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Introduction.

This paper deals with the notion of a relation A C (C x D) between two
finite sets C and D. Many different questions can be studied in terms of a
relation. In this paper we will consider the following relations: the incidence
relation between the “extended circuits” and the bases of a matroid, and the
relation of inclusion of chambers in simplices in an affine point configuration.
We also consider (Section 4) a class of relations whose incidence matrices
satisfy certain conditions (matrices with the T-property).

A relation A can be equivalently presented with the help of its incidence
matrix A. We can then consider two linear spaces: the linear space Vp
generated by the columns of A and the linear space Vg generated by the
rows of A over some field. The study of bases in these linear spaces is
useful in different combinatorial problems. We can mention, for example,
the construction of bases related to the Kostant partition function [4] or
further studies of it [1].

From our point of view, the notion of linear dependency is not quite a
combinatorial notion: it depends on the field. First, a basis in Vp (or in V)
may consist not only of elements d € D but of their linear combinations. If
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we consider a basis of the column matroid of the matrix A it will consist of
columns (and not of their linear combinations), however, we still need to use
linear combinations to express a column of A in terms of a basis.

The present paper naturally splits into two parts: Sections 1-4 and Sec-
tions 5-7. In Section 1 for a relation A C (C x D) and an ordering o of C we
construct a matroid M (o) on the set D and the dual matroid M*(o). Bases
of these matroids are constructed combinatorially and no linear dependencies
of the columns of the matrix A are used.

Some interesting questions arise: What are the conditions on the relation
A so that these matroids M(o) do not depend on the ordering ¢? Can
we define a unique matroid for a relation using the matroids M(o)? These
questions will be discussed thoughout Sections 1-4 (see also Conjecture 3.2
in Section 3).

In Section 2 we describe dual matroids M*(o) (from Section 1) using the
notion of a "nil-matrix”. This section can be omitted in the first reading.

In Section 3 we consider a matroid M = (E, B) (where B is the set of
bases of M) and the incidence relation between, what we call, the extended
circuits (see Definition 3.1) of the matroid M and the bases of M. Applying
the results from Section 1 to this relation, we obtain the matroids M(o) on
the set B of bases of the matroid M. For this relation an ordering o is an
ordering of the set of all extended circuits of the matroid M. We state the
following
Conjecture. Let M = (E, B) be a matroid on the set £ with the set of
bases B and X the set of all extended circuits of M. Let o be an ordering of
X and M(o) = (B, P,) the matroid constructed (according to Section 1) for
the relation A C (X x B) and the ordering o. Let r, be the rank of M(o).
Denote 7 = max, r, and

P={p: peJP, and |p| =7},

where |p| is the cardinality of p. Then a pair (B, P) is a matroid.

In Section 4 we consider a relation A vyhose incidence matrix A satisfies
the following property (the T-property): A does not contain submatrices of

the form
1 1
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For example, the incidence matrix (considered in Section 3) between the
extended circuits and the bases of a matroid M has the T-property. We
also introduce (Definition 4.3) a geometric interpretation (“graphoid”) of a
relation with the T-property. Thus, using the technique from Section 1 we
construct the matroid M*(o) for a graphoid and an ordering o of its vertices.
In a particular case when a graphoid is a graph (without isolated vertices and
multiple edges) instead of matroids M*(c) we obtain a unique matroid which
coincides with the usual spanning trees matroid of a graph.

Roughly speaking, in terms of a graphoid the above Conjecture turns
into the following: for each graphoid (or a matrix with the T-property) the
technique from Section 1 yields a unique matroid.

In Sections 5-6 we again consider an arbitrary relation A C (C x D) with
the incidence matrix A. In section 5 we give a definition (Definition 5.2) of
a geometrical basis' of a relation A with respect to F, where F is a subset
of the set of all circuits of the column matroid on A. Geometrical bases are
certain bases of this column matroid.

In section 6 we establish connections (Theorems 6.1 and 6.3) between the
bases of matroids M(o) (constructed in Section 1) and geometrical bases of
the relation A with respect to F'. These Theorems give a combinatorial way
of constructing bases of a column matroid on A using a subset of its circuits
and a combinatorial way to express an element in terms of a basis.

In section 7 we consider the inclusion relation of chambers in simplices
in an affine point configuration and prove (Theorem 7.4) that the bases of
simplices constructed in [2] are geometrical. In [2] there is also an explicit
construction of geometrical bases of chambers. These examples show that
the study of geometrical bases might be of independent interest.

The results of this paper can be applied to a covering of a finite set by
a system of subsets where subsets may overlap. Indeed, in this case we
can naturally construct a relation: consider a finite set D and a covering
Ciy..-5Cky €. ¢; C D are such that U ...Uck = D. Let C = {¢y,...,ck}-
We define the relation A C (C x D) as follows: (d,¢;) € Aiff d € ¢;.

