
Notes on Systems of First Order Linear Equations for Math 22B
based on Chapter 7 of Boyce and DiPrima’s Elementary Differential Equations and Boundary Value Problems.

Section 7.1: Introduction.
Notation. In the following, we will denote the independent variable by t, and we will let x1, x2, x3, . . . represent dependent
variables that are functions of t. Differentiation with respect to t will be denoted by a prime.
To transform an arbitrary nth order equation y(n) = F (t, y, y0, . . . , y(n�1)) into a system of n first order equations:
Introduce the variables x1, x2, . . . , xn defined by 8>>>><

>>>>:

x1 = y
x2 = y0

x3 = y00

...
xn = y(n�1)

Then, 8>>>><
>>>>:

x01 = x2

x02 = x3
...

x0n�1 = xn

x0n = F (t, x1, x2, . . . , xn)

Definition. A solution of the system

8>><
>>:

x01 = F1(t, x1, x2, . . . , xn)
x02 = F2(t, x1, x2, . . . , xn)

...
x0n = Fn(t, x1, x2, . . . , xn)

(⇤1)

on the interval I : ↵ < t < � is a set of n functions

8>><
>>:

x1 = �1(t)
x2 = �2(t)

...
xn = �n(t)

(⇤2)

that are differentiable at all points in the interval I and that satisfy the above system of of ordinary differential equations at all points
in this interval. Further, initial conditions for this system are of the form

8>>><
>>>:

x1(t0) = x0
1

x2(t0) = x0
2

...
xn(t0) = x0

n

(⇤3)

where t0 2 I , and the x0
i are (real) numbers.

If each of the functions Fi is a linear function of the dependent variables xj , then the system of equations is linear; otherwise, it is
nonlinear. Thus, the most general system of n first order linear equations has the form:

8><
>:

x01 = p11(t)x1 + · · · + p1n(t)xn + g1(t)
...

x0n = pn1(t)x1 + · · · + pnn(t)xn + gn(t)
(⇤4)

If each of the functions gi(t) is zero for all t 2 I , then the system is homogeneous; otherwise, it is nonhomogeneous.
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Theorem 7.1.1. If each of the functions F1, . . . , Fn and the partial derivatives

@F1/@x1, @F1/@x2, . . . , @F1/@xn,

@F2/@x1, @F2/@x2, . . . , @F2/@xn,

...

@Fn/@x1, @Fn/@x2, . . . , @Fn/@xn

are all continuous in a regionR of tx1x2 · · ·xn-space defined by

↵ < t < �, ↵1 < x1 < �1, . . . , ↵n < xn < �n,

and the point (t0, x0
1, x

0
2, . . . , x

0
n) is in R, then there is an interval |t � t0| < h in which there exists a unique solution (⇤2) of

the above system (⇤1) of differential equations that also satisfies the initial conditions (⇤3).
Theorem 7.1.2. If the functions p11, p12, . . . , pnn, g1, . . . , gn are continuous on an open interval I : ↵ < t < �, then there
exists a unique solution (⇤2) of the system (⇤4) that also satisfies the above initial conditions (⇤3), where t0 is any point in I , and
x0

1, . . . , x
0
n are any prescribed numbers. Further, the solution exists throughout the interval I .

Section 7.2: Review of Matrices.
Definition. Let

x(t) =

2
64

x1(t)
...

xn(t)

3
75 and A(t) =

2
64

a11(t) · · · a1n(t)
...

...
am1(t) · · · amn(t)

3
75 .

The matrixA(t) is said to be continuous at t = t0 or on an interval↵ < t < � if each element ofA is a continuous function at the
given point or on the given interval. Similarly,A(t) differentiable if each of its elements is differentiable, and its derivative dA/dt

is defined by dA/dt = (daij/dt). In the same way, the integral of a matrix function is defined as
R b

a A(t) dt = (
R b

a aij(t) dt).
Fact. We have
(i) d/dt(CA) = C(dA/dt), where C is a constant matrix
(ii) d/dt(A + B) = dA/dt + dB/dt

(iii) d/dt(AB) = A(dB/dt) + (dA/dt)B
Section 7.3: Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors.
Systems of Linear Algebraic Equations. A set of n simultaneous linear algebraic equations in n variables

8<
:

a11x1 + a12x2 + · · · + a1nxn = b1
...

