Notes on First Order Differential Equations for Math 22B,

based on Chapter 2 of Boyce and DiPrima's Elementary Differential Equations and Boundary Value Problems. Method of Integrating Factors. (Section 2.1)
Assume we have a first order linear equation of the form

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{*}
\end{equation*}
$$

Define the integrating factor

$$
\mu(t)=\exp \int p(t) d t
$$

Multiplying both sides of equation $(*)$ by $\mu(t)$ then integrating with respect to t, we obtain the following general solution

$$
y=\frac{1}{\mu(t)}\left[\int \mu(t) g(t) d t+c\right]
$$

of the original equation, where c is an arbitrary constant. We may use an initial condition $y\left(t_{0}\right)=y_{0}$ to determine the constant c.
Separable Equations. (Section 2.2)
Assume we have a first order differential equation which we can write in the form

$$
M(x)+N(y)(d y / d x)=0
$$

This equation is said to be separable, and we may write

$$
\int M(x) d x=-\int N(y) d y
$$

Given an an initial condition $y\left(x_{0}\right)=y_{0}$, the solution to this initial value problem is then given by

$$
\int_{x_{0}}^{x} M(s) d s+\int_{y_{0}}^{y} N(s) d s=0
$$

Exact Equations and Integrating Factors. (Section 2.6.)

[NOTE: Section 2.6 is not listed in the class syllabus. I'm including it here for those who are curious about exact equations.]
Theorem 2.6.1. Say we are given a first order differential equation of the form

$$
M(x, y)+N(x, y) y^{\prime}=0 \quad(* *)
$$

Assume the functions M, N, M_{y}, and N_{x}, where subscripts denote partial derivatives, are continuous in the rectangular region $R: \alpha<x<\beta, \gamma<y<\delta$. (Actually, it suffices to assume that the region is simply connected.) Then, there exists a function ψ satisfying

$$
\psi_{x}(x, y)=M(x, y) \quad \text { and } \quad \psi_{y}(x, y)=N(x, y)
$$

if and only if M and N satisfy

$$
M_{y}(x, y)=N_{x}(x, y)
$$

at each point of R. In this case, $(*)$ is said to be an exact differential equation in R, and $\psi(x, y)$ is an implicitly defined solution to $(*)$.
If we do not have $M_{y}(x, y)=N_{x}(x, y)$, we may be able to multiply the equation $(*)$ by an integrating factor $\mu(x, y)$ to convert it into an exact differential equation. Two particular cases of this are when μ depends only on x and when μ depends only on y.
(a) If $\left(M_{y}-N_{x}\right) / N$ is a function of x only, then solving the (linear and separable) differential equation

$$
\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu
$$

gives an integrating factor $\mu(x)$, which we may use to convert $(*)$ into an exact differential equation.
(b) If $\left(N_{x}-M_{y}\right) / M$ is a function of y only, then solving the (linear and separable) differential equation

$$
\frac{d \mu}{d x}=\frac{N_{x}-M_{y}}{M} \mu
$$

gives an integrating factor $\mu(y)$, which we may use to convert $(*)$ into an exact differential equation.

Differences Between Linear and Nonlinear Equations. (Section 2.4)

Theorem 2.4.1. Assume we are given the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}+p(t) y=g(t) \tag{1}\\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

where y_{0} is an arbitrary prescribed initial value. If the functions p and g are continuous on an open interval $I: \alpha<t<\beta$ containing the point $t=t_{0}$, then there exists a unique function $y=\phi(t)$ that satisfies the differential equation (1) for each t in I, and that also satisfies the initial condition (2).
Theorem 2.4.2. Assume we are given the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y) \tag{*}\\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

where y_{0} is an arbitrary prescribed initial value. If the functions f and $\partial f / \partial y$ are continuous in some rectangle $\alpha<t<\beta$, $\gamma<y<\delta$ containing the point $\left(t_{0}, y_{0}\right)$, then in some interval $t_{0}-h<t<t_{0}+h$ contained in $\alpha<t<\beta$ there is a unique solution $y=\phi(t)$ of the initial value problem $(*)$.

Euler's Method. (Section 2.7)

Given an first order initial value problem

$$
\frac{d y}{d t}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

we may approximate the solution y_{n} of $y(t)$ at $t=t_{n}$ by iteratively computing

$$
y_{k+1}=y_{k}+f\left(t_{k}, y_{k}\right) \cdot h
$$

for $k=1, \ldots, n$, where $h=\left(t_{n}-t_{0}\right) / n$ and $t_{k}=t_{k-1}+h$.
Picard's Iteration Method (Section 2.8.)
Given an first order initial value problem

$$
\frac{d y}{d t}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

we may approximate a solution $y=\phi(t)$ by iteratively computing

$$
\phi_{k}(t)=\int_{0}^{t} f\left[s, \phi_{k-1}(s)\right] d s
$$

then taking the limit as $k \rightarrow \infty$. We often choose the initial approximation $\phi_{0}(t)$ to be zero.