Examples of coverings with overlapping are: 1) a covering of the convex
hull of a finite set of points in an affine point configuration by overlapping

!Geometrical bases were introduced in [2] for the inclusion relation of chambers in
simplices in an affine point configuration and were called there “combinatorial bases”.



simplices?; 2) Grothendieck topology; 3) covering of a finite group G by
double cosets g; Hg,, where H is a subgroup of the group Gj; for example,
when G is a Coxeter group and H is a parabolic subgroup.

Since the construction of the matroid M(o) can be held for various re-
lations (for a fixed ordering o) it seems to us that the question about the
conditions on the relation which entail the existence of a unique matroid (in-
dependent of an ordering ¢) might be a decisive question and may serve as a
characterization of the class of relations with good combinatorial properties.

1 Construction of matroids for a relation

Partition D = {J D;. Consider a relation A C (C x D), where C and D are

two finite sets. Let A =|| a.q ||, ¢ € C, d € D be the incidence matrix of
this relation, i.e. A is a rectangular m x [ matrix, where
Qed = 11 lf (C,d) € A, Qed = 07 7’f (cvd) ¢ A, (1)

and m = |C|, | = |D| (where |C] is the cardinality of C).

We will use the same letter D to denote both the set D in a relation
A C (C x D) and the set of the columns of the matrix A.

Let us assume that the matrix A has no zero-columns. Let o = (c1,¢2,--.)
be some fixed ordering of C (i.e. some ordering of the rows of the matrix A)
Consider the following partition

D=UD,', D,'ﬂDj=®,fO7‘i-',éj, (2)
=0

where D;, i > 0 is the set of the columns of A that have “0” in the first
¢ — 1 rows and “1” in the i-th row; Dy is the set of the columns of A that

have all “0” in the first [ rows. (If m < [, we have Dy = 0 since A has no
zero-columns.)

Of course, the partition D = |J D; depends on the ordering o. Note also
that some of the sets D; can be empty sets.

Matroids M(o) for a relation. Consider the following subset p C D:
p= U(D, \ d,‘), where d; € D; (3)

2This relation is considered in Section 7.



Thus, for each choice of d; € D; we obtain a set p. Let us denote by P, the
set of all these sets p. The sets p € P, will be called combinatorial prebases
of the relation A for the ordering o of C.

Theorem 1.1 Let A be a relation with some ordering o of C. Then the pair
(D, P,) is a matroid on the set D with the set of bases P,. The rank r, of
this matroid M(o) is equal to

re = 3 (IDi| = 1) = |D| — ky,
Di#0

where k, is the number of nonempty subsets D; in the partition (2).

In general, matroids M(o) constructed for different orderings o of C are
different matroids, even have different rank.

Proof. Let an ordering o of C be fixed and D = |J D; be the partition (2)
of the set D for the ordering 0. We have to prove that the sets p € P, satisfy
the exchange axiom for bases of a matroid, i.e.

ifp#p, p,p) € P, and d' € (p'\ p) then there exists d € (p\ p’) such
that (p\d)ud € P,.

Let d' € (p'\ p). Due to (2) there exists ¢ such that d' € D;. Since d' € p/,
therefore, there exists a column d # d’, d € D; such that d ¢ p’ (according
to formula (3)). We also have d € p. (Indeed, according to formula (3) there
can be only one column from D; that does not belong to p, but d' € p).
Clearly, the set of columns (p \ d) U d' satisfies formula (3) and, therefore,
(p\d)ud € P,.

It is also easy to see that P, # @, and thus (D, P,) is a matroid. O

Note that we have not actually used that we have a particular partition

D=y D;.

Dual matroids. Recall that if M = (E, B) is a matroid with the set B of
bases then the pair (E, B’), where B’ is the collection of the sets b’ such that
b = E\ b for any b € B, is also a matroid; it is called the matroid dual to
M.

Let A € (C x D) be a relation with an ordering o of C and p € P, be a
combinatorial prebasis of the relation A. Consider the set ¢ = D \ p, where
p € P, and denote by @), the set of all such ¢q. The following theorem follows
immediately from the definition of a dual matroid.
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Theorem 1.2 The pair M*(o) = (D, Q,) is a matroid dual to the matroid
M(o) = (D, P,) and has the rank k,.

2 Nil-matrices of an incidence matrix.

2.1 Connection between nil-matrices and combinato-
rial prebases

A useful technique in the study of the matroids M (o) constructed in Section 1
for a relation A € (C x D) is based on the notion of a nil-matriz. This
connection is established in Propositions 2.2 and 2.3.

Definition 2.1 A rectangular m x 1, m > [ incidence matriz ||a; x| is called
a nil-matriz if by permutations of its rows and columns it can be transformed
to a matriz such that

agi;=landa;p, =0 fori<k,i=1,...,m (4)

It is also convenient to say that a rectangular m x [, m > [ incidence
matrix ||la; || that satisfy the condition (4) has the N-property.

