NOTES FROM ELEMENTARY LINEAR ALGEBRA, 10TH EDITION, BY ANTON AND RORRES

CHAPTER 6: INNER PRODUCT SPACES

Section 6.1: Inner Products

	Section 6.1: Inner Products
Definition.	An inner product on a real vector space V is a function that associates a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ with each pair of vectors in V in such a way that the following axioms are satisfied for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and all scalars k
	1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ (symmetry axiom)
	2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ (additivity axiom)
	3. $\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$ (homogeneity axiom)
	4. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = 0$ (positivity axiom)
	A real vector space with an inner product is called a real inner product space .
Definition.	If <i>V</i> is a real inner product space, then the norm (or length) of a vector v in <i>V</i> is defined by $ \mathbf{v} = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$. The distance between two vectors is defined by $d(\mathbf{u}, \mathbf{v}) = \mathbf{u} - \mathbf{v} \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle}$. A vector of norm 1 is called a unit vector .
Theorem.	If u and v are vectors in a real inner product space <i>V</i> , and if <i>k</i> is a scalar, then: (a) $ \mathbf{v} \ge 0$ with equality if and only if $\mathbf{v} = 0$ (b) $ k\mathbf{v} = k \mathbf{v} $ (c) $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$ (d) $d(\mathbf{u}, \mathbf{v}) \ge 0$ with equality if and only if $\mathbf{u} = \mathbf{v}$
•	$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \ldots + w_n u_n v_n$
•	$\langle \mathbf{u}, \mathbf{v} \rangle = A \mathbf{u} \cdot A \mathbf{v}$
•	$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{v}^T A^T A \mathbf{u}$
•	$\langle U, V \rangle = \operatorname{tr}(U^T V)$
Theorem.	If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in a real inner product space V , and if k is a scalar, then: (a) $\langle 0, \mathbf{v} \rangle = \langle \mathbf{v}, 0 \rangle = 0$ (b) $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$ (c) $\langle \mathbf{u}, \mathbf{v} - \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{u}, \mathbf{w} \rangle$ (d) $\langle \mathbf{u} - \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle - \langle \mathbf{v}, \mathbf{w} \rangle$ (e) $k \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, k\mathbf{v} \rangle$
	Section 6.2: Angle and Orthogonality in Inner Product Spaces
Theorem.	Cauchy-Schwarz Inequality : If u and v are vectors in a real inner product space V, then $ \langle \mathbf{u}, \mathbf{v} \rangle \le \mathbf{u} \mathbf{v} $.
•	$\langle \mathbf{u}, \mathbf{v} \rangle^2 \leq \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$
•	$\langle \mathbf{u}, \mathbf{v} \rangle^2 \leq \mathbf{u} ^2 \mathbf{v} ^2$
•	$\theta = \cos^{-1}[\langle \mathbf{u}, \mathbf{v} \rangle / (\mathbf{u} \mathbf{v})]$
Theorem.	If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in a real inner product space V , and if k is any scalar, then: (a) $ \mathbf{u}+\mathbf{v} \le \mathbf{u} + \mathbf{v} $ (Triangle Inequality for Vectors) (b) $d(\mathbf{u},\mathbf{v}) \le d(\mathbf{u},\mathbf{w}) + d(\mathbf{w},\mathbf{v})$ (Triangle Inequality for Distances)
Definition.	Two vectors u and v in an inner product space are called orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
Theorem	Conversioned Theorem of Dethogones

Theorem. Generalized Theorem of Pythagoras.

If **u** and **v** are orthogonal vectors in an inner product space, then $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$ **Definition.** If *W* is a subspace of an inner product space *V*, then the set of all vectors in *V* that are orthogonal to every vector in *W* is called the **orthogonal complement** of *W* and is denoted by the symbol W^{\perp} .

Theorem. If W is a subspace of an inner product space V, then: (a) W^{\perp} is a subspace of V (b) $W \cap W^{\perp} = \{\mathbf{0}\}$

Theorem. If *W* is a subspace of a finite-dimensional inner product space *V*, then the orthogonal complement of W^{\perp} is *W*; that is, $(W^{\perp})^{\perp} = W$.

