NOTES FROM ELEMENTARY LINEAR ALGEBRA, 10TH EDITION, BY ANTON AND RORRES

CHAPTER 2: DETERMINANTS

Section 2.1: Determinants by Cofactor Expansion

- **Definition.** If *A* is a square matrix, then the **minor of entry** a_{ij} is denoted by M_{ij} , and is defined to be the determinant of the submatrix that remains after the *i*th row and the *j*th column are deleted from *A*. The number $(-1)^{i+j}M_{ij}$ is denoted by C_{ij} and is called the **cofactor of entry** a_{ij} .
- **Theorem.** If A is any $m \times n$ matrix, then regardless of which row or column of A is chosen, the number obtained by multiplying the entries in that row or column by the corresponding cofactors and adding the resulting products is always the same.
- **Definition.** If *A* is an $n \times n$ matrix, then the number obtained by multiplying the entries in any row or column of *A* by the corresponding cofactors and adding the resulting products is called the **determinant of** *A*, and the sums themselves are called the **cofactor expansions of** *A*. That is, det(*A*) = $a_{1j}C_{1j} + a_{2j}C_{2j} + ... + a_{nj}C_{nj}$ (cofactor expansion along the *j*th column) and det(*A*) = $a_{i1}C_{i1} + a_{i2}C_{i2} + ... + a_{in}C_{in}$ (cofactor expansion along the *i*th row).
- **Theorem.** If *A* is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then det(*A*) is the product of the entries on the main diagonal of the matrix; that is, det(*A*) = $a_{11}a_{22}\cdots a_{nn}$.

Section 2.2: Evaluating Determinants by Row Reduction

- **Theorem.** Let A be a square matrix. If A has a row of zeros or a column of zeros, then det(A) = 0.
- **Theorem.** Let A be a square matrix. Then $det(A) = det(A^T)$.
- **Theorem.** Let *A* be an $n \times n$ matrix.
 - (a) If B is the matrix that results when a single row or single column of A is multiplied by a scalar k, det(B) = k det(A). (b) If B is the matrix that results when two rows or two columns of A are interchanged, then det(B) = -det(A). (c) If B is the matrix that results when a multiple of one row of A is added to another row or when a multiple of one
 - column of A is added to another column, then det(B) = det(A).
- **Theorem.** Let *E* be an $n \times n$ elementary matrix.
 - (a) If E results from multiplying a row of I_n by k, then det(E) = k.
 - (b) If E results from interchanging two rows of I_n , then det(E) = -1.
 - (c) If E results from adding a multiple of one row of I_n to another, then det(E) = 1.
- **Theorem.** If A is a square matrix with two proportional rows or two proportional columns, then det(A) = 0.

Section 2.3: Properties of Determinants

• For A an $n \times n$ matrix, $det(kA) = k^n det(A)$.

- **Theorem.** Let *A*, *B*, and *C* be $n \times n$ matrices that differ only in a single row, say the *r*th, and assume that the *r*th row of *C* can be obtained by adding corresponding entries in the *r*th rows of *A* and B. Then det(*C*) = det(*A*) + det(*B*). The same result holds for columns.
- **Lemma.** If *B* is an $n \times n$ matrix and *E* is an $n \times n$ elementary matrix, then det(*EB*) = det(*E*)det(*B*).
- **Theorem.** A square matrix A is invertible if and only if $det(A) \neq 0$.
- **Theorem.** If A and B are square matrices of the same size, then det(AB) = det(A)det(B).
- **Theorem.** If A is invertible, $det(A^{-1}) = 1/det(A)$
- **Theorem.** Equivalent Statements: If A is an $n \times n$ matrix, then the following statements are equivalent:
 - (a) A is invertible
 - (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
 - (c) the reduced row-echelon form of A is I_n
 - (d) A is expressible as a product of elementary matrices
 - (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}
 - (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} (g) det(A) $\neq 0$