
Notes on Second Order Differential Equations for Math 22B,
based on Chapter 3 of Boyce and DiPrima’s Elementary Differential Equations and Boundary Value Problems.

Section 3.1: Homogeneous Equations with Constant Coefficients.
A second order linear ordinary differential equation has the form

y⇥⇥ + p(t)y⇥ + q(t)y = g(t).

For a second order differential equation, we need two initial conditions,

y(t0) = y0 and y⇥(t0) = y⇥0.

A second order linear equation is homogeneous if g(t) is zero for all t, and g(t) is sometimes called the nonhomogeneous term.
In the special case of constant coefficients, the above equation becomes

ay⇥⇥ + by⇥ + cy = 0 (⇥1)

where a, b, and c are given constants. The characteristic equation for the differential equation (⇥1) is then

ar2 + br + c = 0.

If the characteristic equation are real and different, say r1 ⌅= r2, then

y = c1e
r1t + c2e

r2t,

where c1 and c2 are constants, is a solution of (⇥1).
Section 3.2: Solutions of Linear Homogeneous Equations; the Wronskian.
Let p and q be continuous functions on an open interval I , say � < t < ⇥ (note that we may have � = �⇤ and/or ⇥ = ⇤).
Then, for any function ⇧ that is twice differentiable on I , we define the differential operator L by the equation

L[⇧] = ⇧⇥⇥ + p⇧⇥ + q⇧.

So, the value of L[⇧] at a point t in I is L[⇧](t) = ⇧⇥⇥(t) + p(t)⇧⇥(t) + q(t)⇧(t). We will also use the notation

L[y] = y⇥⇥ + p(t)y⇥ + q(t)y = 0 (⇥2)

for a second order linear homogeneous differential equation, where y = ⇧(t).
Theorem 3.2.1. (Existence and Uniqueness Theorem.) Consider the initial value problem

⌅
⌃

⇧

y⇥⇥ + p(t)y⇥ + q(t)y = g(t),
y(t0) = y0,
y⇥(t0) = y⇥0,

where p, q, and g are continuous on an open interval I that contains the point t0. Then, there is exactly one solution y = ⇧(t) of
this problem, and the solution exists throughout the interval I .
Theorem 3.2.2. (Principle of Superposition) If y1 and y2 are two solutions of (⇥2), then the linear combination

c1y1 + c2y2

is also a solution of (⇥2) for any values of the constants c1 and c2.
Definition. The solutions y1 and y2 are said to form a fundamental set of solutions of this equation if and only if their Wronskian

W (y1, y2) = y1y
⇥
2 � y⇥1y2

is nonzero.
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Theorem 3.2.3. Suppose that y1 and y2 are two solutions of (⇥2) and that the initial conditions

y(t0) = y0 and y⇥(t0) = y⇥0

are assigned. Then, it is always possible to choose the constants c1, c2 so that

y = c1y1(t) + c2y2(t)

satisfies (⇥2) and the above initial conditions if and only if the WronskianW (y1, y2) is not zero at t0.
Theorem 3.2.4. Suppose that y1 and y2 are two solutions of (⇥2). Then, the family of solutions

y = c1y1(t) + c2y2(t)

with arbitrary coefficients c1 and c2 includes every solution of this equation if and only if there is a point t0 where the Wronskian
W (y1, y2) is not zero.
Theorem 3.2.5. Assume that in (⇥2) the coefficient functions p and q are continuous on some open interval I . Choose some point
t0 in I . Let y1 be the solution of the above equation that also satisfies the initial conditions

y(t0) = 1 and y⇥(t0) = 0,

and let y2 be the solution which satisfies
y(t0) = 0 and y⇥(t0) = 1.

Then, y1 and y2 form a fundamental set of solutions of this equation.
Theorem 3.2.6. Assume that in (⇥2) the coefficient functions p and q are continuous real-valued functions. If

y = u(t) + iv(t)

is a complex-valued solution, then its real part u and its imaginary part v are also solutions of this equation, and hence the complex
conjugate y is also a solution.
Theorem 3.2.7. (Abel’s Theorem) If y1 and y2 are solutions of (⇥), where p and q are continuous on an open interval I , then their
Wronskian is given by

W (y1, y2)(t) = c exp
�
�

⌥
p(t) dt

⇥
,

where c is a certain constant that depends on y1 and y2, but not on t. Further,W (y1, y2)(t) either is zero for all t in I (if c = 0)
or else is never zero in I (if c ⌅= 0).
Summary. To find the general solution of the differential equation

y⇥⇥ + p(t)y⇥ + q(t)y = 0, where � < t < ⇥,

we first find two functions y1 and y2 that satisfy this differential equation on � < t < ⇥. Then we check that there is a point t0
in this interval where the Wronskian W (y1, y2)(t0) ⌅= 0. In this case, y1 and y2 form a fundamental set of solutions, and the
general solution is

y = c1y1(t) + c2y2(t),

where c1 and c2 are arbitrary constants. If initial conditions are prescribed at a point in � < t < ⇥, then c1 and c2 can be chosen
so as to satisfy these conditions.
Section 3.3: Complex Roots of the Characteristic Equation.
Say the roots of the characteristic equation for the differential equation