Section 6.3: Gram-Schmidt Process; QR-Decomposition

- **Definition.** A set of two or more vectors in a real inner product space is said to be **orthogonal** if all pairs of distinct vectors in the set are orthogonal. An orthogonal set in which each vector has norm 1 is said to be **orthonormal**.
- **Theorem.** If $S = {v_1, v_2, ..., v_n}$ is an orthogonal set of nonzero vectors in an inner product space, then S is linearly independent.
- **Theorem.** (a) If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is an orthogonal basis for an inner product space V, and if \mathbf{u} is any vector in V, then $\mathbf{u} = [\langle \mathbf{u}, \mathbf{v}_1 \rangle / ||\mathbf{v}_1||^2] \mathbf{v}_1 + [\langle \mathbf{u}, \mathbf{v}_2 \rangle / ||\mathbf{v}_2||^2] \mathbf{v}_2 + \dots + [\langle \mathbf{u}, \mathbf{v}_n \rangle / ||\mathbf{v}_n||^2] \mathbf{v}_n$

	(b) If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is an orthonormal basis for an inner product space <i>V</i> , and if u is any vector in <i>V</i> , then $\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \dots + \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n$
Theorem.	Projection Theorem : If <i>W</i> is a finite-dimensional subspace of an inner product space <i>V</i> , then every vector u in <i>V</i> can be expressed in exactly one way as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where \mathbf{w}_1 is in <i>W</i> and \mathbf{w}_2 is in W^{\perp} .
•	$\mathbf{u} = \operatorname{proj}_{W}\mathbf{u} + \operatorname{proj}_{W\perp}\mathbf{u} = \operatorname{proj}_{W}\mathbf{u} + (\mathbf{u} - \operatorname{proj}_{W}\mathbf{u})$
Theorem.	Let <i>W</i> be a finite-dimensional subspace of an inner product space <i>V</i> . (<i>a</i>) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is an orthogonal basis for <i>W</i> , and u is any vector in <i>V</i> , then $\operatorname{proj}_W \mathbf{u} = [\langle \mathbf{u}, \mathbf{v}_1 \rangle / \mathbf{v}_1 ^2] \mathbf{v}_1 + [\langle \mathbf{u}, \mathbf{v}_2 \rangle / \mathbf{v}_2 ^2] \mathbf{v}_2 + \dots + [\langle \mathbf{u}, \mathbf{v}_r \rangle / \mathbf{v}_r ^2] \mathbf{v}_r.$ (<i>b</i>) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is an orthonormal basis for <i>W</i> , and u is any vector in <i>V</i> , then $\operatorname{proj}_W \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \dots + \langle \mathbf{u}, \mathbf{v}_r \rangle \mathbf{v}_r.$
Theorem.	Every nonzero finite-dimensional inner product space has an orthonormal basis.
•	The Gram-Schmidt Process: To convert a basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$ into an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$, perform the following computations: Step 1: $\mathbf{v}_1 = \mathbf{u}_1$ Step 2: $\mathbf{v}_2 = \mathbf{u}_2 - [\langle \mathbf{u}_2, \mathbf{v}_1 \rangle / \mathbf{v}_1 ^2] \mathbf{v}_1$ Step 3: $\mathbf{v}_3 = \mathbf{u}_3 - [\langle \mathbf{u}_3, \mathbf{v}_1 \rangle / \mathbf{v}_1 ^2] \mathbf{v}_1 - [\langle \mathbf{u}_3, \mathbf{v}_2 \rangle / \mathbf{v}_2 ^2] \mathbf{v}_2$ Step 4: $\mathbf{v}_4 = \mathbf{u}_4 - [\langle \mathbf{u}_4, \mathbf{v}_1 \rangle / \mathbf{v}_1 ^2] \mathbf{v}_1 - [\langle \mathbf{u}_4, \mathbf{v}_2 \rangle / \mathbf{v}_2 ^2] \mathbf{v}_2 - [\langle \mathbf{u}_4, \mathbf{v}_3 \rangle / \mathbf{v}_3 ^2] \mathbf{v}_3$: (continue for <i>r</i> steps)
	Optional Step: To convert the orthogonal basis into an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_r\}$, normalize the orthogonal basis vectors.
Theorem.	 If W is a finite-dimensional inner product space, then: (a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal basis for W. (b) Every orthonormal set in W can be enlarged to an orthonormal basis for W.
•	Problem : If <i>A</i> is an $m \times n$ matrix with linearly independent column vectors, and if <i>Q</i> is the matrix that results by applying the Gram-Schmidt process to the column vectors of <i>A</i> , what relationship, if any, exists between <i>A</i> and <i>Q</i> ?
