:
Toward a dynamic algorithm... the base case

**Definition (ω-primality in numerical monoids)**

Fix a numerical monoid $S$ and $n \in \mathbb{Z} = q(S)$. $\omega_S(n)$ is the minimal $m$ such that whenever $\left(\sum_{i=1}^{r} n_{j_i}\right) - n \in S$ for $r > m$, there exists $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ and $\left(\sum_{i \in T} n_{j_i}\right) - n \in S$.

**Remark**

All properties of $\omega$ extend from $S$ to $\mathbb{Z}$.

**Proposition**

For $n \in \mathbb{Z}$, the following are equivalent:

(i) $\omega(n) = 0$,  
(ii) $\text{bul}(n) = \{\vec{0}\}$,  
(iii) $-n \in S$.

$S = \langle 3, 5 \rangle$: 

Christopher O’Neill (Texas A&M University)  
Invariants of non-unique factorization  
November 21, 2014  
18 / 23
Toward a dynamic algorithm... the base case

**Definition (ω-primality in numerical monoids)**

Fix a numerical monoid $S$ and $n \in \mathbb{Z} = q(S)$. $\omega_S(n)$ is the minimal $m$ such that whenever $(\sum_{i=1}^{r} n_i) - n \in S$ for $r > m$, there exists $T \subset \{1, \ldots, r\}$ with $|T| \leq m$ and $(\sum_{i \in T} n_i) - n \in S$.

**Remark**

All properties of $\omega$ extend from $S$ to $\mathbb{Z}$.

**Proposition**

For $n \in \mathbb{Z}$, the following are equivalent:

(i) $\omega(n) = 0$,  
(ii) $\text{bul}(n) = \{\vec{0}\}$,  
(iii) $-n \in S$.

$S = \langle 3, 5 \rangle$: 

Christopher O’Neill  (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  18 / 23
A dynamic algorithm!

Example

\[ McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \} . \]
A dynamic algorithm!

**Example**

\[ McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \} \]

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ n \in \mathbb{Z} \quad \omega(n) \quad \text{bul}(n) \]

...
A dynamic algorithm!

### Example

\[ \text{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \} . \]

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \leq -44 )</td>
<td>0</td>
<td>{0}</td>
</tr>
</tbody>
</table>

\[ n \in \mathbb{Z} \quad \omega(n) \quad \text{bul}(n) \]

Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  19 / 23
A dynamic algorithm!

**Example**

\[ \text{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}. \]

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \leq -44 )</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-43</td>
<td>1</td>
<td>{\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
</tbody>
</table>

\[ n \in \mathbb{Z} \quad \omega(n) \quad \text{bul}(n) \]
A dynamic algorithm!

**Example**

\[ \text{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}. \]

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-44)</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>(-43)</td>
<td>1</td>
<td>{\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>(-42)</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>( \ldots )</td>
<td>( \ldots )</td>
<td>( \ldots )</td>
</tr>
<tr>
<td>(-38)</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-44)</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>(-43)</td>
<td>1</td>
<td>{\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>(-42)</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>( \ldots )</td>
<td>( \ldots )</td>
<td>( \ldots )</td>
</tr>
<tr>
<td>(-38)</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
</tbody>
</table>
**Example**

\[ McN = \langle 6, 9, 20 \rangle = \{ 0, 6, 9, 12, 15, 18, 20, 21, \ldots \} \]

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \leq -44 )</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-43</td>
<td>1</td>
<td>{\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-42</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>-38</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-37</td>
<td>2</td>
<td>{2\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
</tbody>
</table>
**Example**

\[ McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}. \]

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \leq -44 )</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-43</td>
<td>1</td>
<td>{\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-42</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>-38</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-37</td>
<td>2</td>
<td>{2\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-36</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-35</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-34</td>
<td>2</td>
<td>{\vec{e}_1, 2\vec{e}_2, \vec{e}_3}</td>
</tr>
</tbody>
</table>

\( n \in \mathbb{Z} \)  \( \omega(n) \)  \( \text{bul}(n) \)

\[ \begin{array}{c|c|c}
\leq -44 & 0 & \{0\} \\
-43 & 1 & \{\vec{e}_1, \vec{e}_2, \vec{e}_3\} \\
-42 & 0 & \{0\} \\
\vdots & \vdots & \vdots \\
-38 & 0 & \{0\} \\
-37 & 2 & \{2\vec{e}_1, \vec{e}_2, \vec{e}_3\} \\
-36 & 0 & \{0\} \\
-35 & 0 & \{0\} \\
-34 & 2 & \{\vec{e}_1, 2\vec{e}_2, \vec{e}_3\} \\
\end{array} \]
Example

\[ \text{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}. \]

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \leq -44 )</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-43</td>
<td>1</td>
<td>{\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-42</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>-38</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-37</td>
<td>2</td>
<td>{2\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-36</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-35</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-34</td>
<td>2</td>
<td>{\vec{e}_1, 2\vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-33</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-32</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-31</td>
<td>3</td>
<td>{3\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
</tbody>
</table>
A dynamic algorithm!

