
NOTES FROM ELEMENTARY LINEAR ALGEBRA, 10TH EDITION, BY ANTON AND RORRES 
CHAPTER 4: GENERAL VECTOR SPACES !

Section 4.1: Real Vector Spaces 
Definition. Let V be an arbitrary nonempty set of objects on which two operations are defined: addition, and multiplication by    

scalars (numbers).  By addition, we mean a rule for associating with each pair of objects u and v in V an object u + v, 
called the sum of u and v; by scalar multiplication, we mean a rule for associating with each scalar k and each object u 
in V an object ku, called the scalar multiple of u by k.  If the following axioms are satisfied by all objects u, v, w in V 
and all scalars k and m, then we call V a vector space and we call the objects in V vectors. 
1. If u and v are objects in V, then u + v is in V. 
2. u + v = v + u  
3. u + (v + w) = (u + v) + w  
4. There is an object 0 in V, called a zero vector for V, such that 0 + u = u + 0 = u for all u in V. 
5. For each u in V, there is an object –u in V, called a negative of u, such that u + (–u) = (–u) + u = 0. 
6. If k is any scalar and u is any object in V, then ku is in V. 
7. k(u + v) = ku + kv 
8. (k + m)u = ku + mu  
9. k(mu) = (km)(u)  
10. 1u = u 

•  To Show that a Set with Two Operations is a Vector Space:                   
Step 1: Identify the set V of objects that will become vectors.  
Step 2: Identify the addition and scalar multiplication operations on V. 
Step 3: Verify Axioms 1 and 6; that is, adding two vectors in V produces a vector in V, and multiplying a vector in V by 
a scalar also produces a vector in V.  Axion 1 is called closure under addition and Axiom 6 is called closure under 
multiplication. 
Step 4: Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold. 

Theorem. Let V be a vector space, u a vector in V, and k a scalar; then:       
(a) 0u = 0 
(b) k0 = 0 
(c) (–1)u = –u  
(d) If ku = 0 then k = 0 or u = 0. !

Section 4.2: Subspaces 
Definition. A subset W of a vector space V is called a subspace of V if W itself is a vector space under the addition and scalar    

multiplication defined on V. 
Theorem. If W is a set of one or more vectors from a vector space V, then W is a subspace of V if and only if the following      

conditions hold:  
(a) If u and v are vectors in W, then u + v is in W.   
(b) If k is any scalar and u is any vector in W, then ku is in W. 

Theorem. If W1, W2, … Wr are subspaces of a vector space V, then the intersection of these subspaces is also a subspace of V.      
Definition. If w is a vector in a vector space V, then w is said to be a linear combination of the vectors v1, v2, … , vr if it can be    

expressed in the form w = k1v1 + k2v2 + … + krvr where k1, k2, … , kr are scalars.  These scalars are called the 
coefficients of the linear combination. 

Theorem. If S = {w1, w2, … , wr} is a nonempty set of vectors in a vector space V, then the set W of all possible linear      
combinations of the vectors in S is a subspace of V.  This set W is the “smallest” subspace of V that contains all of the 
vectors in S in the sense that any other subspace of V that contains those vectors contains W. 

Definition. The subspace of a vector space V that is formed from all possible linear combinations of the vectors in a nonempty set S    
is called the span of S, and we say that the vectors in S span that subspace.  If S = {w1, w2, … , wr}, then we denote the 
span of S by span{w1, w2, … , wr} or span(S). 

Theorem. The solution set of a homogeneous linear system Ax = 0 in n unknowns is a subspace of Rn.      
Theorem. If S = {v1, v2, … , vr} and S′ = {w1, w2, … , wk} are nonempty sets of vectors in a vector space V, then span{v1, v2, … ,      

vr} = span{w1, w2, … , wk} if and only if each vector in S is a linear combination of those in S′ and each vector in S′ is a 
linear combination of those in S. !

Section 4.3: Linear Independence 
Definition. If S = {v1, v2, … , vr} is a nonempty set of vectors, then the vector equation k1v1 + k2v2 + … + krvr = 0 has at least one    

solution, namely k1 = 0, k2 = 0, … , kr = 0.  If this is the only solution, then S is called a linearly independent set.  If 
there are other solutions, then S is called a linearly dependent set. 

