Invariants of non-unique factorization

Christopher O’Neill

Texas A&M University

coneill@math.tamu.edu

Joint with Roberto Pelayo

October 21, 2014
Definition

An integral domain R is factorial if for each non-unit $r \in R$,

1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).
Factorial domains

Definition

An integral domain R is *factorial* if for each non-unit $r \in R$,

1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.
Factorial domains

Definition

An integral domain R is \textit{atomic} if for each non-unit $r \in R$,

1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and

2. this factorization is unique (up to reordering and unit multiple).

Example

\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.
Factorial domains

Definition

An integral domain R is \textit{atomic} if for each non-unit $r \in R$,

1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$
Factorial domains

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,
1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

If $R = \mathbb{Z}[\sqrt{-5}]$, then $6 \in R$ has two distinct factorizations:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

To prove: define a valuation $a + b\sqrt{-5} \mapsto a^2 + 5b^2$.
Factorial domains

Definition

An integral domain \(R \) is *atomic* if for each non-unit \(r \in R \),

1. there is a factorization \(r = u_1 \cdots u_k \) as a product of irreducibles, and

2. this factorization is unique (up to reordering and unit multiple).

Example

\(\mathbb{Z} \) is factorial: each \(z = p_1 \cdots p_k \) for primes \(p_1 \cdots p_k \).

Example

If \(R = \mathbb{Z}[\sqrt{-5}] \), then \(6 \in R \) has two distinct factorizations:

\[
6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})
\]

To prove: define a *valuation* \(a + b\sqrt{-5} \mapsto a^2 + 5b^2 \).

The point: it’s nontrivial.
Factorial domains

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$, there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and this factorization is unique (up to reordering and unit multiple).

Example

\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example
Definition

An integral domain \(R \) is \textit{atomic} if for each non-unit \(r \in R \),
1. there is a \textit{factorization} \(r = u_1 \cdots u_k \) as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

\(\mathbb{Z} \) is factorial: each \(z = p_1 \cdots p_k \) for primes \(p_1 \cdots p_k \).

Example

Let \(R = \mathbb{C}[x^2, x^3] \).
Factorial domains

Definition

An integral domain R is **atomic** if for each non-unit $r \in R$,

1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

Let $R = \mathbb{C}[x^2, x^3]$.

1. x^2 and x^3 are irreducible.
Factorial domains

Definition

An integral domain R is \textit{atomic} if for each non-unit $r \in R$,

1. there is a \textit{factorization} $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Example

Let $R = \mathbb{C}[x^2, x^3]$.

1. x^2 and x^3 are irreducible.
2. $x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2$.

Christopher O’Neill (Texas A&M University) Invariants of non-unique factorization October 21, 2014
Factorial domains

Definition

An integral domain R is *atomic* if for each non-unit $r \in R$,

1. there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Observation

Where's the addition?
Definition

An integral domain R is \textit{atomic} if for each non-unit $r \in R$,
1. there is a \textit{factorization} $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example

\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Observation

- Where’s the addition?
Factorial domains

Definition
An integral domain R is *atomic* if for each non-unit $r \in R$,
1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example
\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Observation
- Where’s the addition?
- Factorization in (cancellative commutative) monoids:
Factorial domains

Definition
An integral domain R is *atomic* if for each non-unit $r \in R$,
1. there is a *factorization* $r = u_1 \cdots u_k$ as a product of irreducibles, and
2. this factorization is unique (up to reordering and unit multiple).

Example
\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Observation
- Where’s the addition?
- Factorization in (cancellative commutative) monoids:
 $$ (R, +, \cdot) \leadsto (R \setminus \{0\}, \cdot) $$
Factorial domains

Definition

An integral domain R is atomic if for each non-unit $r \in R$,

1. there is a factorization $r = u_1 \cdots u_k$ as a product of irreducibles, and

2. this factorization is unique (up to reordering and unit multiple).

Example

\mathbb{Z} is factorial: each $z = p_1 \cdots p_k$ for primes $p_1 \cdots p_k$.

Observation

- Where's the addition?
- Factorization in (cancellative commutative) monoids:

 $$(R, +, \cdot) \leadsto (R \setminus \{0\}, \cdot)$$
 $$(\mathbb{C}[M], +, \cdot) \leadsto (M, \cdot)$$
Interesting monoids

Definition

An *arithmetical congruence monoid* is a **multiplicative** submonoid

\[M_{a,b} = \{ n : n \equiv a \mod b \} \subset \mathbb{Z}_{>0} \]

for \(a, b > 0 \) with \(a^2 \equiv a \mod b \).
Interesting monoids

Definition

An *arithmetical congruence monoid* is a **multiplicative** submonoid

\[M_{a,b} = \{ n : n \equiv a \mod b \} \subset \mathbb{Z}_{>0} \]

for \(a, b > 0 \) with \(a^2 \equiv a \mod b \).

