## Easy-to-Explain but Hard-to-Solve Problems About Convex Polytopes <br> Jesús Antonio De Loera <br> Department of Mathematics <br> Univ. of California, Davis <br> http://www.math.ucdavis.edu/~ deloera/



## What is a Polytope?

Well,something like this:


## But NOT like this!



## A definition PLEASE!

The word CONVEX stands for sets that contain any line segment joining two of its points:


Definition: A POLYTOPE is the convex hull of a finitely many points inside Euclidean space.
a (hyper)plane divides spaces into two half-spaces. Half-spaces are convex sets! Intersection of convex sets is a convex set!


Formally a half-space is a linear inequality:

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{d} x_{d} \leq b
$$

Lemma: A polytope is a bounded subset of Euclidean space that results as the intersection of finitely many half-spaces.

## An algebraic formulation for polyhedra

A polytope has also an algebraic representation as the set of solutions of a system of linear inequalities:

$$
\begin{gathered}
a_{1,1} x_{1}+a_{1,2} x_{2}+\ldots+a_{1, d} x_{d} \leq b_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\ldots+a_{2, d} x_{d} \leq b_{2} \\
\vdots \\
a_{k, 1} x_{1}+a_{k, 2} x_{2}+\ldots+a_{k, d} x_{d} \leq b_{k}
\end{gathered}
$$

Note: This includes the possibility of using some linear equalities as well as inequalities!! Polytopes represented by sets of the form $\{x \mid A x=b, x \geq 0\}$, for suitable matrix $A$, and vector $b$.

Faces of Polytopes

## Duality



The self-dual tetrahedron.


The dodecahedron is dual to the icosahedron.


The icosahedron is dual to the dodecahedron.

## Some Numeric Properties of Polyhedra



- Euler's formula $V-E+F=2$, relates the number of vertices $V$, edges $E$, and facets $F$ of a 3-dimensional polytope.

Definition: Given a convex polytope $P$, denote by $f_{i}(P)$ the number of $i$-dimensional faces. The vector $\left(f_{0}(P), f_{1}(P), \ldots, f_{d}(P)\right)$ is the $f$-vector of $P$.

- A very active research area is to characterize the integer vectors $\left(f_{0}(P), f_{1}(P), \ldots, f_{d}(P)\right)$, which are $f$-vectors!
- SOME SAMPLE QUESTIONS:
- Can one find all constraints characterizing f-vectors of 4-dimensional polytopes?
- What is the largest number of facets possible in a $d$-dimensional polyhedron with $n$ vertices? i.e., what is the largest value of $f_{d-1}(P)$ ?
- For centrally-symmetric $d$-polytopes, how big can $\sum f_{i}(P)$ be? Believed to be at least $3^{d}$.


## Problem 1:

## Unfolding of Polytopes

## Ways to Visualize Polytopes



Jesús De Loera



The central projection of a hypercube from fourspace to three-space appears as a cube within a cube.

## Unfolding Polyhedra

What happens if we use scissors and cut along the edges of a polyhedron? What happens to a dodecahedron?


## Jesús De Loera



Jesús De Loera


Jesús De Loera


Jesús De Loera


## Some Questions

- Question: Can one always find an unfolding that has no self-overlappings?
- Question: What is the largest number of distinct unfoldings that one can have for a polyhedron with $n$ facets? For example, there 11 unfoldings for the 3-cube!
- Question: Is there always a single way to glue together an unfolding to reconstruct a polyhedron?


## Jesús De Loera



Jesús De Loera


## Problem 2

## Graphs of Polyhedra

## A Transportation Problems:



We need to transport laptops from factories to consumers. There is a cost $C_{i j}$ associated with transporting one laptop from factory $i$ to city $j$. We wish to minimizes the total cost.


The set of all possible solutions are matrices whose row/column sums equal the given supply/demand data.

## We can describe it by linear constraints!

The possible tables are non-negative integer solutions of the system of equations: Four equations, one for each row sum and column sum. For example,
$x_{11}+x_{12}+x_{13}+x_{14}=220$, first row
$x_{13}+x_{23}+x_{33}+x_{43}=71$, third column, and of course $x_{i j} \geq 0$
We need a method to solve the Linear Programming Problem
maximize a linear function $\sum \sum c_{i, j} x_{i j}$ subject to the above linear constraints!

