NOTES FROM ELEMENTARY LINEAR ALGEBRA, 10TH EDITION, BY ANTON AND RORRES

CHAPTER 3: EUCLIDEAN VECTOR SPACES

Section 3.1: Vectors in 2-Space, 3-Space, and n-Space

- **Definition.** If *n* is a positive integer, then an **ordered** *n***-tuple** is a sequence of *n* real numbers $(a_1, a_2, ..., a_n)$. The set of all ordered *n*-tuples is called *n*-space and is denoted by \mathbb{R}^n .
- **Definition.** Two vectors $\mathbf{v} = (v_1, v_2, \dots, v_n)$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ in \mathbf{R}^n are said to be **equivalent** (also **equal**) if $v_1 = w_1, v_2 = w_2$, $\dots, v_n = w_n$. We indicate this by writing $\mathbf{v} = \mathbf{w}$.
- **Definition.** If $\mathbf{v} = (v_1, v_2, ..., v_n)$ and $\mathbf{w} = (w_1, w_2, ..., w_n)$ are vectors in \mathbf{R}^n , and if k is any scalar, then we define $\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, ..., v_n + w_n)$; $\mathbf{kv} = (kv_1, kv_2, ..., kv_n)$; $-\mathbf{v} = (-v_1, -v_2, ..., -v_n)$; $\mathbf{w} \mathbf{v} = \mathbf{w} + (-\mathbf{v}) = (w_1 v_1, w_2 v_2, ..., w_n v_n)$
- **Theorem.** If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbf{R}^n , and if k and m are scalars, then:

(a) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (b) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (c) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (d) $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (e) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ (f) $(k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$ (g) $k(m\mathbf{u}) = (km)\mathbf{u}$ (h) $1\mathbf{u} = \mathbf{u}$

- **Theorem.** If v is a vector in \mathbb{R}^n and k is a scalar, then: (a) $0\mathbf{v} = \mathbf{0}$ (b) $\mathbf{k}\mathbf{0} = \mathbf{0}$ (c) $(-1)\mathbf{v} = -\mathbf{v}$
- **Definition.** If w is a vector in \mathbb{R}^n , then w is said to be a **linear combination** of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ in \mathbb{R}^n if it can be expressed in the form $\mathbf{w} = k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_r\mathbf{v}_r$ where k_1, k_2, \dots, k_r are scalars. These scalars are called the **coefficients** of the linear combination. In the case where r = 1, $\mathbf{w} = k_1\mathbf{v}_1$, so that a linear combination of a single vector is just a scalar multiple of that vector.