Example

The *Hilbert monoid* \(M_{1,4} = \{1, 5, 9, 13, 17, \ldots \} \).
Interesting monoids

Definition

An *arithmetical congruence monoid* is a **multiplicative** submonoid

\[M_{a,b} = \{ n : n \equiv a \mod b \} \subset \mathbb{Z}_{>0} \]

for \(a, b > 0 \) with \(a^2 \equiv a \mod b \).

Example

The *Hilbert monoid* \(M_{1,4} = \{ 1, 5, 9, 13, 17, \ldots \} \).

- Every product in \(M_{1,4} \) is a product in \(\mathbb{Z} \).
Interesting monoids

Definition

An *arithmetical congruence monoid* is a *multiplicative* submonoid

\[M_{a,b} = \{ n : n \equiv a \mod b \} \subset \mathbb{Z}_{>0} \]

for \(a, b > 0 \) with \(a^2 \equiv a \mod b \).

Example

The *Hilbert monoid* \(M_{1,4} = \{1, 5, 9, 13, 17, \ldots \} \).

- Every product in \(M_{1,4} \) is a product in \(\mathbb{Z} \).
- \(9, 21, 49 \in M_{1,4} \) are irreducible.
Interesting monoids

Definition

An *arithmetical congruence monoid* is a **multiplicative** submonoid

\[M_{a,b} = \{ n : n \equiv a \mod b \} \subset \mathbb{Z}_{>0} \]

for \(a, b > 0 \) with \(a^2 \equiv a \mod b \).

Example

The *Hilbert monoid* \(M_{1,4} = \{1, 5, 9, 13, 17, \ldots \} \).

- Every product in \(M_{1,4} \) is a product in \(\mathbb{Z} \).
- \(9, 21, 49 \in M_{1,4} \) are irreducible.
- \(441 = 9 \cdot 49 = 21 \cdot 21 \)
Interesting monoids

Definition

An arithmetic congruence monoid is a multiplicative submonoid

\[M_{a,b} = \{ n : n \equiv a \mod b \} \subset \mathbb{Z}_{>0} \]

for \(a, b > 0 \) with \(a^2 \equiv a \mod b \).

Example

The Hilbert monoid \(M_{1,4} = \{1, 5, 9, 13, 17, \ldots\} \).

- Every product in \(M_{1,4} \) is a product in \(\mathbb{Z} \).
- \(9, 21, 49 \in M_{1,4} \) are irreducible.
- \(441 = 9 \cdot 49 = 21 \cdot 21 = (3^2) \cdot (7^2) = (3 \cdot 7) \cdot (3 \cdot 7) \).
Definition

A *numerical monoid* \(S \) is an *additive* submonoid of \(\mathbb{N} \) with \(|\mathbb{N} \setminus S| < \infty \).
Interesting monoids

Definition

A *numerical monoid* S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under **addition**.
Interesting monoids

Definition

A *numerical monoid* S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{ 2, 3, 4, 5, \ldots \}$ under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.
Interesting monoids

Definition

A numerical monoid S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots \}$ under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2$
Interesting monoids

Definition
A **numerical monoid** S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example
Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \leadsto \quad 6 = 3 + 3 = 2 + 2 + 2$.
Interesting monoids

Definition

A *numerical monoid* S is an **additive** submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under **addition**. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \leadsto \quad 6 = 3 + 3 = 2 + 2 + 2$.

Factorizations in S are additive!
Interesting monoids

Definition

A numerical monoid S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

\[x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \leadsto 6 = 3 + 3 = 2 + 2 + 2. \]

Factorizations in S are additive!

Example

$McN = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}$.

Christopher O’Neill (Texas A&M University) Invariants of non-unique factorization October 21, 2014 4 / 9
Interesting monoids

Definition

A *numerical monoid* S is an additive submonoid of \mathbb{N} with $|\mathbb{N} \setminus S| < \infty$.

Example

Let $S = \langle 2, 3 \rangle = \{2, 3, 4, 5, \ldots\}$ under addition. $\mathbb{C}[S] = \mathbb{C}[x^2, x^3]$.

$x^6 = x^3 \cdot x^3 = x^2 \cdot x^2 \cdot x^2 \quad \leadsto \quad 6 = 3 + 3 = 2 + 2 + 2$.

Factorizations in S are additive!

