
NOTES FROM ELEMENTARY LINEAR ALGEBRA, 10TH EDITION, BY ANTON AND RORRES 
CHAPTER 3: EUCLIDEAN VECTOR SPACES !

Section 3.1: Vectors in 2-Space, 3-Space, and n-Space 
Definition. If n is a positive integer, then an ordered n-tuple is a sequence of n real numbers (a1, a2, … , an).  The set of all ordered    

n-tuples is called n-space and is denoted by Rn. 
Definition. Two vectors v = (v1, v2, … , vn) and w = (w1, w2, … , wn) in Rn are said to be equivalent (also equal) if v1 = w1, v2 = w2,    

… , vn = wn.  We indicate this by writing v = w. 
Definition. If v = (v1, v2, … , vn) and w = (w1, w2, … , wn) are vectors in Rn, and if k is any scalar, then we define v + w = (v1 + w1, v2    

+ w2, … , vn + wn); kv = (kv1, kv2, … , kvn); –v = (–v1, –v2, … , –vn); w – v = w + (–v) = (w1 – v1, w2 – v2, … , wn – vn) 
Theorem. If u, v, and w are vectors in Rn, and if k and m are scalars, then:       

(a) u + v = v + u  
(b) u + (v + w) = (u + v) + w  
(c) u + 0 = 0 + u = u  
(d) u + (–u) = 0 
(e) k(u + v) = ku + kv 
(f)(k + m)u = ku + mu  
(g) k(mu) = (km)u  
(h) 1u = u 

Theorem. If v is a vector in Rn and k is a scalar, then:       
(a) 0v = 0  
(b) k0 = 0 
(c) (–1)v = –v 

Definition. If w is a vector in Rn, then w is said to be a linear combination of the vectors v1, v2, … , vr in Rn if it can be expressed in    
the form w = k1v1 + k2v2 + … + krvr where k1, k2, … , kr are scalars.  These scalars are called the coefficients of the linear 
combination.  In the case where r = 1, w = k1v1, so that a linear combination of a single vector is just a scalar multiple of 
that vector. !

Section 3.2: Norm, Dot Product, and Distance in Rn 
Definition. If v = (v1, v2, … , vn) is a vector in Rn, then the norm of v (also called the length of v or the magnitude of v) is denoted    

by ||v||, and is defined by the formula ||v|| = √(v12 + v22 + v32 + … + vn2) 
Theorem. If v is a vector in Rn, and if k is any scalar, then: ||v|| ≥ 0, ||v|| = 0 if and only if v = 0, ||kv|| = |k| ||v||      
•  unit vector u = (1/||v||)v                    
•  v = (v1, v2, … , vn) = v1e1 + v2e2 + … + vnen                    
Definition. If u = (u1, u2, … , un) and v = (v1, v2, … , vn) are points in Rn, then we denote the distance between u and v by d(u,v) and    

define it to be d(u,v) = ||u – v|| = √[(u1 – v1)2 + (u2 – v2)2 + … + (un – vn)2] 
Definition. If u and v are nonzero vectors in R2 or R3, and if θ is the angle between u and v, then the dot product (also called the    

Euclidean inner product) of u and v is denoted by u•v and is defined as u•v = ||u|| ||v|| cos θ.  If u = 0 or v = 0, then we 
define u•v to be 0. 

Definition. If u = (u1, u2, … , un) and v = (v1, v2, … , vn) are any vectors in Rn, then the dot product (also called the Euclidean inner    
product) of u and v is denoted by u•v is defined by u•v = u1v1 + u2v2 + … + unvn 

•  ||v|| = √(v•v)                    
Theorem. If u, v, and w are vectors in Rn, and if k is a scalar, then:       

(a) u•v = v•u (symmetry property)  
(b) u•(v+w) = u•v + u•w (distributive property)  
(c) k(u•v) = (ku)•v (homogeneity property)  
(d) v•v ≥ 0 and v•v = 0 if and only if v = 0 (positivity property) 

Theorem. If u, v, and w are vectors in Rn, and if k is a scalar, then:       
(a) 0•v = v•0 = 0 
(b) (u+v)•w = u•w + v•w  
(c) u•(v–w) = u•v – u•w  
(d) (u–v)•w = u•w – v•w  
(e) k(u•v) = u•(kv) 

•  θ = cos–1[(u•v)/(||u|| ||v||)]                    
Theorem. Cauchy-Schwarz Inequality: If u = (u1, u2, … , un) and v = (v1, v2, … , vn) are vectors in Rn, then: |u•v| ≤ ||u|| ||v||      
Theorem. If u, v, and w are vectors in Rn, then: ||u+v|| ≤ ||u|| + ||v|| (Triangle Inequality for Vectors) and d(u,v) ≤ d(u,w) + d(w,v)      

(Triangle Inequality for Distances) 
Theorem. Parallelogram Equation for Vectors: If u and v are vectors in Rn, then: ||u + v||2 + ||u – v||2 = 2(||u||2 + ||v||2)      



Theorem. If u and v are vectors in Rn with the Euclidean inner product, then u•v = ¼||u + v||2 – ¼||u – v||2      
•  u•v = vTu                    
•  Au•v = u•ATv                    
•  u•Av = ATu•v                    !

Section 3.3: Orthogonality 
Definition. Two nonzero vectors u and v in Rn are said to be orthogonal (or perpendicular) if u•v = 0.  We will also agree that the    

zero vector in Rn is orthogonal to every vector in Rn.  A nonempty set of vectors in Rn is called an orthogonal set if all 
pairs of distinct vectors in the set are orthogonal.  An orthogonal set of unit vectors is called an orthonormal set. 

