
NOTES FROM ELEMENTARY LINEAR ALGEBRA, 10TH EDITION, BY ANTON AND RORRES 
CHAPTER 6: INNER PRODUCT SPACES !

Section 6.1: Inner Products 
Definition. An inner product on a real vector space V is a function that associates a real number 〈u, v〉 with each pair of vectors in V    

in such a way that the following axioms are satisfied for all vectors u, v, w in V and all scalars k. 
1. 〈u, v〉 = 〈v, u〉  (symmetry axiom)  
2. 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉  (additivity axiom) 
3. 〈ku, v〉 = k〈u, v〉  (homogeneity axiom) 
4. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0  (positivity axiom)  
A real vector space with an inner product is called a real inner product space. 

Definition. If V is a real inner product space, then the norm (or length) of a vector v in V is defined by ||v|| = √〈v, v〉. The distance    
between two vectors is defined by d(u, v) = ||u – v|| √〈u – v, u – v〉.  A vector of norm 1 is called a unit vector. 

Theorem. If u and v are vectors in a real inner product space V, and if k is a scalar, then:       
(a) ||v|| ≥ 0 with equality if and only if v = 0 
(b) ||kv|| = |k| ||v||  
(c) d(u,v) = d(v,u)  
(d) d(u,v) ≥ 0 with equality if and only if u = v 

•  〈u, v〉 = w1u1v1 + w2u2v2 + … + wnunvn                    
•  〈u, v〉 = Au • Av                    
•  〈u, v〉 = vTATAu                    
•  〈U, V〉 = tr(UTV)                    
Theorem. If u, v, and w are vectors in a real inner product space V, and if k is a scalar, then:       

(a) 〈0, v〉 = 〈v, 0〉 = 0 
(b) 〈u, v + w〉 = 〈u, v〉 + 〈u, w〉  
(c) 〈u, v – w〉 = 〈u, v〉 – 〈u, w〉  
(d) 〈u – v, w〉 = 〈u, w〉 – 〈v, w〉  
(e) k〈u, v〉 = 〈u, kv〉 !

Section 6.2: Angle and Orthogonality in Inner Product Spaces 
Theorem. Cauchy-Schwarz Inequality: If u and v are vectors in a real inner product space V, then |〈u, v〉| ≤ ||u|| ||v||.      
•  〈u, v〉2 ≤ 〈u, u〉〈v, v〉                    
•  〈u, v〉2 ≤ ||u||2 ||v||2                    
•  θ = cos–1[〈u, v〉/(||u|| ||v||)]                    
Theorem. If u, v and w are vectors in a real inner product space V, and if k is any scalar, then:       

(a) ||u+v|| ≤ ||u|| + ||v|| (Triangle Inequality for Vectors) 
(b) d(u,v) ≤ d(u,w) + d(w,v) (Triangle Inequality for Distances) 

Definition. Two vectors u and v in an inner product space are called orthogonal if〈u, v〉= 0.    
Theorem. Generalized Theorem of Pythagoras.       

If u and v are orthogonal vectors in an inner product space, then ||u + v||2 = ||u||2 + ||v||2 
Definition. If W is a subspace of an inner product space V, then the set of all vectors in V that are orthogonal to every vector in W is    

called the orthogonal complement of W and is denoted by the symbol W ⊥. 
Theorem. If W is a subspace of an inner product space V, then:      

(a) W ⊥ is a subspace of V 
(b) W ∩ W ⊥ = {0} 

Theorem. If W is a subspace of a finite-dimensional inner product space V, then the orthogonal complement of W ⊥ is W; that is,       
(W ⊥)⊥ = W. !

Section 6.3: Gram-Schmidt Process; QR-Decomposition 
Definition. A set of two or more vectors in a real inner product space is said to be orthogonal if all pairs of distinct vectors in the set    

are orthogonal.  An orthogonal set in which each vector has norm 1 is said to be orthonormal. 
Theorem. If S = {v1, v2, … , vn} is an orthogonal set of nonzero vectors in an inner product space, then S is linearly independent.      
Theorem. (a) If S = {v1, v2, … , vn} is an orthogonal basis for an inner product space V, and if u is any vector in V, then       

u = [〈u, v1〉/||v1||2]v1 + [〈u, v2〉/||v2||2]v2 + … + [〈u, vn〉/||vn||2]vn 



(b) If S = {v1, v2, … , vn} is an orthonormal basis for an inner product space V, and if u is any vector in V, then  
u = 〈u, v1〉v1 + 〈u, v2〉v2 + … + 〈u, vn〉vn 

Theorem. Projection Theorem: If W is a finite-dimensional subspace of an inner product space V, then every vector u in V can be      
expressed in exactly one way as u = w1 + w2 where w1 is in W and w2 is in W ⊥. 

•  u = projW u + projW⊥ u = projW u + (u – projW u)                    
Theorem. Let W be a finite-dimensional subspace of an inner product space V.      