Section 3.2: Norm, Dot Product, and Distance in Rⁿ

Definition.	If $\mathbf{v} = (v_1, v_2,, v_n)$ is a vector in \mathbf{R}^n , then the norm of \mathbf{v} (also called the length of \mathbf{v} or the magnitude of \mathbf{v}) is denoted by $ \mathbf{v} $, and is defined by the formula $ \mathbf{v} = \sqrt{(v_1^2 + v_2^2 + v_3^2 + + v_n^2)}$
Theorem.	If v is a vector in \mathbb{R}^n , and if k is any scalar, then: $ \mathbf{v} \ge 0$, $ \mathbf{v} = 0$ if and only if $\mathbf{v} = 0$, $ k\mathbf{v} = k \mathbf{v} $
•	unit vector $\mathbf{u} = (1/ \mathbf{v})\mathbf{v}$
•	$\mathbf{v} = (v_1, v_2, \dots, v_n) = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$
Definition.	If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are points in \mathbf{R}^n , then we denote the distance between \mathbf{u} and \mathbf{v} by $d(\mathbf{u}, \mathbf{v})$ and define it to be $d(\mathbf{u}, \mathbf{v}) = \mathbf{u} - \mathbf{v} = \sqrt{[(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2]}$
Definition.	If u and v are nonzero vectors in \mathbb{R}^2 or \mathbb{R}^3 , and if θ is the angle between u and v , then the dot product (also called the Euclidean inner product) of u and v is denoted by u • v and is defined as \mathbf{u} • v = $ \mathbf{u} \mathbf{v} \cos \theta$. If $\mathbf{u} = 0$ or $\mathbf{v} = 0$, then we define \mathbf{u} • v to be 0.
Definition.	If $\mathbf{u} = (u_1, u_2,, u_n)$ and $\mathbf{v} = (v_1, v_2,, v_n)$ are any vectors in \mathbb{R}^n , then the dot product (also called the Euclidean inner product) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ is defined by $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + + u_n v_n$
•	$\ \mathbf{v}\ = \sqrt{(\mathbf{v} \cdot \mathbf{v})}$
Theorem.	If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then: (a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (symmetry property) (b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (distributive property) (c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$ (homogeneity property) (d) $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = 0$ (positivity property)
Theorem.	If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then: (a) $0 \cdot \mathbf{v} = \mathbf{v} \cdot 0 = 0$ (b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$ (c) $\mathbf{u} \cdot (\mathbf{v} - \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{w}$ (d) $(\mathbf{u} - \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} - \mathbf{v} \cdot \mathbf{w}$ (e) $k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$
•	$\theta = \cos^{-1}[(\mathbf{u} \cdot \mathbf{v})/(\mathbf{u} \mathbf{v})]$
Theorem.	Cauchy-Schwarz Inequality : If $\mathbf{u} = (u_1, u_2,, u_n)$ and $\mathbf{v} = (v_1, v_2,, v_n)$ are vectors in \mathbf{R}^n , then: $ \mathbf{u} \cdot \mathbf{v} \le \mathbf{u} \mathbf{v} $
Theorem.	If u, v, and w are vectors in \mathbb{R}^n , then: $ \mathbf{u}+\mathbf{v} \le \mathbf{u} + \mathbf{v} $ (Triangle Inequality for Vectors) and $d(\mathbf{u},\mathbf{v}) \le d(\mathbf{u},\mathbf{w}) + d(\mathbf{w},\mathbf{v})$ (Triangle Inequality for Distances)
Theorem.	Parallelogram Equation for Vectors : If u and v are vectors in \mathbf{R}^n , then: $\ \mathbf{u} + \mathbf{v}\ ^2 + \ \mathbf{u} - \mathbf{v}\ ^2 = 2(\ \mathbf{u}\ ^2 + \ \mathbf{v}\ ^2)$

Theorem. If **u** and **v** are vectors in \mathbf{R}^n with the Euclidean inner product, then $\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} ||\mathbf{u} + \mathbf{v}||^2 - \frac{1}{4} ||\mathbf{u} - \mathbf{v}||^2$

