Notes on the Laplace Transform for Math 22B

based on Chapter 6 of Boyce and DiPrima's Elementary Differential Equations and Boundary Value Problems.

Section 6.1: Definition of the Laplace Transform.

Definition. A function f is piecewise continuous on an interval $\alpha \leq t \leq \beta$ if the interval can be partitioned by a finite number of points $\alpha=t_{0}<t_{1}<\cdots<t_{n}=\beta$ so that
(i) f is continuous on each open subinterval $t_{i-1}<t<t_{i}$, and
(ii) f approaches a finite limit as the endpoints of each subinterval are approached from within the subinterval.

Theorem 6.1.1. Assume f is piecewise continuous for $t \geq a$.
(i) If $|f(t)| \leq g(t)$ when $t \geq M$ for some positive constant M, and if $\int_{M}^{\infty} g(t) d t$ converges, then $\int_{a}^{\infty} f(t) d t$ also converges.
(ii) If $f(t) \geq g(t) \geq 0$ for $t \geq M$, and if $\int_{M}^{\infty} g(t) d t$ diverges, then $\int_{a}^{\infty} f(t) d t$ also diverges.

Theorem 6.1.2. Suppose that $f(t)$ is piecewise continuous and of exponential order as $t \rightarrow \infty$, i.e.
(i) $f(t)$ is piecewise continuous on the interval $0 \leq t \leq A$ for any positive A, and
(ii) $|f(t)| \leq K e^{a t}$ when $t \geq M>0$, where $K>0$ and a are real constants.

Then, the Laplace transform

$$
\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

exists for $s>a$.
Fact. The Laplace transform is a linear operator. I.e., if f_{1} and f_{2} are two functions whose Laplace transforms exist for $s>a_{1}$ and $s>a_{2}$, respectively, then, for s greater than the maximum of a_{1} and a_{2},

$$
\mathcal{L}\left\{c_{1} f_{1}(t)+c_{2} f_{2}(t)\right\}=c_{1} \mathcal{L}\left\{f_{1}(t)\right\}+c_{2} L\left\{f_{2}(t)\right\}
$$

Section 6.2: Solution of Initial Value Problems.

Theorem 6.2.1. Suppose that
(i) f is continuous and f^{\prime} is piecewise continuous on any interval $0 \leq t \leq A$, and
(ii) there exist constants K, a, and M such that $|f(t)| \leq K e^{a t}$ for $t \geq M$.

Then, $\mathcal{L}\left\{f^{\prime}(t)\right\}$ exists for $s>a$, and

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)
$$

Corollary 6.2.2. Suppose that
(i) $f, f^{\prime}, \ldots, f^{(n-1)}$ are continuous and that $f^{(n)}$ is piecewise continuous on any interval $0 \leq t \leq A$, and
(ii) there exist constants K, a, and M such that, for $t \geq M$,

$$
|f(t)| \leq K e^{a t}, \quad\left|f^{\prime}(t)\right| \leq K e^{a t}, \quad \ldots, \quad\left|f^{(n-1)}(t)\right| \leq K e^{a t}
$$

Then, $\mathcal{L}\left\{f^{(n)}(t)\right\}$ exists for $s>a$ and is given by

$$
\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} \mathcal{L}\{f(t)\}-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)
$$

Using the Laplace transform to solve a differential equation.

1. Use the above definition of $\mathcal{L}\{f(t)\}$ and the above results regarding $\mathcal{L}\left\{f^{(n)}(t)\right\}$ to transform an initial value problem for an unknown function f in the t-domain into an algebraic problem for F in the s-domain.
2. Solve this algebraic problem to find $F(s)$.
3. Recover the desired function f from its transform F by "inverting the transform," i.e.

The following table for inverse Laplace transforms is from page 321 of BDP. Note that the inverse Laplace transform is linear.

TABLE 6.2.1 Elementary Laplace Transforms

	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$
1. 1	$\frac{1}{s}, \quad s>0$	

2. $e^{a t}$
$\frac{1}{s-a}, \quad s>a$
3. $t^{n}, n=$ positive integer $\quad \frac{n!}{s^{n+1}}, \quad s>0$
4. $t^{p}, \quad p>-1 \quad \frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$
5. $\sin a t \quad \frac{a}{s^{2}+a^{2}}, \quad s>0$
6. $\cos a t \quad \frac{s}{s^{2}+a^{2}}, \quad s>0$
7. $\sinh a t \quad \frac{a}{s^{2}-a^{2}}, \quad s>|a|$
8. $\cosh a t$
$\frac{s}{s^{2}-a^{2}}, \quad s>|a|$
9. $e^{a t} \sin b t \quad \frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
10. $e^{a t} \cos b t \quad \frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
11. $t^{n} e^{a t}, n=$ positive integer $\quad \frac{n!}{(s-a)^{n+1}}, \quad s>a$
12. $u_{c}(t) \quad \frac{e^{-c s}}{s}, \quad s>0$
13. $u_{c}(t) f(t-c) \quad e^{-c s} F(s)$
14. $e^{c t} f(t) \quad F(s-c)$
15. $f(c t)$
$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$
16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau \quad F(s) G(s)$
17. $\delta(t-c) \quad e^{-c s}$
18. $f^{(n)}(t) \quad s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
19. $(-t)^{n} f(t)$
$F^{(n)}(s)$