an1x1 + an2x2 + · · · + annxn = bn

can be written asAx = b, whereA = (aij) and b = (bk) are given, and x = (x`) is to be determined. If b = 0, then the system
is homogeneous; otherwise, it is nonhomogeneous.
IfA is invertible, then the unique solution is x = A�1b. However, ifA is not invertible, then solutions of this system either do not
exist or do exist but are not unique. If the system is homogeneous, then there are infinitely many solutions. However, if the system
is nonhomogeneous, then it has no solution unless the vector (b, y) = 0 for all vectors y satisfying A

T
y = 0. In this case, it has

infinitely many solutions, which are of the form x = x(0) + ~⇠, where x(0) is a particular solution of the above system, and ~⇠ is the
most general solution of the homogeneous system.
Definition. Let

x(1)(t), . . . , x(k)(t)

be a set of vector functions defined on an interval ↵ < t < �. These vectors are said to be linearly dependent on ↵ < t < � if
there exists a set of constants c1, . . . , ck, not all of which are zero, such that

c1x(1)(t) + · · · + ckx(k)(t) = 0

2



for all t in the interval. Otherwise, x(1)(t), . . . , x(k)(t) are linearly independent.

Fact. Hermitian matrices are matrices for whichA
T = A. For these matrices,

(i) All eigenvalues are real.
(ii) There always exists a full set of n linearly independent eigenvectors, regardless of the algebraic multiplicities of the eigenvalues.
(iii) If x(1) and x(2) are eigenvectors that correspond to different eigenvalues, then (x(1), x(2)) = 0. Thus, if all eigenvalues are
simple, then the associated eigenvectors form an orthogonal set of vectors.
(iv) Corresponding to an eigenvalue of algebraicmultiplicitym, it is possible to choosem eigenvectors that are mutually orthogonal.
Thus the full set of n eigenvectors can always be chosen to be orthogonal as well as linearly independent.
Section 7.4: Basic Theory of Systems of First Order Linear Equations.
Notation. We may write the system (⇤4) of n first order linear equations in matrix notation, with
(i) p11(t), . . . , pnn(t) the elements of an n⇥ n matrix P (t);
(ii) g1(t), . . . , gn(t) the components of a vector g(t); and
(iii) x1 = �1(t), . . . , xn = �n(t) the components of a vector x = �(t).
This equation then takes the form x0 = P (t)x+ g(t).
We will also use the notation

x(1)(t) =

2
64

x11(t)
...

xn1(t)

3
75 , . . . , x(k)(t) =

2
64

x1k(t)
...

xnk(t)

3
75 , . . . ,

to designate specific solutions of the system. Note that xij(t) = x(j)
i (t) refers to the ith component of the jth solution x(j)(t).

Note. Throughout this section, we assume that P and g are continuous on some interval ↵ < t < �.
Theorem 7.4.1. If the vector functions x(1), . . . , x(k) are solutions of the homogeneous equation

x0 = P (t)x,

then the linear combination
x = c1x(1)(t) + · · · + ckx(k)(t)

is also a solution for any constants c1, . . . , ck.
Definition. LetX(t) be the matrix whose columns are the vectors x(1), . . . , x(n). Then, theWronskian of these n solutions is

W [x(1), . . . , x(n)](t) = detX(t).

Theorem 7.4.2. If the vector functions x(1), . . . , x(n) are linearly independent solutions of the homogeneous equation x0 = P (t)x
for each point in the interval ↵ < t < �, then each solution x = �(t) of the system can be expressed as a linear combination of
x(1), . . . , x(n),

�(t) = c1x(1)(t) + · · · + cnx(n)(t),

in exactly one way.
Definition. If the vector functions x(1), . . . , x(n) are linearly independent solutions of the homogeneous equation x0 = P (t)x for
each point in the interval ↵ < t < �, then we call

x = c1x(1)(t) + · · · + cnx(n)(t),

where the constants c1, . . . , cn are arbitrary, the general solutionof this homogeneous equation. Any set of solutionsx(1), . . . , x(n)

that is linearly independent at each point in the interval ↵ < t < � is said to be a fundamental set of solutions for that interval.
Theorem 7.4.3. If x(1), . . . , x(n) are solutions of the homogeneous equation x0 = P (t)x on the interval ↵ < t < �, then in this
intervalW [x(1), . . . , x(n)] either is identically zero or else never vanishes.
Abel’s formula. We have