Theorem. A set S with two or more vectors is:       
(a) Linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the other 



vectors in S.   
(b) Linearly independent if and only if no vector in S is expressible as a linear combination of the other vectors in S. 

Theorem. A finite set that contains 0 is linearly dependent.  A set with exactly one vector is linearly independent if and only if that      
vector is 0.  A set with exactly two vectors is linearly independent if and only if neither vector is a scalar multiple of the 
other. 

Theorem. Let S = {v1, v2, … , vr} be a set of vectors in Rn.  If r > n, then S is linearly dependent.      
Definition. If f1 = f1(x), f2 = f2(x), … , fn = fn(x) are functions that are n – 1 times differentiable on the interval (–∞, ∞), then the    

determinant W(x) = #  is called the Wronskian of f1, f2, … , fn. 
Theorem. If the functions f1, f2, … , fn have n – 1 continuous derivatives on the interval (–∞, ∞), and if the Wronskian of these      

functions is not identically zero on (–∞, ∞), then they form a linearly independent set of vectors in C(n – 1)(–∞, ∞). !
Section 4.4: Coordinates and Basis 

Definition. If V is any vector space and S = {v1, v2, … , vn} is a set of vectors in V, then S is called a basis for V if S is linearly    
independent and S spans V. 

•  A nonzero vector space V is called finite-dimensional if it contains a finite set of vectors {v1, v2, … , vn} that forms a                    
basis.  If no such set exists, V is called infinite-dimensional.  In addition, we shall regard the zero vector space to be 
finite dimensional. 

Theorem. Uniqueness of Basis Representation: If S = {v1, v2, … , vn} is a basis for a vector space V, then every vector v in V can      
be expressed in the form v = c1v1 + c2v2 + … + cnvn in exactly one way. 

Definition. If S = {v1, v2, … , vn} is a basis for a vector space V, and v = c1v1 + c2v2 + … + cnvn is the expression for a vector v in    
terms of the basis S, then the scalars c1, c2, … , cn are called the coordinates of v relative to the basis S.  The vector (c1, 
c2, … , cn) in Rn constructed from these coordinates is called the coordinate vector of v relative to S; it is denoted by 
(v)S = (c1, c2, … , cn). !

Section 4.5: Dimension 
Theorem. All bases for a finite-dimensional vector space have the same number of vectors.      
Theorem. Let V be a finite-dimensional vector space, and let {v1, v2, … , vn} be any basis.  If a set has more than n vectors, then it      

is linearly dependent.  If a set has fewer than n vectors, then it does not span V. 
Definition. The dimension of a finite-dimensional vector space V, denoted by dim(V), is defined to be the number of vectors in a    

basis for V.  In addition, the zero vector space is defined to have dimension zero. 
Theorem. Plus/Minus Theorem: Let S be a nonempty set of vectors in a vector space V.        

(a) If S is a linearly independent set, and if v is a vector in V that is outside of span(S), then the set S ⋃ {v} that results by 
inserting v into S is still linearly independent.   
(b) If v is a vector in S that is expressible as a linear combination of other vectors in S, and if S – {v} denotes the set 
obtained by removing v from S, then S and S – {v} span the same space; that is, span(S) = span(S – {v}). 

Theorem. Let V be an n-dimensional vector space, and let S be a set in V with exactly n vectors.  Then S is a basis for V if either S      
spans V or S is linearly independent. 

Theorem. Let S be a finite set of vectors in a finite-dimensional vector space V.        
(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.   
(b) If S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis for V by inserting 
appropriate vectors into S. 

Theorem. If W is a subspace of a finite-dimensional vector space V, then:      
(a) W is finite-dimensional  
(b) dim(W) ≤ dim(V)  
(c) W = V if and only if dim(W) =  dim(V) !