Example

$\text{McN} = \langle 6, 9, 20 \rangle = \{0, 6, 9, 12, 15, 18, 20, 21, \ldots\}$. “McNugget Monoid”
Factorization invariants

Definition
Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),
\[\mathbb{Z}(m) = \{\text{factorizations } m = \prod u_i\}\]
denotes the set of factorizations of \(m\).
The elasticity of \(m\) is
\[\rho(m) = \max \text{ length in } \mathbb{Z}(m) \text{ } \text{ min length in } \mathbb{Z}(m) .\]
The elasticity of \(M\) is
\[\rho(M) = \sup m \in M \rho(m) .\]
Factorization invariants

Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[
Z(m) = \{\text{factorizations } m = \prod_i u_i\}
\]

denotes the set of factorizations of \(m\).
Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[Z(m) = \{ \text{factorizations } m = \prod_i u_i \} \]

denotes the set of factorizations of \(m\). The elasticity of \(m\) is

\[\rho(m) = \frac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)} \].
Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[
Z(m) = \{\text{factorizations } m = \prod_i u_i\}
\]
denotes the set of factorizations of \(m\). The elasticity of \(m\) is

\[
\rho(m) = \frac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}.
\]

The elasticity of \(M\) is \(\rho(M) = \sup_{m \in M} \rho(m)\).
Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[Z(m) = \{ \text{factorizations } m = \prod_i u_i \} \]

denotes the set of factorizations of \(m\). The elasticity of \(m\) is

\[\rho(m) = \frac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)}. \]

The elasticity of \(M\) is \(\rho(M) = \sup_{m \in M} \rho(m)\).

Example (The good)

The Hilbert monoid: \(\rho(M_{1,4}) = 1\).
Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[
Z(m) = \{\text{factorizations } m = \prod_i u_i\}
\]

denotes the set of factorizations of \(m\). The elasticity of \(m\) is

\[
\rho(m) = \frac{\text{max length in } Z(m)}{\text{min length in } Z(m)}.
\]

The elasticity of \(M\) is \(\rho(M) = \sup_{m \in M} \rho(m)\).

Example (The good)

The Hilbert monoid: \(\rho(M_{1,4}) = 1\).

- Every factorization of \(m \in M_{1,4}\) has the same length.
Factorization invariants

Definition
Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[Z(m) = \{\text{factorizations } m = \prod_i u_i\} \]

denotes the set of factorizations of \(m\). The elasticity of \(m\) is

\[\rho(m) = \frac{\text{max length in } Z(m)}{\text{min length in } Z(m)} . \]

The elasticity of \(M\) is \(\rho(M) = \sup_{m \in M}\rho(m)\).

Example (The good)
The Hilbert monoid: \(\rho(M_{1,4}) = 1\).

- Every factorization of \(m \in M_{1,4}\) has the same length.
- This is (almost) the best we could hope for.
Factorization invariants

Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[Z(m) = \{ \text{factorizations } m = \prod_i u_i \} \]

denotes the set of factorizations of \(m\). The elasticity of \(m\) is

\[\rho(m) = \frac{\max \text{ length in } Z(m)}{\min \text{ length in } Z(m)} . \]

The elasticity of \(M\) is \(\rho(M) = \sup_{m \in M} \rho(m)\).

Example (The bad)

Numerical monoids: \(McN = \langle 6, 9, 20 \rangle \subset \mathbb{N}\). \(\rho(McN) = 20/6\).
Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[
Z(m) = \{ \text{factorizations } m = \prod_i u_i \}
\]
denotes the set of factorizations of \(m\). The elasticity of \(m\) is

\[
\rho(m) = \frac{\text{max length in } Z(m)}{\text{min length in } Z(m)}.
\]

The elasticity of \(M\) is \(\rho(M) = \sup_{m \in M} \rho(m)\).

Example (The bad)

Numerical monoids: \(McN = \langle 6, 9, 20 \rangle \subset \mathbb{N}\). \(\rho(McN) = 20/6\).

- \(6 \cdot 20 = 6 + \cdots + 6 = 20 + \cdots + 20\), so \(\rho(6 \cdot 20) = 20/6\).
Factorization invariants

Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[Z(m) = \{ \text{factorizations } m = \prod_i u_i \} \]

denotes the set of factorizations of \(m\). The **elasticity** of \(m\) is

\[
\rho(m) = \frac{\text{max length in } Z(m)}{\text{min length in } Z(m)}.
\]

The **elasticity** of \(M\) is \(\rho(M) = \sup_{m \in M} \rho(m)\).

Example (The bad)

Numerical monoids: \(McN = \langle 6, 9, 20 \rangle \subset \mathbb{N}\). \(\rho(McN) = 20/6\).