• $\mathbf{u} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{u}$

• $A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v}$

• $\mathbf{u} \cdot A \mathbf{v} = A^T \mathbf{u} \cdot \mathbf{v}$

Section 3.3: Orthogonality

Definition.	Two nonzero vectors u and v in \mathbb{R}^n are said to be orthogonal (or perpendicular) if $\mathbf{u} \cdot \mathbf{v} = 0$. We will also agree that the zero vector in \mathbb{R}^n is orthogonal to every vector in \mathbb{R}^n . A nonempty set of vectors in \mathbb{R}^n is called an orthogonal set if all pairs of distinct vectors in the set are orthogonal. An orthogonal set of unit vectors is called an orthonormal set .
•	Point-Normal Form of the Equation of a Line for $P_0(x_0, y_0)$ and $\mathbf{n} = (a, b)$: $a(x - x_0) + b(y - y_0) = 0$
•	Point-Normal Form of the Equation of a Plane for $P_0(x_0, y_0, z_0)$ and $\mathbf{n} = (a, b, c)$: $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$
Theorem.	(a) If a and b are constants that are not both zero, then an equation of the form $ax + by + c = 0$ represents a line in R^2 with
	normal $\mathbf{n} = (a,b)$. (b) If a, b, and c are constants that are not all zero, then an equation of the form $ax + by + cz + d = 0$ represents a plane in \mathbf{R}^3 with normal $\mathbf{n} = (a,b,c)$.
•	$\mathbf{n} \bullet \mathbf{x} = 0$
Theorem.	Projection Theorem : If u and a are vectors in \mathbb{R}^n , and if $\mathbf{a} \neq 0$, then u can be expressed in exactly one way in the form $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$, where \mathbf{w}_1 is a scalar multiple of a and \mathbf{w}_2 is orthogonal to a .
•	$\text{proj}_{\mathbf{a}}\mathbf{u} = (\mathbf{u} \cdot \mathbf{a} / \mathbf{a} ^2)\mathbf{a} \text{ (vector component of } \mathbf{u} \text{ along } \mathbf{a} \text{)}$
•	$\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u} = \mathbf{u} - (\mathbf{u} \cdot \mathbf{a} / \mathbf{a} ^2)\mathbf{a}$ (vector component of \mathbf{u} orthogonal to \mathbf{a})
•	$\ \operatorname{proj}_{\mathbf{a}}\mathbf{u}\ = \mathbf{u}\cdot\mathbf{a} /\ \mathbf{a}\ = \ \mathbf{u}\ \cos \theta $ where θ is the angle between \mathbf{u} and \mathbf{a} .
Theorem.	Theorem of Pythagoras in \mathbb{R}^n : If u and v are orthogonal vectors in \mathbb{R}^n with the Euclidean inner product, then $ \mathbf{u} + \mathbf{v} ^2 = \mathbf{u} ^2 + \mathbf{v} ^2$
Theorem.	(<i>a</i>) In R^2 , the distance between the point $P_0(x_0, y_0)$ and the line $ax + by + c = 0$ is $D = ax_0 + by_0 + c /\sqrt{(a^2 + b^2)}$ (<i>b</i>) In R^3 , the distance between the point $P_0(x_0, y_0, z_0)$ and the plane $ax + by + cz + d = 0$ is $D = ax_0 + by_0 + cz_0 + d /\sqrt{(a^2 + b^2 + c^2)}$
	Section 3.4: The Geometry of Linear Systems
Theorem.	Let L be the line in \mathbb{R}^2 or \mathbb{R}^3 that contains the point \mathbf{x}_0 and is parallel to the nonzero vector \mathbf{v} . Then the equation of the
Theorem.	line through \mathbf{x}_0 that is parallel to \mathbf{v} is $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$. If $\mathbf{x}_0 = 0$, then the line passes through the origin and the equation has the form $\mathbf{x} = t\mathbf{v}$.
Theorem.	Let <i>W</i> be the plane in \mathbb{R}^3 that contains the point \mathbf{x}_0 and is parallel to the noncollinear vectors \mathbf{v}_1 and \mathbf{v}_2 . Then an equation of the plane through \mathbf{x}_0 that is parallel to \mathbf{v}_1 and \mathbf{v}_2 is given by $\mathbf{x} = \mathbf{x}_0 + t_1\mathbf{v}_1 + t_2\mathbf{v}_2$. If $\mathbf{x}_0 = 0$, then the plane passes through the origin and the equation has the form $\mathbf{x} = t_1\mathbf{v}_1 + t_2\mathbf{v}_2$.
Definition.	If \mathbf{x}_0 and \mathbf{v} are vectors in \mathbf{R}^n , and if \mathbf{v} is nonzero, then the equation $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$ defines the line through \mathbf{x}_0 that is parallel to \mathbf{v} . In the special case that $\mathbf{x}_0 = 0$, the line is said to pass through the origin.