W (t) = c exp
Z

[p11(t) + · · · + pnn(t)] dt.
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Theorem 7.4.4. Let ei be the column vector with 1 in the ith place and zeros elsewhere. Further, let x(1), . . . , x(n) be the solutions
of the homogeneous equation x0 = P (t)x that satisfy the initial condition

x(1)(t0) = e(1), . . . , x(n)(t0) = e(n),

respectively, where t0 is any point in ↵ < t < �. Then x(1), . . . , x(n) form a fundamental set of solutions of the system.
Theorem. Consider the system x0 = P (t)x, where each element of P is a real-valued continuous function. If

x = u(t) + iv(t)

is a complex-valued solution, then its real part u(t) and its imaginary part v(t) are also solutions of this equation.
Section 7.5: Homogeneous Linear Systems with Constant Coefficients.
Let

x0 = Ax (⇤)
where A is a constant n ⇥ n matrix with real entries and with detA 6= 0, be a system of homogeneous linear equations with
constant coefficients. Then, the vector

x = ~⇠ert,

where r is a constant and ~⇠ is a vector, is a solution, provided that r is an eigenvalue and ~⇠ an associated eigenvector of the coefficient
matrixA, i.e. r and ~⇠ satisfy

(A� rI)~⇠ = 0.

To find solutions of the general differential equation x0 = Ax: Find the eigenvalues r1, . . . , rn (which need not all be different)
and eigenvectors ofA from the associated algebraic system (A� rI)~⇠ = 0. Since we assumed thatA is a real-valued matrix, we
have the following possibilities for the eigenvalues ofA:
(i) All eigenvalues are real and different from each other.
(ii) Some eigenvalues occur in complex conjugate pairs.
(iii) Some eigenvalues, either real or complex, are repeated.
In case (i), associated with each eigenvalue ri is a real eigenvector ~⇠(i), and the n eigenvectors ~⇠(1), . . . , ~⇠(n) are linearly
independent. The general solution is thus

x = c1
~⇠(1)er1t + · · · + cn

~⇠(n)ernt.

If A is real and symmetric, then all eigenvalues r1, . . . , rn are real, and even if some are repeated there is always a full set of n
linearly independent eigenvectors ~⇠(1), . . . , ~⇠(n). Hence the general solution is again

x = c1
~⇠(1)er1t + · · · + cn

~⇠(n)ernt,

where ri is the eigenvalue corresponding to ~⇠(i).
The remaining cases will be discussed in later sections.
Section 7.6: Complex Eigenvalues.
Let

x0 = Ax,

where A is a constant n ⇥ n matrix with real entries and with detA 6= 0, be a system of homogeneous linear equations with
constant coefficients. Since the elements of A are real, any complex eigenvalues must occur in complex conjugate pairs. Suppose
A has two complex conjugate eigenvalues

r1 = � + iµ and r2 = �� iµ.

The corresponding eigenvectors are complex conjugates, and may be written as ~⇠(1) = a+ ib and ~⇠(2) = a� ib, where a and b
are real. Then, we have x(1)(t) = (a+ ib)e(�+iµ)t and x(2)(t) = (a� ib)e(��iµ)t. We can show that the vectors

u(t) = e�t(a cosµt� b sinµt) and v(t) = e�t(a sinµt + b cosµt)
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are real-valued, linearly independent, solutions of the above equation. Further, r3, . . . , rn are all real and distinct eigenvalues, with
corresponding eigenvectors ~⇠(3), . . . , ~⇠(n), then the general solution of the above equation is

x = c1u(t) + c2v(t) + c3
~⇠(3)er3t + · · · + cn

~⇠(n)ernt.

Section 7.7: Fundamental Matrices.
Suppose that x(1)(t), . . . , x(n)(t) form a fundamental set of solutions for the equation

x0 = P (t)x (⇤)

on some interval ↵ < t < �. The matrix

 (t) =

2
64

x(1)
1 (t) · · · x(n)

1 (t)
...

...
x(1)

n (t) · · · x(n)
n (t)

3
75 ,

whose columns are the vectors x(1)(t), . . . , x(n)(t), is said to be a fundamental matrix for the above system. Then, the general
solution of the above equation (⇤) may be written as

x =  (t)c,

where c is a constant vector with arbitrary components c1, . . . , cn. For an initial value problem consisting of (⇤) and the initial
condition

x(t0) = x0,

where t0 is a given point in ↵ < t < � and x0 is a given initial vector, we see that

c =  �1(t0)x0.

The special fundamental matrix, denoted by �(t), has columns the vectors x(1)(t), . . . , x(n)(t) designated in Theorem 7.4.4.
Hence,�(t0) = I . In this case, the solution of the above initial value problem is

x = �(t)x0.

Further,
�(t) =  (t) �1(t0).

Definition. LetA be an n⇥ n constant matrix. We define

exp(At) = I +
1X

n=1

tn

n!
An.