- \(6 \cdot 20 = 6 + \cdots + 6 = 20 + \cdots + 20\), so \(\rho(6 \cdot 20) = 20/6\).
- \(\rho(n) \leq 20/6\) for all \(n \in McN\).
Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[Z(m) = \{ \text{factorizations } m = \prod_i u_i \} \]

denotes the set of factorizations of \(m\). The elasticity of \(m\) is

\[\rho(m) = \frac{\text{max length in } Z(m)}{\text{min length in } Z(m)} . \]

The elasticity of \(M\) is \(\rho(M) = \sup_{m \in M} \rho(m)\).

Example (The ugly)

The Meyerson monoid: \(\rho(M_{4,6}) = 2\).
Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[
Z(m) = \{\text{factorizations } m = \prod_i u_i\}
\]
denotes the set of factorizations of \(m\). The elasticity of \(m\) is

\[
\rho(m) = \frac{\text{max length in } Z(m)}{\text{min length in } Z(m)}.
\]

The elasticity of \(M\) is

\[
\rho(M) = \sup_{m \in M} \rho(m).
\]

Example (The ugly)

The Meyerson monoid: \(\rho(M_{4,6}) = 2\).

- \(\rho(m) < 2\) for all \(m \in M_{4,6}\)!
Definition

Fix a commutative, cancellative monoid \((M, \cdot)\). For each non-unit \(m \in M\),

\[
Z(m) = \{ \text{factorizations } m = \prod_i u_i \}
\]
denotes the set of factorizations of \(m\). The elasticity of \(m\) is

\[
\rho(m) = \frac{\text{max length in } Z(m)}{\text{min length in } Z(m)}.
\]

The elasticity of \(M\) is \(\rho(M) = \sup_{m \in M} \rho(m)\).

Example (The ugly)

The Meyerson monoid: \(\rho(M_{4,6}) = 2\).

- \(\rho(m) < 2\) for all \(m \in M_{4,6}\)!
- Elasticity of \(M_{4,6}\) is not accepted.
Factorization lengths in numerical monoids

Let $S = \langle n_1, \ldots, n_k \rangle \subset (\mathbb{N}, +)$. For $n \in S$,

$$M(n) = \text{max length in } Z(n) \quad m(n) = \text{min length in } Z(n)$$
Factorization lengths in numerical monoids

Let $S = \langle n_1, \ldots, n_k \rangle \subset (\mathbb{N}, +)$. For $n \in S$,

$$M(n) = \text{max length in } Z(n) \quad m(n) = \text{min length in } Z(n)$$

Observations

Max length factorization: lots of small irreducibles

Min length factorization: lots of large irreducibles

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, \ldots, n_k \rangle$. For $n > n_k$ ($n_k - 1$),

$$M(n + n_1) = 1 + M(n) \quad m(n + n_k) = 1 + m(n)$$

Equivalently, $M(n), m(n)$ are eventually quasilinear:

$$M(n) = 1 + n_1 a_0(n) \quad m(n) = 1 + n_k b_0(n)$$

for periodic functions $a_0(n), b_0(n)$.

Christopher O’Neill (Texas A&M University)
Factorization lengths in numerical monoids

Let $S = \langle n_1, \ldots, n_k \rangle \subset (\mathbb{N}, +)$. For $n \in S$,

$$M(n) = \max \text{ length in } Z(n) \quad m(n) = \min \text{ length in } Z(n)$$

Observations

- Max length factorization: lots of small irreducibles
Let $S = \langle n_1, \ldots, n_k \rangle \subset (\mathbb{N}, +)$. For $n \in S$,

\[M(n) = \text{max length in } Z(n) \quad m(n) = \text{min length in } Z(n) \]

Observations

- Max length factorization: lots of small irreducibles
- Min length factorization: lots of large irreducibles
Let $S = \langle n_1, \ldots, n_k \rangle \subset (\mathbb{N}, +)$. For $n \in S$,

$$M(n) = \max \text{ length in } Z(n) \quad m(n) = \min \text{ length in } Z(n)$$

Observations

- Max length factorization: lots of small irreducibles
- Min length factorization: lots of large irreducibles

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, \ldots, n_k \rangle$. For $n > n_k(n_{k-1} - 1)$,

$$M(n + n_1) = 1 + M(n)$$
$$m(n + n_k) = 1 + m(n)$$
Factorization lengths in numerical monoids

Let $S = \langle n_1, \ldots, n_k \rangle \subset (\mathbb{N}, +)$. For $n \in S$,
\[M(n) = \text{max length in } \mathbb{Z}(n) \quad m(n) = \text{min length in } \mathbb{Z}(n) \]