## The Simplex Method

George Dantzig, inventor of the simplex algorithm


## The simplex method

- Lemma: A vertex of the polytope is always an optimal solution for a linear program. We need to find a special vertex of the polytope!
- The simplex method walks along the graph of the polytope, each time moving to a better and better cost!



## Hirsch Conjecture

- Performance of the simplex method depends on the diameter of the graph of the polytope: largest distance between any pair of nodes.
- Open Conjecture: The diameter of a polytope $P$ is at most \# of facets $(P)-\operatorname{dim}(P)$. It has been open for 40 years now!
- It is known to be true in many instances, e.g. for polytopes with $0 / 1$ vertices.
- It is best possible bound for polytopes of dimension 8 or higher. Best known general bound is $\frac{2^{d-2}(n-d+5 / 2)}{3}$.


## Duality



Problems about faces can also be rephrased as problems about vertices!

## Coloring Faces/Vertices

Given a 3-dimensional polyhedron we want to color its faces (or vertices), with the minimum number of colors possible, in such a way that two adjacent elements have different colors.


Theorem[The four-color theorem] Four colors always suffice!

## Zonotopes

Question: Are there special families of 3-colorable 3-polytopes?
A zonotope is the linear projection of a $k$-dimensional cube.


Conjecture The vertices of the graph of 3-zonotopes are 3-colorable.

by duality, the same as: The regions of a great-circle arrangement can be colored with 3 -colors!


## Problem 3

## Volume and its relatives

## What is the volume of a Polytope?


volume of pyramid $=\frac{1}{3}($ area of base $) \times$ height

## Proofs rely on an infinite process!



## Hilbert's third Problem




Polygons of the same area are equidecomposable, i.e., one can be partitioned into pieces that can be reassembled into the other.

Are any two convex 3-dimensional polytopes of the same volume equidecomposable? NO!

Enough to know how to do it for tetrahedra!
Another method to compute the volume of a polyhedron is to divide it as a disjoint union of simplices. We can triangulate the polyhedron in many different ways.

calculate volume for each tetrahedron and then add them up!

## The size of a triangulation

There are many different triangulations of a convex polyhedron and they come in different sizes! i.e. the number of tetrahedra changes.



Open Question If for a 3-dimensional polyhedron $P$ we know that there is triangulation of size $k_{1}$ and triangulations of size $k_{2}$, with $k_{2}>k_{1}$ is there a triangulation of every size $k$, with $k_{1}<k<k_{2}$ ?

## The connectivity of the triangulation

We can define the dual graph of a triangulation, the graph which has one vertex for each tetrahedron and an edge joining two such vertices if the tetrahedra are adjacent:

Open Question Is it true that every 3-dimensional polyhedron has a triangulation whose dual graph is Hamiltonian? In other words, we can visit by a walk all the vertices of the graph once without repeating vertices.

## Counting lattice points

Lattice points are those points with integer coordinates: $\mathbb{Z}^{n}=$ $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}\right.$ integer $\}$ We wish to count how many lie inside a given polytope!


We can approximate the volume!
Let $P$ be a convex polytope in $\mathbb{R}^{d}$. For each integer $n \geq 1$, let

$$
n P=\{n q \mid q \in P\}
$$



## Counting function approximates volume

For $P$ a $d$-polytope, let

$$
i(P, n)=\#\left(n P \cap \mathbb{Z}^{d}\right)=\#\left\{q \in P \mid n q \in \mathbb{Z}^{d}\right\}
$$

This is the number of lattice points in the dilation $n P$.

$$
\text { Volume of } P=\text { limit }_{n \rightarrow \infty} \frac{i(P, n)}{n^{d}}
$$

At each dilation we can approximate the volume by placing a small unit cube centered at each lattice point:

## Combinatorics via Lattice points

Many objects can be counted as the lattice pbints in some polytope. For instance, Sudoku configurations, matchings on graphs, and MAGIC squares:


| 12 | 0 | 5 | 7 |
| :--- | :--- | :--- | :--- |
| 0 | 12 | 7 | 5 |
| 7 | 5 | 0 | 12 |
| 5 | 7 | 12 | 0 |

CHALLENGE:HOW MANY $4 \times 4$ magic squares with sum n are there? Same as counting the points with integer coordinates inside the $n$-th dilation of a "magic square" polytope!

Jesús De Loera
OPEN PROBLEM: Figure out a formula for the volume of $n \times n$ magic squares or, more strongly, for the number of lattice points of each dilation.

