NOTES FROM ELEMENTARY LINEAR ALGEBRA, 10TH EDITION, BY ANTON AND RORRES

CHAPTER 5: EIGENVALUES AND EIGENVECTORS

Section 5.1: Eigenvalues and Eigenvectors

- **Definition.** If A is an $n \times n$ matrix, then a nonzero vector **x** in \mathbb{R}^n is called an **eigenvector** of A (or of the matrix operator T_A) if A**x** is a scalar multiple of **x**; that is, if $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . The scalar λ is called an **eigenvalue** of A, and **x** is said to be an **eigenvector of** A **corresponding to** λ .
- **Theorem.** If A is an $n \times n$ matrix, then λ is an eigenvalue of A if and only if it satisfies the equation det $(\lambda I A) = 0$. This is called the **characteristic equation** of A.
- **Theorem.** If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then the eigenvalues of A are the entries on the main diagonal of A.
- **Theorem.** If A is an $n \times n$ matrix and λ is a real number, then the following are equivalent:

(a) λ is an eigenvalue of A

(a) the system of equations $(\lambda I - A)\mathbf{x} = \mathbf{0}$ has nontrivial solutions

- (a) there is a nonzero vector **x** in \mathbf{R}^n such that $A\mathbf{x} = \lambda \mathbf{x}$
- (a) λ is a solution of the characteristic equation det $(\lambda I A) = 0$
- **Theorem.** If k is a positive integer, λ is an eigenvalue of a matrix A, and **x** is a corresponding eigenvector, then λ^k is an eigenvalue of A^k and **x** is a corresponding eigenvector.

Theorem. A square matrix A is invertible if and only if $\lambda = 0$ is not an eigenvalue of A.

Theorem. Equivalent Statements: If A is an $n \times n$ matrix, then the following statements are equivalent:

(a) A is invertible

- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
- (c) the reduced row-echelon form of A is I_n
- (d) A is expressible as a product of elementary matrices
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b}
- (g) $det(A) \neq 0$
- (h) The column vectors of A are linearly independent.
- (i) The row vectors of A are linearly independent.
- (j) The column vectors of A span \mathbf{R}^n .
- (k) The row vectors of A span \mathbf{R}^n .
- (1) The column vectors of A form a basis for \mathbf{R}^n .
- (*m*) The row vectors of A form a basis for \mathbf{R}^n .
- (n) *A* has rank *n*
- (o) A has nullity 0
- (p) The orthogonal complement of the null space of A is \mathbf{R}^n .
- (q) The orthogonal complement of the row space of A is **0**.
- (r) The range of T_A is \mathbf{R}^n
- (s) T_A is one-to-one.
- (*t*) $\lambda = 0$ is not an eigenvalue of *A*.

Section 5.2: Diagonalization

•	Problem 1 : Given an $n \times n$ matrix A, does there exist an invertible matrix P such that $P^{-1}AP$ is diagonal? Problem 2 : Given an $n \times n$ matrix A, does A have n linearly independent eigenvectors?
Definition.	If <i>A</i> and <i>B</i> are square matrices, then we say that <i>B</i> is similar to <i>A</i> if there is an invertible matrix <i>P</i> such that $B = P^{-1}AP$.
Definition.	A square matrix A is said to be diagonalizable if it is similar to some diagonal matrix; that is, if there exists an invertible matrix P such that $P^{-1}AP$ is diagonal. In this case the matrix P is said to diagonalize A.
Theorem.	 If A is a n × n matrix, then the following are equivalent: (a) A is diagonalizable; (b) A has n linearly independent eigenvectors.
•	Procedure for Diagonalizing a Matrix: Step 1 : Confirm that the matrix is actually diagonalizable by finding <i>n</i> linearly independent eigenvectors. One way to do this is by finding a basis for each eigenspace and merging these basis vectors inso a single set <i>S</i> . If this set has fewer than <i>n</i> vectors, then the matrix is not diagonalizable. Step 2 : Form the matrix $P = [\mathbf{p}_1 \mathbf{p}_2 \dots \mathbf{p}_n]$ that has the vectors in <i>S</i> as its column vectors. Step 3 : The matrix $P^{-1}AP$ will be diagonal and have the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ corresponding to the eigenvectors \mathbf{p}_1 , $\mathbf{p}_2, \dots, \mathbf{p}_n$ as its successive diagonal entries.
Theorem.	If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a matrix <i>A</i> corresponding to distinct eigenvalues, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a linearly independent set.

Theorem. If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Theorem. If λ is an eigenvalue of a square matrix A and \mathbf{x} is a corresponding eigenvector, and if k is any positive integer, then λ^k is an eigenvalue of A^k and \mathbf{x} is a corresponding eigenvector.

Theorem. Geometric and Algebraic Multiplicity:

If A is a square matrix, then:

(a) For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity. (b) A is diagonalizable if and only if, for every eigenvalue, the geometric multiplicity is equal to the algebraic multiplicity.