(a) If {v1, v2, … , vr} is an orthogonal basis for W, and u is any vector in V, then  
projW u = [〈u, v1〉/||v1||2]v1 + [〈u, v2〉/||v2||2]v2 + … + [〈u, vr〉/||vr||2]vr. 
(b) If {v1, v2, … , vr} is an orthonormal basis for W, and u is any vector in V, then  
projW u = 〈u, v1〉v1 + 〈u, v2〉v2 + … + 〈u, vr〉vr. 

Theorem. Every nonzero finite-dimensional inner product space has an orthonormal basis.      
•  The Gram-Schmidt Process: To convert a basis {u1, u2, … , ur}  into an orthogonal basis {v1, v2, … , vr}, perform the                    

following computations:  
Step 1: v1 = u1 
Step 2: v2 = u2 – [〈u2, v1〉/||v1||2]v1  
Step 3: v3 = u3 – [〈u3, v1〉/||v1||2]v1 – [〈u3, v2〉/||v2||2]v2  
Step 4: v4 = u4 – [〈u4, v1〉/||v1||2]v1 – [〈u4, v2〉/||v2||2]v2 – [〈u4, v3〉/||v3||2]v3 
   ⋮ 
(continue for r steps)  
Optional Step: To convert the orthogonal basis into an orthonormal basis {q1, q2, … , qr}, normalize the orthogonal 
basis vectors. 

Theorem. If W is a finite-dimensional inner product space, then:       
(a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal basis for W. 
(b) Every orthonormal set in W can be enlarged to an orthonormal basis for W. 

•  Problem: If A is an m × n matrix with linearly independent column vectors, and if Q is the matrix that results by                    
applying the Gram-Schmidt process to the column vectors of A, what relationship, if any, exists between A and Q? 

Theorem. QR-Decomposition: If A is an m × n matrix with linearly independent column vectors, then A can be factored as A = QR      
where Q is an m × n matrix with orthonormal column vectors, and R is an n × n  invertible upper triangular matrix. !

Section 6.4: Best Approximation; Least Squares 
•  Least Squares Problem: Given a linear system Ax = b of m equations in n unknowns, find a vector x that minimizes                     

||b – Ax|| with respect to the Euclidean inner product on Rm.  We call such an x a least squares solution of the system, 
we call b – Ax the least squares error vector, and we call ||b – Ax|| the least squares error. 

Theorem. Best Approximation Theorem: If W is a finite-dimensional subspace of an inner product space V, and if b is a vector in      
V, then projW b is the best approximation to b from W in the sense than ||b – projW b|| < ||b – w|| for every vector w in W 
that is different from projW b. 

Theorem. For every linear system Ax = b, the associated normal system ATAx = ATb is consistent, and all solutions of the normal      
system are least squares solutions of Ax = b.  Moreover, if W is the column space of A, and x is any least squares solution 
of Ax = b, then the orthogonal projection of b on W is projW b = Ax. 

Theorem. If A is an m × n matrix, then the following are equivalent:       
(a) A has linearly independent column vectors.  
(b) ATA is invertible. 

Theorem. If A is an m × n matrix with linearly independent column vectors, then for every m × 1 matrix b, the linear system Ax =      
b has a unique least squares solution.  This solution is given by x = (ATA)–1ATb.  Moreover, if W is the column space of 
A, then the orthogonal projection of b on W is projW b = Ax = A(ATA)–1ATb. 

Theorem. If A is an m × n matrix with linearly independent column vectors, and if A = QR is a QR-decomposition of A, then for      
each b in Rm the system Ax = b has a unique least squares solution given by x = R–1QTb. 

Definition. If W is a subspace of Rm, then the transformation P: Rm → W that maps each vector x in Rm into its orthogonal projection    
projW x in W is called the orthogonal projection of Rm on W. 

•  [P] = A(ATA)–1AT                    
Theorem. Equivalent Statements: If A is an n × n matrix, then the following statements are equivalent:       

(a) A is invertible  
(b) Ax = 0 has only the trivial solution  
(c) the reduced row-echelon form of A is In 
(d) A is expressible as a product of elementary matrices  
(e) Ax = b is consistent for every n × 1 matrix b  
(f) Ax = b has exactly one solution for every n × 1 matrix b  
(g) det(A) ≠ 0  
(h) The column vectors of A are linearly independent.  



(i) The row vectors of A are linearly independent.  
(j) The column vectors of A span Rn. 
(k) The row vectors of A span Rn. 
(l) The column vectors of A form a basis for Rn. 
(m) The row vectors of A form a basis for Rn. 
(n) A has rank n 
(o) A has nullity 0  
(p) The orthogonal complement of the null space of A is Rn. 
(q) The orthogonal complement of the row space of A is 0. 
(r) The range of TA is Rn 

(s) TA is one-to-one.  
(t) λ = 0 is not an eigenvalue of A. 
(u) ATA is invertible


