
NOTES FROM ELEMENTARY LINEAR ALGEBRA, 10TH EDITION, BY ANTON AND RORRES 
CHAPTER 1: SYSTEMS OF LINEAR EQUATIONS AND MATRICES !

Section 1.1: Introduction to Systems of Linear Equations 
•  Every system of linear equations has zero, one, or infinitely many solutions.  There are no other possibilities.                    !

Section 1.2: Gaussian Elimination 
Definition. If a linear system has infinitely many solutions, then a set of parametric equations from which all solutions can be    

obtained by assigning numerical values to the parameters is called a general solution of the system. 
Theorem. Free Variable Theorem for Homogeneous Systems: If a homogeneous linear system has n unknowns, and if the      

reduced row echelon form of its augmented matrix has r nonzero rows, then the system has n – r free variables. 
Theorem. A homogeneous system of linear equations with more unknowns than equations has infinitely many solutions.      !

Section 1.3: Matrices and Matrix Operations 
Definition. A matrix is a rectangular array of numbers.  The numbers in the array are called the entries in the matrix.    
Definition Two matrices are defined to be equal if they have the same size and their corresponding entries are equal.     
Definition. If A and B are matrices of the same size, then the sum A + B is the matrix obtained by adding the entries of B to the    

corresponding entries of A, and the difference A – B is the matrix obtained by subtracting the entries of B from the 
corresponding entries of A.  Matrices of different sizes cannot be added or subtracted. 

•  For A = [aij] and B = [bij] having the same size, (A + B)ij = (A)ij + (B)ij = aij + bij and (A – B)ij = (A)ij – (B)ij = aij – bij.                    
Definition. If A is any matrix and c is any scalar, the the product cA is the matrix obtained by multiplying each entry of the matrix A    

by c.  The matrix cA is said to be a scalar multiple of A. 
•  For A = [aij], (cA)ij = c(A)ij = caij                    
Definition. If A is an m × r matrix and B is an r × n matrix, then the product AB is the m × n matrix whose entries are determined as    

follows: To find the entry in row i and column j of AB, single out row i from the matrix A and column j from the matrix 
B.  Multiply the corresponding entries from the row and column together, and then add up the resulting products. 

•  (AB)ij = ai1b1j + ai2b2j + ai3b3j + … + airbrj                    
Definition. If A1, A2, … Ar are matrices of the same size, and c1, c2, … cr are scalars, then an expression of the form c1A1 + c2A2 + …    

crAr is called a linear combination of A1, A2, … Ar with coefficients c1, c2, … cr. 
Theorem. If A is an m × n matrix, and if x is an n × 1 column vector, then the product Ax can be expressed as a linear combination      

of the column vectors of A in which the coefficients are the entries of x. 
Definition. If A is any m × n matrix, then the transpose of A, denoted by AT, is defined to be the n × m matrix that results from    

interchanging the rows and columns of A; that is, the first column of AT  is the first row of A, the second column of AT is 
the second row of A, and so forth. 

•  (AT)ij = (A)ji                    
Definition. If A is a square matrix, then the trace of A, denoted by tr(A), is defined to be the sum of the entries on the main diagonal    

of A.  The trace of A is undefined if A is not a square matrix. !
Section 1.4: Inverses; Algebraic Properties of Matrices 

Theorem. Properties of Matrix Arithmetic: Assuming that the sizes of the matrices are such that the indicated operations can be      
performed, the following rules of matrix arithmetic are valid:  
(a)  A + B = B + A (commutative law for addition)  
(b)  A + (B + C) = (A + B) + C (associative law for addition)  
(c)  A(BC) = (AB)C (associative law for multiplication)  
(d)  A(B + C) = AB + AC (left distributive law)  
(e)  (B + C)A = BA + CA (right distributive law)  
(f)  A(B – C) = AB – AC  
(g)  (B – C)A = BA – CA 
(h)  a(B + C) = aB + aC 
(i)  a(B – C) = aB – aC 
(j)  (a + b)C = aC + bC 
(k)  (a – b)C = aC – bC 
(l)  a(bC) = (ab)C 
(m)  a(BC) = (aB)C = B(aC) !!



Theorem. Properties of Zero Matrices: If c is a scalar, and the sizes of the matrices are such that the operations can be performed,      
then: 
(a)  A + 0 = 0 + A = A 
(b)  A – 0 = A 
(c)  A – A = A + (–A) = 0  
(d)  0A = 0 
(e)  If cA = 0, then c = 0 or A = 0 

•  For A any m × n matrix, AIn = A and ImA = A                    
Theorem. If R is the reduced row-echelon form of an n × n matrix A, then either R has a row of zeroes or R is the identity matrix In.      
Definition. If A is a square matrix, and if a matrix B of the same size can be found such that AB = BA = I, then A is said to be    

invertible (or nonsingular) and B is called an inverse of A.  If no such matrix B can be found, then A is said to be 
singular. 

