NOTES FROM ELEMENTARY LINEAR ALGEBRA, 10TH EDITION. BY ANTON AND RORRES

CHAPTER 4: GENERAL VECTOR SPACES
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Section 4.1: Real Vector Spaces

Let ¥ be an arbitrary nonempty set of objects on which two operations are defined: addition, and multiplication by
scalars (numbers). By addition, we mean a rule for associating with each pair of objects u and v in /" an objectu + v,
called the sum of u and v; by scalar multiplication, we mean a rule for associating with each scalar k and each object u
in V an object ku, called the scalar multiple of u by £. If the following axioms are satisfied by all objects u, v, win V'
and all scalars & and m, then we call V" a vector space and we call the objects in V" vectors.
.Ifu and v are objects in V, thenu + visin V.
.utv=v+tu
ut(vrw)=(utv)+w
. There is an object 0 in V, called a zero vector for V, suchthat0 +u=u+0=uforalluin V.
. For each u in 7 there is an object —u in V, called a negative of u, such that u + (—u) = (—u) +u=20.
. If k is any scalar and u is any object in V, then ku is in V.
k(u+v)=ku+ kv
. (k+m)u=ku+ mu
9. k(mu) = (km)(u)
10. lu=u
To Show that a Set with Two Operations is a Vector Space:
Step 1: Identify the set V of objects that will become vectors.
Step 2: Identify the addition and scalar multiplication operations on V.
Step 3: Verify Axioms 1 and 6; that is, adding two vectors in ¥ produces a vector in V, and multiplying a vector in V by
a scalar also produces a vector in V. Axion 1 is called closure under addition and Axiom 6 is called closure under
multiplication.
Step 4: Confirm that Axioms 2, 3,4, 5,7, 8,9, and 10 hold.

Let V' be a vector space, u a vector in V, and & a scalar; then:
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(a) Ou=0
(b)k0=0
() (Du=-u

(d)Ifku=0thenk=0oru=0.

Section 4.2: Subspaces

A subset W of a vector space V' is called a subspace of V' if ¥ itself is a vector space under the addition and scalar
multiplication defined on V.

If W is a set of one or more vectors from a vector space V, then W is a subspace of V if and only if the following
conditions hold:

(a) If u and v are vectors in W, then u + v is in W.

(b) If k is any scalar and u is any vector in W, then ku is in W.

If W1, W», ... W, are subspaces of a vector space V, then the intersection of these subspaces is also a subspace of V.

If w is a vector in a vector space V, then w is said to be a linear combination of the vectors vi, va, ... , v, if it can be
expressed in the form w = kivi + kova + ... + kv where ki, ko, ... , k- are scalars. These scalars are called the
coefficients of the linear combination.

If S= {wi, w2, ..., W} is a nonempty set of vectors in a vector space ¥, then the set /¥ of all possible linear
combinations of the vectors in S is a subspace of V. This set ¥ is the “smallest” subspace of V' that contains all of the
vectors in S in the sense that any other subspace of V that contains those vectors contains .

The subspace of a vector space V that is formed from all possible linear combinations of the vectors in a nonempty set S
is called the span of S, and we say that the vectors in S span that subspace. If S= {wi, wa, ... , w,}, then we denote the
span of S by span{wi, wa, ... , W} or span(S).

The solution set of a homogeneous linear system Ax = 0 in » unknowns is a subspace of R".

IfS={vi, vz, ..., v} and §' = {wi, wo, ... , Wi} are nonempty sets of vectors in a vector space V, then span{vi, vo, ...,
v/} = span{wi, wz, ... , W} if and only if each vector in S is a linear combination of those in S’ and each vector in §' is a
linear combination of those in S.

Section 4.3: Linear Independence

If = {vi1, v2, ..., v/} is a nonempty set of vectors, then the vector equation k1vi + k2v2 + ... + kv, = 0 has at least one
solution, namely k1 =0, k2= 0, ... , k-=0. If this is the only solution, then S is called a linearly independent set. If
there are other solutions, then S is called a linearly dependent set.

A set S with two or more vectors is:
(a) Linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the other
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vectors in S.
(b) Linearly independent if and only if no vector in S is expressible as a linear combination of the other vectors in S.

A finite set that contains 0 is linearly dependent. A set with exactly one vector is linearly independent if and only if that
vector is 0. A set with exactly two vectors is linearly independent if and only if neither vector is a scalar multiple of the
other.

Let S= {vi, v2, ..., v/} be a set of vectors in R". If r > n, then S is linearly dependent.

