Notes on First Order Differential Equations for Math 22B,
based on Chapter 2 of Boyce and DiPrima’s Elementary Differential Equations and Boundary Value Problems.

Method of Integrating Factors. (Section 2.1)
Assume we have a first order linear equation of the form
\[y' + p(t)y = g(t) \quad (*) \]
Define the integrating factor
\[\mu(t) = \exp \left(\int p(t) \, dt \right). \]
Multiplying both sides of equation (*) by \(\mu(t) \) then integrating with respect to \(t \), we obtain the following general solution
\[y = \frac{1}{\mu(t)} \left[\int \mu(t)g(t) \, dt + c \right] \]
of the original equation, where \(c \) is an arbitrary constant. We may use an initial condition \(y(t_0) = y_0 \) to determine the constant \(c \).

Separable Equations. (Section 2.2)
Assume we have a first order differential equation which we can write in the form
\[M(x) + N(y)(dy/dx) = 0. \]
This equation is said to be separable, and we may write
\[\int M(x) \, dx = - \int N(y) \, dy. \]
Given an initial condition \(y(x_0) = y_0 \), the solution to this initial value problem is then given by
\[\int_{x_0}^{x} M(s) \, ds + \int_{y_0}^{y} N(s) \, ds = 0. \]

Exact Equations and Integrating Factors. (Section 2.6.)
[NOTE: Section 2.6 is not listed in the class syllabus. I’m including it here for those who are curious about exact equations.]

Theorem 2.6.1. Say we are given a first order differential equation of the form
\[M(x, y) + N(x, y)y' = 0 \quad (**) \]
Assume the functions \(M, N, M_y, \) and \(N_x, \) where subscripts denote partial derivatives, are continuous in the rectangular region \(R : \alpha < x < \beta, \gamma < y < \delta. \) (Actually, it suffices to assume that the region is simply connected.) Then, there exists a function \(\psi \) satisfying
\[\psi_x(x, y) = M(x, y) \quad \text{and} \quad \psi_y(x, y) = N(x, y) \]
if and only if \(M \) and \(N \) satisfy
\[M_y(x, y) = N_x(x, y) \]
at each point of \(R. \) In this case, (*) is said to be an exact differential equation in \(R, \) and \(\psi(x, y) \) is an implicitly defined solution to (*)

If we do not have \(M_y(x, y) = N_x(x, y), \) we may be able to multiply the equation (*) by an integrating factor \(\mu(x, y) \) to convert it into an exact differential equation. Two particular cases of this are when \(\mu \) depends only on \(x \) and when \(\mu \) depends only on \(y. \)

(a) If \((M_y - N_x)/N \) is a function of \(x \) only, then solving the (linear and separable) differential equation
\[\frac{d\mu}{dx} = \frac{M_y - N_x}{N} \mu \]
gives an integrating factor $\mu(x)$, which we may use to convert (\ast) into an exact differential equation.

(b) If $(N_x - M_y)/M$ is a function of y only, then solving the (linear and separable) differential equation

$$\frac{d\mu}{dx} = \frac{N_x - M_y}{M} \mu$$

gives an integrating factor $\mu(y)$, which we may use to convert (\ast) into an exact differential equation.

** * * * * *

** Differences Between Linear and Nonlinear Equations. (Section 2.4)**

Theorem 2.4.1. Assume we are given the initial value problem

$$\begin{aligned}
& y' + p(t)y = g(t), \\
& y(t_0) = y_0,
\end{aligned} \tag{1}$$

where y_0 is an arbitrary prescribed initial value. If the functions p and g are continuous on an open interval $I : \alpha < t < \beta$ containing the point $t = t_0$, then there exists a unique function $y = \phi(t)$ that satisfies the differential equation (1) for each t in I, and that also satisfies the initial condition (2).

Theorem 2.4.2. Assume we are given the initial value problem

$$\begin{aligned}
& y' = f(t, y) \\
& y(t_0) = y_0
\end{aligned} \tag{*}$$

where y_0 is an arbitrary prescribed initial value. If the functions f and $\partial f/\partial y$ are continuous in some rectangle $\alpha < t < \beta$, $\gamma < y < \delta$ containing the point (t_0, y_0), then in some interval $t_0 - h < t < t_0 + h$ contained in $\alpha < t < \beta$ there is a unique solution $y = \phi(t)$ of the initial value problem (\ast).

** * * * * *

** Euler’s Method. (Section 2.7)**

Given an first order initial value problem

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0,$$

we may approximate the solution y_n of $y(t)$ at $t = t_n$ by iteratively computing

$$y_{k+1} = y_k + f(t_k, y_k) \cdot h,$$

for $k = 1, \ldots, n$, where $h = (t_n - t_0)/n$ and $t_k = t_{k-1} + h$.

Picard’s Iteration Method (Section 2.8.)

Given an first order initial value problem

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0,$$

we may approximate a solution $y = \phi(t)$ by iteratively computing

$$\phi_k(t) = \int_0^t f[s, \phi_{k-1}(s)] \, ds,$$

then taking the limit as $k \to \infty$. We often choose the initial approximation $\phi_0(t)$ to be zero.