Section 4.6: Change of Basis 
•  The Change-of-Basis Problem: If v is a vector in a finite-dimensional vector space V, and if we change the basis for V                    

from a basis B to a basis B′, how are the coordinate vectors [v]B and [v]B′ related? 
•  Solution of the Change-of-Basis Problem: If we change the basis for a vector space V from an old basis B = {u1, u2,                    

… , un} to a new basis B′ = {u′1, u′2, … , u′n}, then for each vector v in V, the old coordinate vector [v]B is related to the 
new coordinate vector [v]B′ by the equation [v]B = P[v]B′, where the columns of P are the coordinate vectors of the new 
basis vectors relative to the old basis; that is, the column vectors of P are [u′1]B, [u′2]B, … , [u′n]B. 

•  P B′→ B = [ [u′1]B | [u′2]B | … | [u′n]B ]                    
•  P B→ B′ = [ [u1]B′ | [u2]B′ | … | [un]B′ ]                    

|  f1(x)    f2(x)     …    fn(x)    |!
|  f1′(x)   f2′(x)    …    fn′(x)   |!
|   ⋮          ⋮              ⋮     |!
| f1(n–1)(x)  f2(n–1)(x) …    fn(n–1)(x) |



•  The columns of the transition matrix from an old basis to a new basis are the coordinate vectors of the old basis relative                    
to the new basis. 

•  [v]B′ = P B′→ B [v]B′                    
•  [v]B′ = P B→ B′ [v]B′                    
Theorem. If P is the transition matrix from a basis B′ to a basis B for a finite-dimensional vector space V, then P is invertible and       

P–1 is the transition matrix from B to B′. 
•  A Procedure for Computing P B→ B′:                    

Step 1: Form the matrix [ B′ | B ].  
Step 2: Use elementary row operations to reduce the matrix in Step 1 to reduced row echelon form.  
Step 3: The resulting matrix will be [ I | P B→ B′ ]. 
Step 4: Extract the matrix P B→ B′ from the right side of the matrix in Step 3. 

•  [new basis | old basis] → (row operations) [ I | transition from old to new]                    
Theorem. Let B′ = {u1, u2, … , un} be any basis for the vector space Rn and let S = {e1, e2, … , en} be the standard basis for Rn.  If      

the vectors in these bases are written in column form, then P B′→ S  = [u1 | u2 | … | un]. !
Section 4.7: Row Space, Column Space, and Null Space 

Definition. For an m × n matrix A = #  the vectors     
r1 = [a11  a12  ⋯ a1n]  
r2 = [a21  a22  ⋯ a2n]  
 ⋮                ⋮ 
rm = [am1  am2 ⋯ amn]  
in Rn formed from the rows of A are called the row vectors of A, and the vectors  
c1 = [a11  a21  ⋯  am1] t  
c2 = [a12  a22  ⋯  am2] t  
  ⋮                ⋮ 
cn = [a1n  a2n  ⋯  amn] t  
in Rm formed from the columns of A are called the column vectors of A. 

Definition. If A is a m × n matrix, then the subspace of Rn spanned by the row vectors of A is called the row space of A, and the    
subspace of Rm spanned by the column vectors of A is called the column space of A.  The solution space of the 
homogeneous system of equations Ax = 0, which is a subspace of Rn, is called the null space of A.  

•   Question 1: What relationships exist among the solutions of a linear system Ax = b and the row space, column space,                    
and null space of the coefficient matrix A?   

•   Question 2: What relationships exist among the row space, column space, and null space of a matrix?                    
Theorem. A system of linear equations Ax = b is consistent if and only if b is in the column space of A.      
Theorem. If x0 denotes any single solution of a consistent linear system Ax = b, and if v1, v2, … , vk form a basis for the nullspace      

of A—that is, the solution space of the homogeneous system Ax = 0—then every solution of Ax = b can be expressed in 
the form x = x0 + c1v1 + c2v2 + … + ckvk.  Conversely, for all choices of scalars c1, c2, … , ck, the vector x in this formula 
is a solution of Ax = b. 

•  The general solution of a consistent linear system can be expressed as the sum of a particular solution of that system and                    
the general solution of the corresponding homogeneous system. 