If fi = fi(x), f2 = f2(x), ... , £, = fu(x) are functions that are n — 1 times differentiable on the interval (—oo, ), then the
|  fi(x) £2(x) fa(Xx) |
I f1' (x) £2' (x) fn' (x) ||

determinant W(x) = | £f1"1(x) £H,0D(x) .. fa(r=1) (x) | is called the Wronskian of fi, /5, ... , fy.

If the functions fi, f2, ... , f, have n — 1 continuous derivatives on the interval (—oo, ), and if the Wronskian of these
functions is not identically zero on (-0, ), then they form a linearly independent set of vectors in C ~ D(—o0, o0).

Section 4.4: Coordinates and Basis

If V'is any vector space and S = {v1, v2, ..., V4} is a set of vectors in V, then S is called a basis for V'if S is linearly
independent and S spans V.
A nonzero vector space V is called finite-dimensional if it contains a finite set of vectors {vi, v2, ... , v,} that forms a

basis. If no such set exists, V'is called infinite-dimensional. In addition, we shall regard the zero vector space to be
finite dimensional.

Uniqueness of Basis Representation: If S = {vi, v2, ..., v»} is a basis for a vector space V, then every vector v in V' can
be expressed in the form v = c1vi + cav2 + ... + ¢4V, in exactly one way.

IfS={vi1, v, ..., va} is a basis for a vector space V, and v = c1vi + c2v2 + ... + ¢4V, is the expression for a vector v in
terms of the basis S, then the scalars c1, ¢2, ... , ¢, are called the coordinates of v relative to the basis S. The vector (c1,
¢, ..., cn) in R constructed from these coordinates is called the coordinate vector of v relative to S; it is denoted by
W)s=(c1, c2, ..., Cn).

Section 4.5: Dimension

All bases for a finite-dimensional vector space have the same number of vectors.

Let V' be a finite-dimensional vector space, and let {vi, v, ..., v»} be any basis. If a set has more than n vectors, then it
is linearly dependent. If a set has fewer than n vectors, then it does not span V.

The dimension of a finite-dimensional vector space V, denoted by dim(7), is defined to be the number of vectors in a
basis for V. In addition, the zero vector space is defined to have dimension zero.

Plus/Minus Theorem: Let S be a nonempty set of vectors in a vector space V.

(a) If S is a linearly independent set, and if v is a vector in V that is outside of span(S), then the set S U {v} that results by
inserting v into S is still linearly independent.

(b) If v is a vector in S that is expressible as a linear combination of other vectors in S, and if S — {v} denotes the set
obtained by removing v from S, then S and S — {v} span the same space; that is, span(S) = span(S — {v}).

Let V' be an n-dimensional vector space, and let S be a set in ¥ with exactly n vectors. Then S is a basis for V if either S
spans V or S is linearly independent.

Let S be a finite set of vectors in a finite-dimensional vector space V.

(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V' by removing appropriate vectors from S.
(b) If S is a linearly independent set that is not already a basis for ¥, then S can be enlarged to a basis for V' by inserting
appropriate vectors into S.

If W is a subspace of a finite-dimensional vector space V, then:
(a) W is finite-dimensional

(b) dim(W) < dim(V)
(c) W=V if and only if dim(J#) = dim(V)

Section 4.6: Change of Basis
The Change-of-Basis Problem: If v is a vector in a finite-dimensional vector space V, and if we change the basis for V
from a basis B to a basis B’, how are the coordinate vectors [v]z and [v]p related?
Solution of the Change-of-Basis Problem: If we change the basis for a vector space V' from an old basis B = {ui, u,
..., Uy} to anew basis B'= {u'i, u'2, ... , u's}, then for each vector v in V, the old coordinate vector [v] is related to the
new coordinate vector [v]z by the equation [v]z = P[v]s, where the columns of P are the coordinate vectors of the new
basis vectors relative to the old basis; that is, the column vectors of P are [u'1]z, [u'2]s, ... , [u'x]5.
Ppop=[[u1]z|[u2]z]... |[u']z]

Ppop=[[w]s|[u]s]|...|[u]s]
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The columns of the transition matrix from an old basis to a new basis are the coordinate vectors of the old basis relative
to the new basis.

[vlz =Pp—5[V]s
[Vle = Ps-p[vle

If P is the transition matrix from a basis B’ to a basis B for a finite-dimensional vector space V, then P is invertible and
P! is the transition matrix from B to B'.

A Procedure for Computing Pp. "

Step 1: Form the matrix [ B'| B ].

Step 2: Use elementary row operations to reduce the matrix in Step 1 to reduced row echelon form.
Step 3: The resulting matrix will be [ /| P35’ ].

Step 4: Extract the matrix P 3 p' from the right side of the matrix in Step 3.