•  Point-Normal Form of the Equation of a Line for P0(x0,y0) and n = (a,b): a(x – x0) + b(y – y0) = 0                    
•  Point-Normal Form of the Equation of a Plane for P0(x0,y0,z0) and n = (a,b,c): a(x – x0) + b(y – y0) + c(z – z0) = 0                    
Theorem. (a) If a and b are constants that are not both zero, then an equation of the form ax + by + c = 0 represents a line in R2 with      

normal n = (a,b).  
(b) If a, b, and c are constants that are not all zero, then an equation of the form ax + by + cz + d = 0 represents a plane in 
R3 with normal n = (a,b,c). 

•  n•x = 0                    
Theorem. Projection Theorem: If u and a are vectors in Rn, and if a ≠ 0, then u can be expressed in exactly one way in the form u      

= w1 + w2, where w1 is a scalar multiple of a and w2 is orthogonal to a. 
•  projau = (u•a/||a||2)a (vector component of u along a)                    
•  u – projau = u –(u•a/||a||2)a (vector component of u orthogonal to a)                    
•  ||projau|| = |u•a|/||a|| = ||u|| |cos θ| where θ is the angle between u and a.                    
Theorem. Theorem of Pythagoras in Rn: If u and v are orthogonal vectors in Rn with the Euclidean inner product, then ||u + v||2 =      

||u||2 + ||v||2 
Theorem. (a) In R2, the distance between the point P0(x0, y0) and the line ax +by + c = 0 is D = |ax0 +by0 + c|/√(a2 + b2)       

(b) In R3, the distance between the point P0(x0, y0, z0) and the plane ax +by + cz + d = 0 is  
D = |ax0 +by0 + cz0 + d|/√(a2 + b2 + c2) !

Section 3.4: The Geometry of Linear Systems 
Theorem. Let L be the line in R2 or R3 that contains the point x0 and is parallel to the nonzero vector v.  Then the equation of the      

line through x0 that is parallel to v is x = x0 + tv.  If x0 = 0, then the line passes through the origin and the equation has 
the form x = tv. 

Theorem. Let W be the plane in R3 that contains the point x0 and is parallel to the noncollinear vectors v1 and v2.  Then an equation      
of the plane through x0 that is parallel to v1 and v2 is given by x = x0 + t1v1 + t2v2.  If x0 = 0, then the plane passes 
through the origin and the equation has the form x = t1v1 + t2v2. 

Definition. If x0 and v are vectors in Rn, and if v is nonzero, then the equation x = x0 + tv defines the line through x0 that is parallel    
to v.  In the special case that x0 = 0, the line is said to pass through the origin. 

Definition. If x0, v1, and v2 are vectors in Rn, and if v1 and v2 are not collinear, then the equation x = x0 + t1v1 + t2v2 defines the plane    
through x0 that is parallel to v1 and v2.  In the special case that x0 = 0, the line is said to pass through the origin. 

Definition. If x0 and x1 are vectors in Rn, then the equation x = x0 + t(x1 – x0), (0 ≤ t ≤ 1), defines the line segment from x0 to x1.     
When convenient, this equation can be written as x = (1 – t)x0 + tx1, (0 ≤ t ≤ 1). 

Theorem. If A is an m × n matrix, then the solution set of the homogeneous linear system Ax = 0 consists of all vectors in Rn that      
are orthogonal to every row vector of A. 

Theorem. The general solution of a consistent linear system Ax = b can be obtained by adding any specific solution of Ax = b to      
the general solution of Ax = 0. !

Section 3.5: Cross Product 
Definition. If u = (u1, u2, u3) and v = (v1, v2, v3) are vectors in 3-space, then the cross product u × v is the vector defined by u × v =    

(u2v3 – u3v2, u3v1 – u1v3, u1v2 – u2v1). 
Theorem. Relationships Involving Cross Product and Dot Product: If u, v, and w are vectors in 3-space, then:       

(a) u•(u×v) = 0  (u×v is orthogonal to u)  
(b) v•(u×v) = 0  (u×v is orthogonal to v)  
(c) ||u×v||2 = ||u||2||v||2 – (u•v)2  (Lagrange’s Identity)  
(d) u×(v×w) = (u•w)v – (u•v)w  (relationship between cross and dot products)  
(e) (u×v)×w = (u•w)v – (v•w)u  (relationship between cross and dot products) 

Theorem. Properties of Cross Product: If u, v, and w are any vectors in 3-space and k is any scalar, then:       
(a) u×v = –(v×u) 
(b) u×(v+w) = (u×v) + (u×w) 



(c) (u+v)×w = (u×w) + (v×w) 
(d) k(u×v) = (ku)×v = u×(kv) 
(e) u×0 = 0×u = 0  
(f) u×u = 0 

Theorem. Area of a Parallelogram: If u and v are vectors in 3-space, then ||u × v|| = ||u|| ||v|| sin θ is equal to the area of the      
parallelogram determined by u and v. 

Definition. If u, v, and w are vectors in 3-space, then u•(v×w) = '  is called the scalar triple product of u, v, and w.    

Theorem. (a) The absolute value of the determinant det ' is equal to the area of the parallelogram in 2-space determined      
by the vectors u = (u1, u2) and v = (v1, v2).  

(b) The absolute value of the determinant det ' is equal to the volume of the parallelepiped in 3-space 
determined by the vectors u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3). 

Theorem. If the vectors u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3) have the same initial point, then they lie in the same plane      
if and only if u•(v×w) = 0.

|u1   u2    u3| 
|v1    v2    v3| 
|w1  w2  w3|

⎡u1   u2⎤ ⎣v1    v2⎦

⎡u1   u2    u3⎤ ⎢v1    v2    v3⎥ ⎣w1  w2  w3⎦