ay⇥⇥ + by⇥ + cy = 0 (⇥3)

are conjugate complex numbers
r1 = ⌅ + iµ and r2 = ⌅� iµ,
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where ⌅ and µ are real and µ ⌅= 0. Then,

y = c1 exp[(⌅ + iµ)t] + c2 exp[(⌅� iµ)t]

is the general solution for (⇥3). Here, we use Euler’s equation

ei⇥ = cos ⇤ + i sin ⇤

to interpret these complex-valued functions. We may use Theorem 3.2.6 to show that

y = c1e
⇤t cosµt + c2e

⇤t sinµt

also gives the general solution to (⇥3).
Section 3.4: Repeated Roots; Reduction of Order.
Say the two roots of the characteristic equation for the differential equation

ay⇥⇥ + by⇥ + cy = 0 (⇥4)

are are equal, r = �b/2a. Then, we may use Theorem 3.2.6 to show that

y = c1e
�bt/2a + c2te

�bt/2a

gives the general solution to (⇥4).
Section 3.5: Nonhomogeneous Equations; Method of Undetermined Coefficients.
Let p, q, and g be given continuous functions on the open interval I , and write

L[y] = y⇥⇥ + p(t)y⇥ + q(t)y = g(t) (⇥5)

for a second order linear nonhomogeneous equation. The equation

L[y] = 0,

i.e. when g(t) = 0, is called the corresponding homogeneous equation.
Theorem 3.5.1. If Y1 and Y2 are two solutions of the nonhomogeneous equation (⇥5), then their difference Y1 � Y2 is a solution
of the corresponding homogeneous equation. If, in addition, y1 and y2 are a fundamental set of solutions of the homogeneous
equation, then

Y1(t)� Y2(t) = c1y1(t) + c2y2(t),

where c1 and c2 are certain constants.
Theorem 3.5.2. The general solution of the nonhomogeneous equation (⇥5) can be written in the form

y = ⇧(t) = c1y1(t) + c2y2(t) + Y (t),

where y1 and y2 are a fundamental set of solutions of the corresponding homogeneous equation, c1 and c2 are arbitrary constants,
and Y is some specific solution of the nonhomogeneous equation.
Summary: To solve the nonhomogeneous equation, we must
1. Find the general solution

yc(t) = c1y1(t) + c2y2(t)

of the corresponding homogeneous equation, which is called the complementary solution.
2. Find some single solution Y (t), called a particular solution, of the nonhomogeneous equation.
3. Form the sum

y(t) = yc(t) + Y (t).
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This gives the general solution to (⇥5).
The Method of Undetermined Coefficients. Given the nonhomogeneous equation (⇥5), we may attempt to find the general
solution using the method of undetermined coefficients, as follows.

1. Check that the function g(t) involves nothing more than exponential functions, sines, cosines, polynomials, or sums or products
of such functions. If this is not the case, use the method of variation of parameters (see the next section).

2. If g(t) = g1(t) + · · · + gn(t), then form n subproblems L[y] = gi(t), where i runs from 1 to n.

3. For the ith subproblem, assume a particular solution Yi(t) as follows.
(i) If gi(t) = Pn(t) = a0tn + a1tn�1 + · · · + an, then choose

Yi(t) = ts(A0t
n + A1t

n�1 + · · · + An).

(ii) If gi(t) = Pn(t)e�t, then choose

Yi(t) = ts(A0t
n + A1t

n�1 + · · · + An)e�t.

(iii) If gi(t) = Pn(t)e�t

⇤
sin⇥t
cos⇥t

, then choose

Yi(t) = ts[(A0t
n + A1t

n�1 + · · · + An)e�t cos⇥t + (B0t
n + B1t

n�1 + · · · + Bn)e�t sin⇥t].

Here, s is the smallest nonnegative integer (s = 0, 1, or 2 for a second order differential equation) which will ensure that no term
in Yi(t) is a solution of the corresponding homogeneous equation. Equivalently, for the three cases, s is the number of times 0 is
a root of the characteristic equation, � is a root of the characteristic equation, and � + i⇥ is a root of the characteristic equation,
respectively.

4. Find a particular solution Yi(t) for each of the subproblems. Then, the sum Y1(t) + · · · + Yn(t) is a particular solution of the
full nonhomogeneous equation, which we may add to the complementary solution yc(t) to obtain the general solution

y(t) = yc(t) + Y1(t) + · · · + Yn(t)

of (⇥).
Section 3.6: Variation of Parameters.
Theorem 3.6.1. If the functions p, q, and g are continuous on an open interval I , and if the functions y1 and y2 are a fundamental
set of solutions of the homogeneous equation corresponding to the nonhomogeneous equation

y⇥⇥ + p(t)y⇥ + q(t)y = g(t),

then a particular solution of the nonhomogeneous equation is

Y (t) = �y1(t)
⌥ t

t0

y2(s)g(s)
W (y1, y2)(s)

ds + y2(t)
⌥ t

t0

y1(s)g(s)
W (y1, y2)(s)

ds,

where t0 is any conveniently chosen point in I . The general solution is then

y = c1y1(t) + c2y2(t) + Y (t).
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