Theorem. Elementary row operations do not change the null space of a matrix.      
Theorem. Elementary row operations do not change the row space of a matrix.      
Theorem. If a matrix R is in row-echelon form, then the row vectors with the leading 1’s (the nonzero row vectors) form a basis for      

the row space of R, and the column vectors with the leading 1’s of the row vectors form a basis for the column space of 
R. 

Theorem. If A and B are row equivalent matrices, then:       
(a) A given set of column vectors of A is linearly independent if and only if the corresponding column vectors of B are 
linearly independent.   
(b) A given set of column vectors of A forms a basis for the column space of A if and only if the corresponding column 
vectors of B form a basis for the column space of B. 

•  Problem: Given a set of vectors S = {v1, v2, … , vn} in Rn, find a subset of these vectors that forms a basis for span(S),                    
and express those vectors that are not in that basis as a linear combination of the basis vectors. 

•  Basis for Span(S):                    
Step 1: Form the matrix A having vectors in S = {v1, v2, … , vk} as column vectors.  

⎡a11  a12  ⋯ a1n ⎤ 
⎢a21  a22  ⋯ a2n ⎥ 
⎢⋮      ⋮            ⋮ ⎥ 
⎣am1  am2 ⋯ amn⎦



Step 2: Reduce the matrix A to reduced row echelon form R. 
Step 3: Denote the column vectors of R by w1, w2, … , wk}. 
Step 4: Identify the columns of R that contain the leading 1’s.  The corresponding column vectors of A form a basis for 
span(S).  
This completes the first part of the problem.  
Step 5: Obtain a set of dependency equations by expressing each column vector of R that does not contain a leading 1 as 
a linear combination of preceding column vectors that do contain leading 1’s.  
Step 6: Replace the column vectors of R that appear in the dependency equations by the corresponding column vectors 
of A. 
This completes the second part of the problem. !

Section 4.8: Rank, Nullity, and the Fundamental Matrix Spaces 
Theorem. The row space and column space of a matrix A have the same dimension.      
Definition. The common dimension of the row space and column space of a matrix A is called the rank of A, and is denoted by    

rank(A); the dimension of the null space of A is called the nullity of A and is denoted by nullity(A). 
Theorem. Dimension Theorem for Matrices: If A is a matrix with n columns, then rank(A) + nullity(A) = n.      
Theorem. If A is an m × n matrix, then: rank(A) = the number of leading variables in the solution of Ax = 0 and nullity(A) = the      

number of parameters in the general solution of Ax = 0. 
Theorem. If Ax = b is a consistent linear system of m equations in n unknowns, and if A has rank r, then the general solution of the      

system contains n – r parameters. 
Theorem. Let A be an m × n matrix.        

Overdetermined Case: If m > n, then the linear system Ax = b is inconsistent for at least one vector b in Rn.   
Underdetermined Case: If m < n, then for each vector b in Rm the linear system Ax = b is either inconsistent or has 
infinitely many solutions. 

Theorem. If A is any matrix, then rank(A) = rank(AT).      
•  rank(A) + nullity(AT) = m                    
•  If rank(A) = r, then:                     

dim[row(A)] = r  
dim[col(A)] = r  
dim[null(A)] = n – r  
dim[null(AT)] = m – r 

Definition. If W is a subspace of Rn, then the set of all vectors in Rn that are orthogonal to every vector in W is called the orthogonal    
complement of W and is denoted by the symbol W ⊥. 

Theorem. If W is a subspace of Rn, then:       
(a) W ⊥ is a subspace of Rn. 
(b) The only vector common to W and W ⊥ is 0. 
(c) The orthogonal complement of W ⊥ is W. 

Theorem. If A is a m × n matrix, then:       
(a) The null space of A and the row space of A are orthogonal complements in Rn.   
(b) The null space of AT and the column space of A are orthogonal complements in Rm. 