[new basis | old basis] — (row operations) [ / | transition from old to new]

Let B'= {ui, uy, ..., u,} be any basis for the vector space R” and let S = {ei, ez, ..., €,} be the standard basis for R". If
the vectors in these bases are written in column form, then Pp— s =[ui |uz2 | ... | us).

Section 4.7: Row Space, Column Space, and Null Space

[an a2 - ain]

ax ax "t ay
For an m x n matrix A = [@m @n2 """ am| the vectors
ri=[au a2 " ain

r2=[ax a» - ax)

m= [aml am2 """ amn]
in R” formed from the rows of 4 are called the row vectors of 4, and the vectors

ci=[an azn " am]!
c2=[an an " am]!
cn:[aln aznp "7 amn]t

in R™ formed from the columns of 4 are called the column vectors of 4.

If 4 is a m x n matrix, then the subspace of R" spanned by the row vectors of 4 is called the row space of 4, and the
subspace of R™ spanned by the column vectors of 4 is called the column space of 4. The solution space of the
homogeneous system of equations 4x = 0, which is a subspace of R, is called the null space of 4.

Question 1: What relationships exist among the solutions of a linear system 4x = b and the row space, column space,
and null space of the coefficient matrix 4?

Question 2: What relationships exist among the row space, column space, and null space of a matrix?
A system of linear equations 4x = b is consistent if and only if b is in the column space of 4.

If xo denotes any single solution of a consistent linear system Ax = b, and if vi, v2, ... , vk form a basis for the nullspace
of A—that is, the solution space of the homogenecous system 4x = 0—then every solution of Ax = b can be expressed in
the form x = X0 + c1v1 + cav2 + ... + cxvi. Conversely, for all choices of scalars ci, ¢z, ... , ¢k, the vector x in this formula

is a solution of Ax = b.

The general solution of a consistent linear system can be expressed as the sum of a particular solution of that system and
the general solution of the corresponding homogeneous system.

Elementary row operations do not change the null space of a matrix.
Elementary row operations do not change the row space of a matrix.

If a matrix R is in row-echelon form, then the row vectors with the leading 1’s (the nonzero row vectors) form a basis for
the row space of R, and the column vectors with the leading 1’s of the row vectors form a basis for the column space of
R.

If A and B are row equivalent matrices, then:

(a) A given set of column vectors of 4 is linearly independent if and only if the corresponding column vectors of B are
linearly independent.

(b) A given set of column vectors of 4 forms a basis for the column space of 4 if and only if the corresponding column
vectors of B form a basis for the column space of B.

Problem: Given a set of vectors S = {vi, v, ..., v»} in R", find a subset of these vectors that forms a basis for span(S),
and express those vectors that are not in that basis as a linear combination of the basis vectors.
Basis for Span(S):

Step 1: Form the matrix 4 having vectors in S = {vi, v2, ... , Vx} as column vectors.
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Step 2: Reduce the matrix 4 to reduced row echelon form R.

Step 3: Denote the column vectors of R by wi, wa, ... , Wk}.
Step 4: Identify the columns of R that contain the leading 1’s. The corresponding column vectors of A form a basis for
span(S).

This completes the first part of the problem.

Step 5: Obtain a set of dependency equations by expressing each column vector of R that does not contain a leading 1 as
a linear combination of preceding column vectors that do contain leading 1’s.

Step 6: Replace the column vectors of R that appear in the dependency equations by the corresponding column vectors
of 4.

This completes the second part of the problem.

Section 4.8: Rank, Nullity, and the Fundamental Matrix Spaces
The row space and column space of a matrix 4 have the same dimension.

The common dimension of the row space and column space of a matrix A4 is called the rank of 4, and is denoted by
rank(4); the dimension of the null space of 4 is called the nullity of 4 and is denoted by nullity(4).

Dimension Theorem for Matrices: If 4 is a matrix with n columns, then rank(4) + nullity(4) = n.

If 4 is an m *x n matrix, then: rank(4) = the number of leading variables in the solution of Ax = 0 and nullity(4) = the
number of parameters in the general solution of Ax = 0.

If Ax = b is a consistent linear system of m equations in # unknowns, and if 4 has rank r, then the general solution of the
system contains # — » parameters.

Let A be an m x n matrix.

Overdetermined Case: If m > n, then the linear system Ax = b is inconsistent for at least one vector b in R”".
Underdetermined Case: If m < n, then for each vector b in R™ the linear system 4x = b is either inconsistent or has
infinitely many solutions.

