NOTES FROM ELEMENTARY LINEAR ALGEBRA, 10TH EDITION. BY ANTON AND RORRES

CHAPTER 6: INNER PRODUCT SPACES
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Section 6.1: Inner Products

An inner product on a real vector space V is a function that associates a real number (u, v) with each pair of vectors in V
in such a way that the following axioms are satisfied for all vectors u, v, w in " and all scalars .

1. (u, v) = (v, u) (symmetry axiom)

2. (u+v,w)=(u, w)+ (v, w) (additivity axiom)

3. (ku, v) = k{u, v) (homogeneity axiom)

4.(v,v)>0and (v, v)=0 if and only if v= 0 (positivity axiom)

A real vector space with an inner product is called a real inner product space.

If Vis a real inner product space, then the norm (or length) of a vector v in V' is defined by ||v|| = \/(V, v). The distance
between two vectors is defined by d(u, v) = |[u — V|| \/(u —v,u—v). Avector of norm 1 is called a unit vector.

If w and v are vectors in a real inner product space V, and if & is a scalar, then:
(a) ||v|]| = 0 with equality if and only if v=10

(b) [levl] = [k [Iv

(¢) d(u,v) = d(v,u)

(d) d(u,v) > 0 with equality if and only ifu =v

(u, v) = winvi + wauava + ...+ WallaVn

(u, v)=Au * Av
(u, v) =v’4"4u
(U, V) =te(U"D)

If u, v, and w are vectors in a real inner product space V, and if & is a scalar, then:
(@) (0, v)=(v,0)=0

D) {u, v+ w)=(u, v) +(u, w)

(©) {u, v—w)={(u, v) — (u, w)

(d) (u=v, W) = (u, w) — (v, W)

(€) k{u, vy = {u, kv)

Section 6.2: Angle and Orthogonality in Inner Product Spaces

Cauchy-Schwarz Inequality: If u and v are vectors in a real inner product space V, then |(u, v)| < |u|| ||v]].
(u, v)* < (u, uXv, v)

(u, v)2< [l V]2

0= cos”![(u, V)/(|ju] [v])]

If u, v and w are vectors in a real inner product space ¥, and if & is any scalar, then:

(@) |lutv]|| < |ju]| + ||v]| (Triangle Inequality for Vectors)
() d(u,v) < d(u,w) + d(w,v) (Triangle Inequality for Distances)

Two vectors u and v in an inner product space are called orthogonal if(u, v)= 0.

Generalized Theorem of Pythagoras.

If u and v are orthogonal vectors in an inner product space, then |[u + v||> = |[u|]> + ||v|]?

If W is a subspace of an inner product space V] then the set of all vectors in V that are orthogonal to every vector in /¥ is
called the orthogonal complement of }# and is denoted by the symbol W *.

If W is a subspace of an inner product space V, then:
(a) Wt is a subspace of ¥
BGYWN W= {0}

If W is a subspace of a finite-dimensional inner product space ¥, then the orthogonal complement of W * is W, that is,
whHt=w.

Section 6.3: Gram-Schmidt Process; OR-Decomposition

A set of two or more vectors in a real inner product space is said to be orthogonal if all pairs of distinct vectors in the set
are orthogonal. An orthogonal set in which each vector has norm 1 is said to be orthonormal.

If S= {vi, v, ..., vu} is an orthogonal set of nonzero vectors in an inner product space, then S is linearly independent.

(a) If S = {v1, v2, ..., v»} is an orthogonal basis for an inner product space V, and if u is any vector in V, then
u = [, vi)/[VilPIvi + [Qu, va)/[IvalPTva + o [, v/ [Vl PV
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(b) If S = {v1, V2, ..., Vu} is an orthonormal basis for an inner product space ¥, and if u is any vector in V, then
u=(u, viyvi +(u, vo)va + ... + (u, Va)Vy

Projection Theorem: If /7 is a finite-dimensional subspace of an inner product space V, then every vector u in 7 can be
expressed in exactly one way as u = wi + wa where wiis in # and w2 is in W' *.

u = projwu + projwLu = proju + (u — projyu)
Let W be a finite-dimensional subspace of an inner product space V.

(a) If {v1, v2, ..., v/} is an orthogonal basis for ¥, and u is any vector in V, then
projwu = [(u, viy/|[Vi|FIvi + [(w, va)/[[valP]v2 + ... + [(w, v,/ ||V IV
(b) If {v1, v2, ..., v+} is an orthonormal basis for ¥, and u is any vector in V, then

projwu = (u, vi)vi + {u, v2)va + ... +(u, v,)v,.