Example

\[ \text{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \}. \]

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \leq -44 )</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-43</td>
<td>1</td>
<td>{\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-42</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>-38</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-37</td>
<td>2</td>
<td>{2\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-36</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-35</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-34</td>
<td>2</td>
<td>{\vec{e}_1, 2\vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-33</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-32</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>-31</td>
<td>3</td>
<td>{3\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  19 / 23
A dynamic algorithm!

Example

\[ McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \} . \]

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \leq -44 )</td>
<td>0</td>
<td>{0}</td>
<td>6</td>
<td>3</td>
<td>{3\vec{e}_3, 2\vec{e}_2, \vec{e}_1}</td>
</tr>
<tr>
<td>-43</td>
<td>1</td>
<td>{\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
<td>7</td>
<td>6</td>
<td>{6\vec{e}_1, 3\vec{e}_2, 2\vec{e}_3, (3, 1, 0)}</td>
</tr>
<tr>
<td>-42</td>
<td>0</td>
<td>{0}</td>
<td>8</td>
<td>8</td>
<td>{8\vec{e}_1, 6\vec{e}_2, (5, 2, 0), \ldots }</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>-38</td>
<td>0</td>
<td>{0}</td>
<td>10</td>
<td>5</td>
<td>{5\vec{e}_1, 4\vec{e}_2, 2\vec{e}_3, (2, 2, 0)}</td>
</tr>
<tr>
<td>-37</td>
<td>2</td>
<td>{2\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
<td>11</td>
<td>10</td>
<td>{10\vec{e}_1, 7\vec{e}_2, (7, 1, 0), \ldots }</td>
</tr>
<tr>
<td>-36</td>
<td>0</td>
<td>{0}</td>
<td>12</td>
<td>3</td>
<td>{3\vec{e}_3, 2\vec{e}_1, 2\vec{e}_2}</td>
</tr>
<tr>
<td>-35</td>
<td>0</td>
<td>{0}</td>
<td>13</td>
<td>7</td>
<td>{7\vec{e}_1, 5\vec{e}_2, (4, 1, 0), \ldots }</td>
</tr>
<tr>
<td>-34</td>
<td>2</td>
<td>{\vec{e}_1, 2\vec{e}_2, \vec{e}_3}</td>
<td>14</td>
<td>9</td>
<td>{9\vec{e}_1, 6\vec{e}_2, (6, 2, 0), \ldots }</td>
</tr>
<tr>
<td>-33</td>
<td>0</td>
<td>{0}</td>
<td>15</td>
<td>4</td>
<td>{4\vec{e}_1, 3\vec{e}_2, 3\vec{e}_3, (1, 1, 0)}</td>
</tr>
<tr>
<td>-32</td>
<td>0</td>
<td>{0}</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>-31</td>
<td>3</td>
<td>{3\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  19 / 23
A dynamic algorithm!

Example

\[ \text{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \} \]

<table>
<thead>
<tr>
<th>(n \in \mathbb{Z})</th>
<th>(\omega(n))</th>
<th>(\text{bul}(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq -44)</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>-43</td>
<td>1</td>
<td>{\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-42</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>-38</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>-37</td>
<td>2</td>
<td>{2\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-36</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>-35</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>-34</td>
<td>2</td>
<td>{\vec{e}_1, 2\vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>-33</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>-32</td>
<td>0</td>
<td>{\vec{0}}</td>
</tr>
<tr>
<td>-31</td>
<td>3</td>
<td>{3\vec{e}_1, \vec{e}_2, \vec{e}_3}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(n \in \mathbb{Z})</th>
<th>(\omega(n))</th>
<th>(\text{bul}(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>{3\vec{e}_3, 2\vec{e}_2, \vec{e}_1}</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>{6\vec{e}_1, 3\vec{e}_2, 2\vec{e}_3, (3, 1, 0)}</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>{8\vec{e}_1, 6\vec{e}_2, (5, 2, 0), \ldots }</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>{3\vec{e}_1, 3\vec{e}_3, \vec{e}_2}</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>{5\vec{e}_1, 4\vec{e}_2, 2\vec{e}_3, (2, 2, 0)}</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>{10\vec{e}_1, 7\vec{e}_2, (7, 1, 0), \ldots }</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>{3\vec{e}_3, 2\vec{e}_1, 2\vec{e}_2}</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>{7\vec{e}_1, 5\vec{e}_2, (4, 1, 0), \ldots }</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>{9\vec{e}_1, 6\vec{e}_2, (6, 2, 0), \ldots }</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>{4\vec{e}_1, 3\vec{e}_2, 3\vec{e}_3, (1, 1, 0)}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>149</td>
<td>33</td>
<td>{33\vec{e}_1, \ldots }</td>
</tr>
<tr>
<td>150</td>
<td>25</td>
<td>{25\vec{e}_1, \ldots }</td>
</tr>
</tbody>
</table>
A dynamic algorithm!