If 4 is any matrix, then rank(4) = rank(47).

rank(4) + nullity(47) = m

If rank(4) = r, then:

dim[row(4)] =7

dim[col(4)] =r

dim[null(4)] =n-r

dim[null(A")]=m —r

If W is a subspace of R”, then the set of all vectors in R” that are orthogonal to every vector in W is called the orthogonal
complement of /¥ and is denoted by the symbol ¥ *.

If W is a subspace of R”, then:

(a) W is a subspace of R".

(b) The only vector common to W and W * is 0.
(c) The orthogonal complement of W * is W.

If A i1s a m X n matrix, then:
(a) The null space of 4 and the row space of 4 are orthogonal complements in R".
(b) The null space of A7 and the column space of 4 are orthogonal complements in R™.

Equivalent Statements: If 4 is an n X n matrix, then the following statements are equivalent:
(a) A is invertible

(b) Ax = 0 has only the trivial solution

(c) the reduced row-echelon form of 4 is I,

(d) A is expressible as a product of elementary matrices

(e) Ax = b is consistent for every n x 1 matrix b

(f) Ax = b has exactly one solution for every n x 1 matrix b
(g) det(4) # 0

() The column vectors of 4 are linearly independent.

(7)) The row vectors of 4 are linearly independent.

() The column vectors of 4 span R".

(k) The row vectors of 4 span R".

(1) The column vectors of 4 form a basis for R".

(m) The row vectors of 4 form a basis for R".

(n) A has rank n

(0) A has nullity 0

(p) The orthogonal complement of the null space of 4 is R".
(¢) The orthogonal complement of the row space of 4 is 0.
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Section 4.9: Matrix Transformations from R” to R"

If V and W are vector spaces, and if fis a function with domain /" and codomain W, then we say that fis a
transformation from /' to W or that f maps V' to W, which we denote by writing f: ' — W. In the special case where V'
= W, the transformation is called an operator on V.

For every matrix 4 the matrix transformation 7: R* — R™ has the following properties for all vectors u and v in R” and
for every scalar k:

(a) T4(0)=0

(b) Tu(ku) = kT4(u) (Homogeneity property)

(c) Ta(u + v) = Ty(u) + T4(v) (Additivity property)

(d) Ta(u —v) = Ty(u) — T4(V)

Tathiai + oue + ... + k) = kiTq(wr) + keTa(w2) + ... + kTa(uy)

If T4: R — R™ and T: R* — R™ are matrix transformations, and if 74(x) = T5(x) for every vector x in R", then 4 = B.
A=[Tu(e1) | Ta(e2) | ... | Ta(en)].

Finding the Standard Matrix for a Matrix Transformation:

Step 1: Find the images of the standard basis vectors ey, €2, ... , e, for R” in column form.

Step 2: Construct the matrix that has the images obtained in Step 1 as its successive columns. This matrix is the standard
matrix for the transformation.

Section 4.10: Properties of Matrix Transformations

A matrix transformation 7: R” — R™ is said to be one-to-one if 7' maps distinct vectors (points) in R” to distinct vectors
(points) in R™.

If 4 is an n X n matrix and T,: R" — R" is the corresponding matrix operator, then the following statements are
equivalent:

(a) 4 is invertible

(b) The range of T4 is R”

(c¢) T4 is one-to-one.

Tar1y=T"a

(7] = (7]

Question: Are there algebraic properties for a transformation 7: R* — R™ that can be used to determine whether T'is a
matrix transformation?

T: R" — R™ is a matrix transformation if and only if the following relationships hold for all vectors u and v in R" and for
every scalar k:

(i) T(u + v) = T(u) + T(v) (Additivity property)

(if) T(ku) = kT(u) (Homogeneity property)

Every linear transformation from R” to R™ is a matrix transformation, and, conversely, every matrix transformation from
R"to R™ is a linear transformation.

Equivalent Statements: If 4 is an n x n matrix, then the following statements are equivalent:
(a) A is invertible

(b) Ax = 0 has only the trivial solution

(c) the reduced row-echelon form of 4 is I,

(d) A is expressible as a product of elementary matrices

(e) Ax = b is consistent for every n x 1 matrix b

(f) Ax = b has exactly one solution for every n x 1 matrix b
(g) det(4) # 0

(h) The column vectors of 4 are linearly independent.

(7) The row vectors of 4 are linearly independent.

() The column vectors of 4 span R".

(k) The row vectors of 4 span R".

() The column vectors of 4 form a basis for R".

(m) The row vectors of 4 form a basis for R".

(n) A has rank n

(0) 4 has nullity 0

(p) The orthogonal complement of the null space of 4 is R".
(¢) The orthogonal complement of the row space of 4 is 0.
() The range of T4 is R"

(s) T4 is one-to-one.