Every nonzero finite-dimensional inner product space has an orthonormal basis.

The Gram-Schmidt Process: To convert a basis {ui, w2, ... , u,} into an orthogonal basis {vi, vz, ..., v}, perform the
following computations:

Step 1: vi=uy

Step 2: v2 = uz — [(uz, vi)/|[vi]|*]vi

Step 3: v3 = uz — [(us, vi)/|[vi|2]vi — [(us, v2)/|[v2|*]v2

Step 4: va = us — [(u4, v1)/|[v1|[?]vi — [(ua, v2)/||[v2||2]v2 — [{ua, v3)/||v3|[*]v3

(continue for r steps)
Optional Step: To convert the orthogonal basis into an orthonormal basis {qi, qz, ... , q-}, normalize the orthogonal
basis vectors.

If W is a finite-dimensional inner product space, then:

(a) Every orthogonal set of nonzero vectors in I can be enlarged to an orthogonal basis for IV.

(b) Every orthonormal set in ¥ can be enlarged to an orthonormal basis for .

Problem: If 4 is an m X n matrix with linearly independent column vectors, and if Q is the matrix that results by
applying the Gram-Schmidt process to the column vectors of 4, what relationship, if any, exists between 4 and Q?

QR-Decomposition: If 4 is an m x n matrix with linearly independent column vectors, then 4 can be factored as A = OR
where Q is an m x n matrix with orthonormal column vectors, and R is an #» x n invertible upper triangular matrix.

Section 6.4: Best Approximation; [east Squares

Least Squares Problem: Given a linear system Ax = b of m equations in » unknowns, find a vector x that minimizes
|[b — Ax]|| with respect to the Euclidean inner product on R”. We call such an x a least squares solution of the system,
we call b — 4x the least squares error vector, and we call ||b — Ax|| the least squares error.

Best Approximation Theorem: If /¥ is a finite-dimensional subspace of an inner product space V, and if b is a vector in
¥, then projwb is the best approximation to b from W in the sense than ||b — projwb|| < ||b — w|| for every vector w in W
that is different from projwb.

For every linear system Ax = b, the associated normal system A7Ax = A”b is consistent, and all solutions of the normal
system are least squares solutions of Ax =b. Moreover, if ¥ is the column space of 4, and x is any least squares solution
of Ax = b, then the orthogonal projection of b on W is projwb = Ax.

If 4 is an m %X n matrix, then the following are equivalent:

(a) A has linearly independent column vectors.

(b) A™A is invertible.

If 4 is an m x n matrix with linearly independent column vectors, then for every m x 1 matrix b, the linear system Ax =
b has a unique least squares solution. This solution is given by x = (474)"14™. Moreover, if W is the column space of
A, then the orthogonal projection of b on W is projwb = Ax = A(474)'4b.

If 4 is an m % n matrix with linearly independent column vectors, and if 4 = QR is a QR-decomposition of 4, then for
each b in R the system Ax = b has a unique least squares solution given by x = R"'Q"b.

If W is a subspace of R™, then the transformation P: R™ — W that maps each vector x in R™ into its orthogonal projection
projwx in W is called the orthogonal projection of R” on W.

[P]=A(AT4) 4T

Equivalent Statements: If 4 is an n x n matrix, then the following statements are equivalent:
(a) A is invertible

(b) Ax = 0 has only the trivial solution

(c) the reduced row-echelon form of 4 is I,

(d) A is expressible as a product of elementary matrices

(e) Ax = b is consistent for every n x 1 matrix b

(f) Ax = b has exactly one solution for every n x 1 matrix b

(g) det(4) # 0

(h) The column vectors of A are linearly independent.



(7) The row vectors of 4 are linearly independent.

(/) The column vectors of 4 span R".

(k) The row vectors of 4 span R".

(/) The column vectors of 4 form a basis for R".

(m) The row vectors of A form a basis for R”".

(n) A has rank n

(0) A has nullity 0

(p) The orthogonal complement of the null space of 4 is R".
(¢) The orthogonal complement of the row space of 4 is 0.
() The range of T4 is R"

(s) T4 is one-to-one.

(¥) =0 is not an eigenvalue of 4.

(u) ATA is invertible