**Example**

\[ \McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots \} \].

<table>
<thead>
<tr>
<th>( n \in \mathbb{Z} )</th>
<th>( \omega(n) )</th>
<th>( \text{bul}(n) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>{3,\vec{e}_3, 2,\vec{e}_2, \vec{e}_1}</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>{3,\vec{e}_1, 3,\vec{e}_3, \vec{e}_2}</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>{3,\vec{e}_3, 2,\vec{e}_1, 2,\vec{e}_2}</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>{4,\vec{e}_1, 3,\vec{e}_2, 3,\vec{e}_3, (1, 1, 0)}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>149</td>
<td>33</td>
<td>{33,\vec{e}_1, \ldots}</td>
</tr>
<tr>
<td>150</td>
<td>25</td>
<td>{25,\vec{e}_1, \ldots}</td>
</tr>
</tbody>
</table>
Runtime comparison


Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014
## Runtime comparison

<table>
<thead>
<tr>
<th>$S$</th>
<th>$n \in S$</th>
<th>$\omega_S(n)$</th>
<th>Existing</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle 6, 9, 20 \rangle$</td>
<td>1000</td>
<td>170</td>
<td>1m 1.3s</td>
<td>6ms</td>
</tr>
<tr>
<td>$\langle 11, 13, 15 \rangle$</td>
<td>1000</td>
<td>97</td>
<td>0m 10.7s</td>
<td>5ms</td>
</tr>
<tr>
<td>$\langle 11, 13, 15 \rangle$</td>
<td>3000</td>
<td>279</td>
<td>14m 34.7s</td>
<td>15ms</td>
</tr>
<tr>
<td>$\langle 11, 13, 15 \rangle$</td>
<td>10000</td>
<td>915</td>
<td>———</td>
<td>42ms</td>
</tr>
<tr>
<td>$\langle 15, 27, 32, 35 \rangle$</td>
<td>1000</td>
<td>69</td>
<td>3m 54.7s</td>
<td>9ms</td>
</tr>
<tr>
<td>$\langle 100, 121, 142, 163, 284 \rangle$</td>
<td>25715</td>
<td>308</td>
<td>———</td>
<td>0m 27s</td>
</tr>
<tr>
<td>$\langle 1001, 1211, 1421, 1631, 2841 \rangle$</td>
<td>357362</td>
<td>405</td>
<td>———</td>
<td>57m 27s</td>
</tr>
</tbody>
</table>


Christopher O’Neill (Texas A&M University)  
Invariants of non-unique factorization  
November 21, 2014  
20 / 23
## Runtime comparison

<table>
<thead>
<tr>
<th>$S$</th>
<th>$n \in S$</th>
<th>$\omega_S(n)$</th>
<th>Existing</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle 6, 9, 20 \rangle$</td>
<td>1000</td>
<td>170</td>
<td>1m 1.3s</td>
<td>6ms</td>
</tr>
<tr>
<td>$\langle 11, 13, 15 \rangle$</td>
<td>1000</td>
<td>97</td>
<td>0m 10.7s</td>
<td>5ms</td>
</tr>
<tr>
<td>$\langle 11, 13, 15 \rangle$</td>
<td>3000</td>
<td>279</td>
<td>14m 34.7s</td>
<td>15ms</td>
</tr>
<tr>
<td>$\langle 11, 13, 15 \rangle$</td>
<td>10000</td>
<td>915</td>
<td>———</td>
<td>42ms</td>
</tr>
<tr>
<td>$\langle 15, 27, 32, 35 \rangle$</td>
<td>1000</td>
<td>69</td>
<td>3m 54.7s</td>
<td>9ms</td>
</tr>
<tr>
<td>$\langle 100, 121, 142, 163, 284 \rangle$</td>
<td>25715</td>
<td>308</td>
<td>———</td>
<td>0m 27s</td>
</tr>
<tr>
<td>$\langle 1001, 1211, 1421, 1631, 2841 \rangle$</td>
<td>357362</td>
<td>405</td>
<td>———</td>
<td>57m 27s</td>
</tr>
</tbody>
</table>

GAP Numerical Semigroups Package, available at
http://www.gap-system.org/Packages/numericalsgps.html.
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?
Future directions: \( \omega \)-primality

What about more general (finitely generated) monoids \( M \)?