Observations
- Max length factorization: lots of small irreducibles
- Min length factorization: lots of large irreducibles

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, \ldots, n_k \rangle$. For $n > n_k(n_{k-1} - 1)$,
\[M(n + n_1) = 1 + M(n) \]
\[m(n + n_k) = 1 + m(n) \]

Equivalently, $M(n)$, $m(n)$ are eventually quasilinear:
\[M(n) = \frac{1}{n_1} n + a_0(n) \]
\[m(n) = \frac{1}{n_k} n + b_0(n) \]

for periodic functions $a_0(n), b_0(n)$.
Theorem (Barron–O–Pelayo, 2014)

Let \(S = \langle n_1, \ldots, n_k \rangle \). For \(n > n_k(n_{k-1} - 1) \),

\[
M(n + n_1) = 1 + M(n) \quad \text{and} \quad m(n + n_k) = 1 + m(n).
\]
Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, \ldots, n_k \rangle$. For $n > n_k(n_{k-1} - 1)$,

$$M(n + n_1) = 1 + M(n) \quad \text{and} \quad m(n + n_k) = 1 + m(n).$$

$S = \langle 6, 9, 20 \rangle$:

$m(1000001) = 50002$ and $1000001 = 2(6) + 1(9) + 49993(20)$
Theorem (Barron–O–Pelayo, 2014)

Let \(S = \langle n_1, \ldots, n_k \rangle \). For \(n > n_k(n_{k-1} - 1) \),

\[
M(n + n_1) = 1 + M(n) \quad \text{and} \quad m(n + n_k) = 1 + m(n).
\]

\(S = \langle 6, 9, 20 \rangle \):

\(n = 1000001 \).
Factorization lengths in numerical monoids

Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, \ldots, n_k \rangle$. For $n > n_k(n_k-1) - 1$,

$$M(n + n_1) = 1 + M(n) \quad \text{and} \quad m(n + n_k) = 1 + m(n).$$

\[S = \langle 6, 9, 20 \rangle: \]

\[n = 1000001. \]

\[m(1000001) = ? \]
Let $S = \langle n_1, \ldots, n_k \rangle$. For $n > n_k(n_{k-1} - 1)$,

\[M(n + n_1) = 1 + M(n) \quad \text{and} \quad m(n + n_k) = 1 + m(n). \]

$S = \langle 6, 9, 20 \rangle$:

$n = 1000001$.

\[m(1000001) = ? \]

\[m(181) = 11 \quad \text{and} \quad 181 = 2(6) + 1(9) + 8(20) \]
Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, \ldots, n_k \rangle$. For $n > n_k(n_{k-1} - 1)$,

$$M(n + n_1) = 1 + M(n) \quad \text{and} \quad m(n + n_k) = 1 + m(n).$$

$S = \langle 6, 9, 20 \rangle$:

$n = 1000001$.

$m(1000001) = ?$

$m(181) = 11 \quad \text{and} \quad 181 = 2(6) + 1(9) + 8(20)$

$m(1000001) = 50002 \quad \text{and} \quad 1000001 = 2(6) + 1(9) + 49993(20)$
Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, \ldots, n_k \rangle$. For $n > n_k(n_{k-1} - 1)$,

$$M(n + n_1) = 1 + M(n) \quad \text{and} \quad m(n + n_k) = 1 + m(n).$$

$S = \langle 6, 9, 20 \rangle$:

\[\]
Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, \ldots, n_k \rangle$. For $n > n_k(n_{k-1} - 1)$,

$$M(n + n_1) = 1 + M(n) \quad \text{and} \quad m(n + n_k) = 1 + m(n).$$

$S = \langle 6, 9, 20 \rangle$:
Theorem (Barron–O–Pelayo, 2014)

Let $S = \langle n_1, \ldots, n_k \rangle$. For $n > n_k(n_{k-1} - 1)$,

$$M(n + n_1) = 1 + M(n) \quad \text{and} \quad m(n + n_k) = 1 + m(n).$$

$S = \langle 5, 16, 17, 18, 19 \rangle$:

Theorem (Barron–O–Pelayo, 2014)

Let \(S = \langle n_1, \ldots, n_k \rangle \). For \(n > n_k(n_{k-1} - 1) \),

\[
M(n + n_1) = 1 + M(n) \quad \text{and} \quad m(n + n_k) = 1 + m(n).
\]

\(S = \langle 5, 16, 17, 18, 19 \rangle \):

\[
m(n) : S \to \mathbb{N}
\]