Each element of this matrix sum converges for all t as n!1. Further, we have

d

dt
exp(At) = A exp(At) and exp(At)

��
t=0

= I.

Fact. It can be shown that the fundamental matrix�(t) for the initial value problem

x0 = Ax, x(0) = x0

and exp(At) are the same. Hence, we can write the solution of the above initial value problem as

x = exp(At)x0.
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Section 7.8: Repeated Eigenvalues.
Let

x0 = Ax,

where A is a constant n ⇥ n matrix with real entries and with detA 6= 0, be a system of homogeneous linear equations with
constant coefficients. Suppose that r = ⇢ is an m-fold root of the characteristic equation det(A � rI) = 0, and that there
are fewer than m linearly independent eigenvectors corresponding to ⇢. Then, there will be fewer than m solutions of the above
equation of the form ~⇠e⇢t associated with this eigenvalue. For example, suppose that r = ⇢ is a double eigenvalue of A, but that
there is only one corresponding eigenvector ~⇠. Then one solution is

x(1)(t) = ~⇠e⇢t,

where ~⇠ satisfies
(A� ⇢I)~⇠ = 0.

We find that a second solution is
x(2)(t) = ~⇠te⇢t + ~⌘e⇢t,

where ~⇠ satisfies the above equation and ~⌘ is determined from

(A� ⇢I)2~⌘ = 0.

It can be shown that it is always possible to solve this equation for ~⌘. The vector ~⌘ is called a generalized eigenvector of the matrix
A corresponding to the eigenvalue ⇢.
Section 7.9: Nonhomogeneous Linear Systems.
Consider the nonhomogeneous system

x0 = P (t)x+ g(t),

where the n⇥ n matrix P (t) and n⇥ 1 vector g(t) are continuous for ↵ < t < �. The general solution of this equation can be
expressed as

x = c1x(1)(t) + · · · + cnx(n)(t) + v(t),

where c1x(1)(t)+ · · ·+cnx(n)(t) is the general solution of the homogeneous system x0 = P (t)x, and v(t) is a particular solution
of the above nonhomogeneous system.
Methods for determining a particular solution v(t).
Diagonalization. Let P (t) = A be an n⇥ n diagonalizable constant matrix. Let T be the matrix with columns the eigenvectors
~⇠(1), . . . , ~⇠(n) ofA, and define y by x = T y. Then, we obtain the equation

y0 = (T�1AT )y+ T�1g(t) = Dy+ h(t),

where h(t) = T�1g(t) and D is the diagonal matrix whose diagonal entries are the eigenvalues r1, . . . , rn of A, arranged in
the same order as the corresponding eigenvectors ~⇠(1), . . . , ~⇠(n) that appear as columns of T . This is a system of n uncoupled
first-order linear equations for y1(t), . . . , yn(t), and hence the equations can be solved separately. Then, the solution of the original
system can be found by the relation x = T y.
Undetermined Coefficients. The method of undetermined coefficients is applied similarly to as in Section 3.5 for linear second
order equations. This method is applicable only if the coefficient matrix P (t) = A is a constant matrix, and if the components of
g(t) are polynomial, exponential, or sinusoidal functions, or sums or products of these. The procedure for choosing the form of the
solution is the same as that given in Section 3.5, except, e.g., in the case of a nonhomogeneous term of the form ue�t, where � is a
simple root of the characteristic equation. Then, we need to assume a solution of the form ate�t + be�t.
Variation of Parameters. Let

x0 = P (t)x + g(t),

where P (t) and g(t) are continuous on ↵ < t < �. Assume that a fundamental matrix (t) for the corresponding homogeneous
system x0 = P (t)x has been found. Then, the general solution of the above system is given by

x =  (t)c+ (t)
Z t

t1

 �1(s)g(s) ds,
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where t1 is any point in the interval (↵,�). The first term on the right side of this equation is the general solution of the corresponding
homogeneous system, and the second term is a particular solution.
If we have the initial value problem consisting of the above differential equation and the initial condition x(t0) = x0, then we can
find the solution of this problem most conveniently if we choose the lower limit of integration in the above integral to be the initial
point t0, and we obtain

c =  �1(t0)x0.

This solution takes a slightly simpler form if we use the fundamental matrix�(t) satisfying�(t0) = I . In this case, we have

x = �(t)x0 + �(t)
Z t

t0

��1(s)g(s) ds.

Laplace Transforms. Since the Laplace transform is an integral, the transform of a vector is computed component by component.
Thus L{x(t)} is the vector whose components are the transforms of the respective components of x(t).
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