Definition.	If \mathbf{x}_0 , \mathbf{v}_1 , and \mathbf{v}_2 are vectors in \mathbf{R}^n , and if \mathbf{v}_1 and \mathbf{v}_2 are not collinear, then the equation $\mathbf{x} = \mathbf{x}_0 + t_1\mathbf{v}_1 + t_2\mathbf{v}_2$ defines the plane through \mathbf{x}_0 that is parallel to \mathbf{v}_1 and \mathbf{v}_2 . In the special case that $\mathbf{x}_0 = 0$, the line is said to pass through the origin.
Definition.	If \mathbf{x}_0 and \mathbf{x}_1 are vectors in \mathbf{R}^n , then the equation $\mathbf{x} = \mathbf{x}_0 + t(\mathbf{x}_1 - \mathbf{x}_0)$, $(0 \le t \le 1)$, defines the line segment from \mathbf{x}_0 to \mathbf{x}_1 . When convenient, this equation can be written as $\mathbf{x} = (1 - t)\mathbf{x}_0 + t\mathbf{x}_1$, $(0 \le t \le 1)$.
Theorem.	If A is an $m \times n$ matrix, then the solution set of the homogeneous linear system $A\mathbf{x} = 0$ consists of all vectors in \mathbf{R}^n that are orthogonal to every row vector of A.
Theorem.	The general solution of a consistent linear system $A\mathbf{x} = \mathbf{b}$ can be obtained by adding any specific solution of $A\mathbf{x} = \mathbf{b}$ to the general solution of $A\mathbf{x} = 0$.
	Section 3.5: Cross Product
Definition	If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are vectors in 3-space, then the cross product $\mathbf{u} \times \mathbf{v}$ is the vector defined by $\mathbf{u} \times \mathbf{v} =$
	$(u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$
Theorem.	Relationships Involving Cross Product and Dot Product : If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in 3-space, then: (a) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ ($\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u})
	(a) $\mathbf{u}^{(\mathbf{u} \cdot \mathbf{v})} = 0^{(\mathbf{u} \cdot \mathbf{v})}$ (a) $\mathbf{v}^{(\mathbf{u} \cdot \mathbf{v})} = 0^{(\mathbf{u} \cdot \mathbf{v})}$ (a) $\mathbf{v}^{(\mathbf{u} \cdot \mathbf{v})} = 0^{(\mathbf{u} \cdot \mathbf{v})}$ (a) $\mathbf{v}^{(\mathbf{u} \cdot \mathbf{v})} = 0^{(\mathbf{u} \cdot \mathbf{v})}$ (b) $\mathbf{v}^{(\mathbf{u} \cdot \mathbf{v})} = 0^{(\mathbf{u} \cdot \mathbf{v})}$ (c) $\mathbf{v}^{(\mathbf{u} \cdot \mathbf{v})} = 0^{(\mathbf{u} \cdot v$
	(c) $\ \mathbf{u} \times \mathbf{v}\ ^2 = \ \mathbf{u}\ ^2 \ \mathbf{v}\ ^2 - (\mathbf{u} \cdot \mathbf{v})^2$ (Lagrange's Identity)
	(d) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ (relationship between cross and dot products)
Theorem	(e) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$ (relationship between cross and dot products) Proportion of Cross Product: If \mathbf{u} , \mathbf{v} and \mathbf{w} are any vectors in 2 space and k is any scalar, then
Theorem.	Properties of Cross Product: If \mathbf{u} , \mathbf{v} , and \mathbf{w} are any vectors in 3-space and k is any scalar, then: (a) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$ (b) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$

 $(c) (\mathbf{u}+\mathbf{v})\times\mathbf{w} = (\mathbf{u}\times\mathbf{w}) + (\mathbf{v}\times\mathbf{w})$ (d) $k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$ (e) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$ (f) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$

- Area of a Parallelogram: If u and v are vectors in 3-space, then $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta$ is equal to the area of the Theorem. parallelogram determined by **u** and **v**.
 - $|u_1 \ u_2 \ u_3|$ *V*₁ *V*₂ *V*₃
- **Definition.** If u, v, and w are vectors in 3-space, then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = |w_1 w_2 w_3|$ is called the scalar triple product of u, v, and w.
- (a) The absolute value of the determinant det $\begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix}$ is equal to the area of the parallelogram in 2-space determined Theorem. by the vectors $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. (b) The absolute value of the determinant det $\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}$ is equal to the volume of the parallelepiped in 3-space

determined by the vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$.

If the vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$ have the same initial point, then they lie in the same plane Theorem. if and only if $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 0$.