Theorem. If B and C are both inverses of the matrix A, then B = C.      
•  AA–1 = I and A–1A = I                    
Theorem. The matrix A = [a  b ; c  d] is invertible if ad – bc ≠ 0, in which case the inverse is given by the formula       

A–1 = {1/(ad – bc)}[d  –b ; –c   a] 
Theorem. If A and B are invertible matrices of the same size, then AB is invertible and (AB)–1 = B–1A–1      
•  A product of any number of invertible matrices is invertible, and the inverse of the product is the product of the inverses                    

in the reverse order. 

•  If A is a square matrix, then we define the nonnegative integer powers of A to be A0 = I and An = AA⋯A with n factors,                    
for n > 0.  Moreover, if A is invertible, then we define the negative integer powers to be A–n = (A–1)n = A–1A–1⋯A–1 with n 
factors.  For r and s integers, ArAs = Ar+s and (Ar)s = Ars. 

Theorem. If A is invertible and n is a nonnegative integer, then:       
(a) A–1 is invertible and (A–1)–1 = A 
(b) An is invertible and (An)–1 = A–n = (A–1)n for n = 0, 1, 2, … 
(c) kA is invertible for any nonzero scalar k, and (kA)–1 = k–1A–1 = 1/k A–1 

Theorem. Properties of the Transpose: If the sizes of the matrices are such that the stated operations can be performed, then:       
(a) ((A)T)T = A 
(b) (A + B)T = AT + BT  

(c) (A – B)T = AT – BT  

(d) (kA)T = kAT, where k is any scalar  
(e) (AB)T = BTAT 

•  The transpose of a product of any number of matrices is equal to the product of their transposes in the reverse order.                    
Theorem. If A is an invertible matrix, then AT is also invertible and (AT)–1 = (A–1)T      !

Section 1.5: Elementary Matrices and a Method for Finding A–1 
Definition. Matrices A and B are said to be row equivalent if either (hence each) can be obtained from the other by a sequence of    

elementary row operations. 
Definition. An n × n matrix is called an elementary matrix if it can be obtained from the n × n identity matrix In by performing a    

single elementary row operation. 
Theorem. Row Operations by Matrix Multiplication: If the elementary matrix E results from performing a certain row operation      

on In and if A is a m × n matrix, then the product EA is the matrix that results when this same row operation is performed 
on A. 

Theorem. Every elementary matrix is invertible, and the inverse is also an elementary matrix.      
Theorem. Equivalent Statements: If A is an n × n matrix, then the following statements are equivalent, that is, all true or all false:       

(a) A is invertible  
(b) Ax = 0 has only the trivial solution  
(c) the reduced row-echelon form of A is In 
(d) A is expressible as a product of elementary matrices 

•  Inversion Algorithm: To find the inverse of an invertible matrix A, find a sequence of elementary row operations that                    
reduces A to the identity and then perform this same sequence of operations on In to obtain A–1. !

Section 1.6: More on Linear Systems and Invertible Matrices 
Theorem. A system of linear equations has zero, one, or infinitely many solutions.  There are no other possibilities.      
Theorem. If A is an invertible n × n matrix, then for each n × 1 matrix b, the system of equations Ax = b has exactly one solution,      

namely, x = A–1b. 



Theorem. Let A be a square matrix.  If B is a square matrix satisfying BA = I, then B = A–1.  If B is a square matrix satisfying AB =      
I, then B = A–1. 

Theorem. Equivalent Statements: If A is an n × n matrix, then the following statements are equivalent:       
(a) A is invertible  
(b) Ax = 0 has only the trivial solution  
(c) the reduced row-echelon form of A is In 
(d) A is expressible as a product of elementary matrices  
(e) Ax = b is consistent for every n × 1 matrix b  
(f) Ax = b has exactly one solution for every n × 1 matrix b 

Theorem. Let A and B be square matrices of the same size.  If AB is invertible, then A and B must also be invertible.      !
Section 1.7: Diagonal, Triangular, and Symmetric Matrices 

•  A square matrix in which all the entries above the main diagonal are zero is called lower triangular, and a square matrix                    
in which all the entries below the main diagonal are zero is called upper triangular.  A matrix that is either upper 
triangular or lower triangular is called triangular. 

•  To multiply a matrix A on the left by a diagonal matrix D, one can multiply successive rows of A by the successive                    
diagonal entries of D, and to multiply A on the right by D, one can multiply successive columns of A by the successive 
diagonal entries of D. 

Theorem. The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower      
triangular.  The product of lower triangular matrices is lower triangular, and the product of upper triangular matrices is 
upper triangular.  A triangular matrix is invertible if and only if its diagonal entries are all nonzero.  The inverse of an 
invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix is upper 
triangular. 

Definition. A square matrix A is symmetric if A = AT.    
•  A square matrix A = [aij] us symmetric if and only if (A)ij = (A)ji for all values of i and j.                    
Theorem. If A and B are symmetric matrices with the same size, and if k is any scalar, then:       

(a) AT is symmetric 
(b) A + B and A – B are symmetric  
(c) kA is symmetric. 

Theorem. The product of two symmetric matrices is symmetric if and only if the matrices commute.      
Theorem. If A is an invertible symmetric matrix, then A–1 is symmetric.      
Theorem. If A is an invertible symmetric matrix, then AAT and ATA are also invertible.     


