\[\left(\frac{u}{v} \right)^{2} + \frac{u}{v} \cdot \frac{v}{(v-0)^{2}} \cdot \int_{0}^{v} f(x) \, dx = \left(\frac{u}{v} \right)^{2} \]
Not integrable.

\[\lim_{n \to \infty} A_n = 0 = \frac{1}{n} \]

\[\lim_{n \to \infty} A_n = 1 = \frac{1}{n} \]

\[A_n = 0 = \frac{1}{n} \]

\[A_n = 1 = \frac{1}{n} \]

\[T = \left(\frac{1}{n} \right) + \left(\frac{2}{n} \right) + \cdots + \left(\frac{n}{n} \right) = \frac{1}{n} \]

\[f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \geq 0 \end{cases} \]
Infrared

\(\sin(\frac{x}{3}) \)
Define norm of P, $\| P \| = \max \{ x \rightarrow x \}$

$\| P \| = \max \{ x \rightarrow x \}

$\| P \| = \max \{ x \rightarrow x \}

$\| P \| = \max \{ x \rightarrow x \}

$\| P \| = \max \{ x \rightarrow x \}$

Partition \mathbb{R} into intervals $\mathbb{R} = [a, b]$ where $a < b$.

Definition: A set of points x_0, x_1, \ldots, x_n such that $x_0 < x_1 < \ldots < x_n$.
\[\Delta x_k = x_k - x_{k-1} \]

\[A = \sum_{k=1}^{n} \Delta x_k \cdot f(c_k) \]

Riemann Sum

\[c_1, c_2, \ldots, c_n \]

\[c \in [x_k, x_{k+1}] \]

\[L = \left[x_0, x_1 \right] \]
Instead of thinking about many subintervals, think about equal subintervals.
\[\| p \| \leq 8 \]

Clearly, if \(S = 0.00 \)
\[100 = 3 \]
\[10^0 = 3 \]
\[T \]

\[\left(\frac{x}{2} + c \right)^4 \frac{x}{6} - 5 \geq 3 \]

Then \(\frac{1}{2} \leq f(x) \) for any choice of centers \(c \) of \(f \) with \(\| f \| \leq 8 \), and for any partition \(P \) of \([a, b] \), there exists \((E) \)

\[f(x) \text{ is the definite integral of } f \text{ over } [a, b]. \]