Theorem. Equivalent Statements: If A is an n × n matrix, then the following statements are equivalent:       
(a) A is invertible  
(b) Ax = 0 has only the trivial solution  
(c) the reduced row-echelon form of A is In 
(d) A is expressible as a product of elementary matrices  
(e) Ax = b is consistent for every n × 1 matrix b  
(f) Ax = b has exactly one solution for every n × 1 matrix b  
(g) det(A) ≠ 0  
(h) The column vectors of A are linearly independent.  
(i) The row vectors of A are linearly independent.  
(j) The column vectors of A span Rn. 
(k) The row vectors of A span Rn. 
(l) The column vectors of A form a basis for Rn. 
(m) The row vectors of A form a basis for Rn. 
(n) A has rank n 
(o) A has nullity 0  
(p) The orthogonal complement of the null space of A is Rn. 
(q) The orthogonal complement of the row space of A is 0. !!



Section 4.9: Matrix Transformations from Rn to Rm 
Definition. If V and W are vector spaces, and if f is a function with domain V and codomain W, then we say that f is a    

transformation from V to W or that f maps V to W, which we denote by writing f: V → W.  In the special case where V 
= W, the transformation is called an operator on V. 

Theorem. For every matrix A the matrix transformation TA: Rn → Rm has the following properties for all vectors u and v in Rn and      
for every scalar k: 
(a) TA(0) = 0 
(b) TA(ku) = kTA(u) (Homogeneity property)  
(c) TA(u + v) = TA(u) + TA(v) (Additivity property)  
(d) TA(u – v) = TA(u) – TA(v) 

•  TA(k1u1 + k2u2 + … + krur) = k1TA(u1) + k2TA(u2) + … + krTA(ur)                    
Theorem. If TA: Rn → Rm and TB: Rn → Rm are matrix transformations, and if TA(x) = TB(x) for every vector x in Rn, then A = B.      
•  A = [TA(e1) | TA(e2) | … | TA(en)].                    
•  Finding the Standard Matrix for a Matrix Transformation:                    

Step 1: Find the images of the standard basis vectors e1, e2, … , en for Rn in column form.  
Step 2: Construct the matrix that has the images obtained in Step 1 as its successive columns.  This matrix is the standard 
matrix for the transformation. !

Section 4.10: Properties of Matrix Transformations 
Definition. A matrix transformation T: Rn → Rm is said to be one-to-one if T maps distinct vectors (points) in Rn to distinct vectors    

(points) in Rm. 
Theorem. If A is an n × n matrix and TA: Rn → Rn is the corresponding matrix operator, then the following statements are      

equivalent:  
(a) A is invertible  
(b) The range of TA is Rn 

(c) TA is one-to-one. 
•  TA^{–1} = T–1A                    
•  [T–1] = [T]–1                    
•  Question: Are there algebraic properties for a transformation T: Rn → Rm that can be used to determine whether T is a                    

matrix transformation? 
Theorem. T: Rn → Rm is a matrix transformation if and only if the following relationships hold for all vectors u and v in Rn and for      

every scalar k: 
(i) T(u + v) = T(u) + T(v) (Additivity property)  
(ii) T(ku) = kT(u) (Homogeneity property) 

Theorem. Every linear transformation from Rn to Rm is a matrix transformation, and, conversely, every matrix transformation from      
Rn to Rm is a linear transformation. 

Theorem. Equivalent Statements: If A is an n × n matrix, then the following statements are equivalent:       
(a) A is invertible  
(b) Ax = 0 has only the trivial solution  
(c) the reduced row-echelon form of A is In 
(d) A is expressible as a product of elementary matrices  
(e) Ax = b is consistent for every n × 1 matrix b  
(f) Ax = b has exactly one solution for every n × 1 matrix b  
(g) det(A) ≠ 0  
(h) The column vectors of A are linearly independent.  
(i) The row vectors of A are linearly independent.  
(j) The column vectors of A span Rn. 
(k) The row vectors of A span Rn. 
(l) The column vectors of A form a basis for Rn. 
(m) The row vectors of A form a basis for Rn. 
(n) A has rank n 
(o) A has nullity 0  
(p) The orthogonal complement of the null space of A is Rn. 
(q) The orthogonal complement of the row space of A is 0. 
(r) The range of TA is Rn 

(s) TA is one-to-one.