- Characterization of \( \omega_M \) in terms of maximal length bullets?
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓

- Extension of $\omega_M$ to $q(M)$?

- Iterative construction of bullets from cover maps?

- Issue: the base case!

Problem: Find a dynamic algorithm to compute $\omega$-primality in $M$.

Problem: Characterize the eventual behavior of $\omega$-primality in $M$. 

Christopher O’Neill (Texas A&M University)  Invariants of non-unique factorization  November 21, 2014  21 / 23
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$?
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps?
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓
Future directions: \( \omega \)-primality

What about more general (finitely generated) monoids \( M \)?

- Characterization of \( \omega_M \) in terms of maximal length bullets? ✓
- Extension of \( \omega_M \) to \( q(M) \)? ✓
- Iterative construction of bullets from cover maps? ✓

Issue:
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: \( \omega \)-primality

What about more general (finitely generated) monoids \( M \)?

- Characterization of \( \omega_M \) in terms of maximal length bullets? ✓
- Extension of \( \omega_M \) to \( q(M) \)? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?
- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?
- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?

- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!

Problem

Find a dynamic algorithm to compute $\omega$-primality in $M$. 
Future directions: $\omega$-primality

What about more general (finitely generated) monoids $M$?
- Characterization of $\omega_M$ in terms of maximal length bullets? ✓
- Extension of $\omega_M$ to $q(M)$? ✓
- Iterative construction of bullets from cover maps? ✓

Issue: the base case!

Problem
Find a dynamic algorithm to compute $\omega$-primality in $M$.

Problem
Characterize the eventual behavior of $\omega$-primality in $M$. 
Future directions: catenary degree
Future directions: catenary degree
Future directions: catenary degree
Future directions: catenary degree

Problem

Find a (canonical) finite set on which every catenary degree is achieved.
Future directions: catenary degree

Problem

Find a (canonical) finite set on which every catenary degree is achieved.
Future directions: catenary degree

Problem

Find a (canonical) finite set on which every catenary degree is achieved.
Future directions: catenary degree

Problem

Find a (canonical) finite set on which every catenary degree is achieved.
Problem

Find a (canonical) finite set on which every catenary degree is achieved.
Problem

Find a (canonical) finite set on which every catenary degree is achieved.
Problem

Find a (canonical) finite set on which every catenary degree is achieved.
Future directions: catenary degree

Problem

Find a (canonical) finite set on which every catenary degree is achieved.
Problem

Find a (canonical) finite set on which every catenary degree is achieved.
Future directions: catenary degree
Future directions: catenary degree

Problem

Find a dynamic algorithm to compute catenary degrees.
References

Nonunique factorization: Algebraic, Combinatorial, and Analytic Theory.

Christopher O’Neill, Roberto Pelayo (2014)
How do you measure primality?

Thomas Barron, Christopher O’Neill, Roberto Pelayo (2014)
On the computation of delta sets and \(\omega\)-primality in numerical monoids.
In preparation.

Christopher O’Neill, Vadim Ponomarenko, Reuben Tate, Gautam Webb (2014)
On the set of catenary degrees in numerical monoids.
In preparation.

Manuel Delgado, Pedro García-Sánchez, Jose Morais
GAP Numerical Semigroups Package
http://www.gap-system.org/Packages/numericalsgps.html.
Nonunique factorization: Algebraic, Combinatorial, and Analytic Theory.

Christopher O’Neill, Roberto Pelayo (2014)
How do you measure primality?

Thomas Barron, Christopher O’Neill, Roberto Pelayo (2014)
On the computation of delta sets and $\omega$-primality in numerical monoids.
In preparation.

Christopher O’Neill, Vadim Ponomarenko, Reuben Tate, Gautam Webb (2014)
On the set of catenary degrees in numerical monoids.
In preparation.

Manuel Delgado, Pedro García-Sánchez, Jose Morais
GAP Numerical Semigroups Package
http://www.gap-system.org/Packages/numericalsgps.html.

Thanks!