Theorem.	<i>QR</i>-Decomposition : If <i>A</i> is an $m \times n$ matrix with linearly independent column vectors, then <i>A</i> can be factored as $A = QR$ where <i>Q</i> is an $m \times n$ matrix with orthonormal column vectors, and <i>R</i> is an $n \times n$ invertible upper triangular matrix.
	Section 6.4: Best Approximation; Least Squares
•	Least Squares Problem: Given a linear system $A\mathbf{x} = \mathbf{b}$ of <i>m</i> equations in <i>n</i> unknowns, find a vector \mathbf{x} that minimizes $\ \mathbf{b} - A\mathbf{x}\ $ with respect to the Euclidean inner product on \mathbf{R}^m . We call such an \mathbf{x} a least squares solution of the system, we call $\mathbf{b} - A\mathbf{x}$ the least squares error vector, and we call $\ \mathbf{b} - A\mathbf{x}\ $ the least squares error.
Theorem.	Best Approximation Theorem : If <i>W</i> is a finite-dimensional subspace of an inner product space <i>V</i> , and if b is a vector in <i>V</i> , then $\text{proj}_W \mathbf{b}$ is the best approximation to b from <i>W</i> in the sense than $ \mathbf{b} - \text{proj}_W \mathbf{b} \le \mathbf{b} - \mathbf{w} $ for every vector w in <i>W</i> that is different from $\text{proj}_W \mathbf{b}$.
Theorem.	For every linear system $A\mathbf{x} = \mathbf{b}$, the associated normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ is consistent, and all solutions of the normal system are least squares solutions of $A\mathbf{x} = \mathbf{b}$. Moreover, if W is the column space of A, and \mathbf{x} is any least squares solution of $A\mathbf{x} = \mathbf{b}$, then the orthogonal projection of \mathbf{b} on W is proj _W $\mathbf{b} = A\mathbf{x}$.
Theorem.	If <i>A</i> is an $m \times n$ matrix, then the following are equivalent: (<i>a</i>) <i>A</i> has linearly independent column vectors. (<i>b</i>) $A^T A$ is invertible.
Theorem.	If A is an $m \times n$ matrix with linearly independent column vectors, then for every $m \times 1$ matrix b , the linear system A x = b has a unique least squares solution. This solution is given by $\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$. Moreover, if W is the column space of A, then the orthogonal projection of b on W is $\operatorname{proj}_W \mathbf{b} = A\mathbf{x} = A(A^T A)^{-1} A^T \mathbf{b}$.
Theorem.	If <i>A</i> is an $m \times n$ matrix with linearly independent column vectors, and if $A = QR$ is a <i>QR</i> -decomposition of <i>A</i> , then for each b in \mathbf{R}^m the system $A\mathbf{x} = \mathbf{b}$ has a unique least squares solution given by $\mathbf{x} = R^{-1}Q^T\mathbf{b}$.
Definition.	If W is a subspace of \mathbb{R}^m , then the transformation P: $\mathbb{R}^m \to W$ that maps each vector x in \mathbb{R}^m into its orthogonal projection proj _W x in W is called the orthogonal projection of \mathbb{R}^m on W. $[P] = A(A^T A)^{-1} A^T$
Theorem.	Equivalent Statements : If <i>A</i> is an $n \times n$ matrix, then the following statements are equivalent: (<i>a</i>) <i>A</i> is invertible (<i>b</i>) $A\mathbf{x} = 0$ has only the trivial solution (<i>c</i>) the reduced row-echelon form of <i>A</i> is I_n (<i>d</i>) <i>A</i> is expressible as a product of elementary matrices (<i>e</i>) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} (<i>f</i>) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} (<i>g</i>) det(A) $\neq 0$ (<i>h</i>) The column vectors of <i>A</i> are linearly independent.

(*i*) The row vectors of *A* are linearly independent.

(*j*) The column vectors of A span \mathbf{R}^n .

(k) The row vectors of A span \mathbf{R}^n . (l) The column vectors of A form a basis for \mathbf{R}^n .

(*m*) The row vectors of A form a basis for \mathbf{R}^n .

(n) A has rank n

(o) A has nullity 0

(p) The orthogonal complement of the null space of A is \mathbf{R}^n .

(q) The orthogonal complement of the row space of A is $\mathbf{0}$. (r) The range of T_A is \mathbf{R}^n

(s) T_A is one-to-one. (t) $\lambda = 0$ is not an eigenvalue of A. (u) A^TA is invertible