Let A be an incidence matrix of order m x n with the set of columns D
and the set of rows C. Let us introduce some notations:

N is a submatrix of A of order m x l, 1 £ 1 < nsuch that it is a nil-matrix;

N is the set of columns of the matrix V;

N (A) is the set of all nil-matrices N of the matrix A;

r(N) is the rank of N; )

7 = max r(N) over all N € N(A); )

N:(A) is the set of all nil-matrices of A for which r(N) = 7.

Proposition 2.2 Let A C (C x D) be a relation with the incidence matriz A.
Let o be an ordering of C such that in the partition (2) Do = 0. Letp € P, be
a combinatorial prebasis of this relation , i.e. p = U(D;\ d;), where d; € D;.
Then the submatriz R of the matriz A consisting of the columns {d;} is a
nil-matriz.



Proof. If D; # @ for : = 1,...,k, the matrix R has already the N-
property. If for some ¢ we have D; = @, it is easy to see, that by permutations
of rows of R it can be transformed to a matrix with the N-property. O

The following proposition can be easily proved.

Proposition 2.3 Let A be an incidence matriz of order m x n with the set
of columns D and the set of rows C. Let N € N(A) be a nil-matriz of order
m x 7 , where # = maxr(N) over all N € N(A). Then there ezists an
ordering o of C and a combinatorial prebasis p € P, such that p = D\ N.
For the ordering o the number of nonempty sets D; in the partition (2) is
equal to 7.

Note that in terms of the dual matroid M} = (D, Q,) Propositions 2.2
and 2.3 mean the following:

1. Any basis ¢ € ), is a nil-matrix.

2. For any nil-matrix N € N:z(A) there exists an ordering o of C and a
basis ¢ € @, such that ¢ = N.

Using nil-matrices, the questions about the matroids M(o) which we
asked in the introduction, can be reformulated in the following way.

Let A be an incidence matrix with the set of rows C and the set of columns
D. Is the pair (D, Nz(A)) a matroid? What are the conditions on the matrix
A when the pair (D, M;:(A)) is a matroid? Does in this case the set A'(A) of
all nil-matrices of the matrix A form the collection of all independent sets of
this matroid?

Consider the following example — the matrix A with the columns dy,ds, ds, dy,
or simply 1,2,3,4:

et pud  racnd pd

—_—— = O N
e O =
—_—o O =

We have

N(A)={1,2,3,4,(1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,3,4), (2,3,4)},



7 = 3 (note that rank(A) = 4) and N:(A) = {(1,3,4), (2,3,4)}.

One can check that in this example the pair (D, NV:(A)) is a matroid with
the bases (1,3,4) and (2,3,4). However, the set of independent sets of this
matroid does not contain the set (1,2), which is a nil-matrix. In other words,
the nil-matrix consisting of the columns (1,2) cannot be extended to a nil-
matrix of the maximal rank 7 = 3. Therefore, even when (D, N:(A)) is a
matroid, the set A/(A)) is not the set of all independent sets of this matroid.

2.2 Some properties of nil-matrices.

Propositions 2.4 and 2.5 describe some useful properties of nil-matrices.

Proposition 2.4 Let‘N be a nil-matriz and N its set of columns. Let N' C
N. Then the matriz N' consisting of the columns N' is a nil-matriz.

Proof. Obvious.

For example, consider the following nil-matrix and remove its second
column.

1 0 0 1 0

After permuting the second and the third rows we obtain the matrix with
the N-property:
0 1

Proposition 2.5 Let N be a nil-matriz of order m x I, m > | and d an
arbitrary vector-column of length m consisting of “0” and “1”. Then there

ezxists a column d’ € N such that the matriz consisting of the columns (N '\
d')YUd is a nil-matriz.

Proof. Let N be a nil-matrix and d a vector-column consisting of “0” and
“1”. Since N is a nil-matrix then by permutations of its rows and columns
it can be transformed to a matrix with the N-property. Let us enumerate



the columns of this matrix, i.e. the k-th column has the first “1” in the k-th
place (from top to bottom). Let us permute the rows of d together with
the rows of N. Suppose that in the obtained column the first (from top to
bottom) “1” is in the k-th row. Two cases are possible: 1) k <; 2) k> L

If k < I, then we exchange the column d with the k-th column of N,
ie. we choose the k-th column of N as d’. Evidently, the matrix with the
columns (N \ ') U d has the N-property and, therefore, is a nil-matrix.

Let k > {. Then we exchange the column d with the last column of N,

i.e. we choose the [-th column of N as d'. After permuting the I-th and the

k-th rows in the matrix with the columns (N \ d') U d we obtain the matrix
with the N-property. O

Proposition 2.5 gives the illusion that if A is an incidence matrix and
N:(A) is the set of all its nil-matrices of order m x ¥ , (where 7 = max r(N)
over all N € N(A)) then Ni(A) satisfies the exchange axiom for bases of a
matroid. However, Proposition 2.5 differs from the exchange axiom for bases
of a matroid in the following way. Indeed, let N,N'" € Ni(A)and d € N'\N.
Then by Proposition 2.5 there exists a column @’ € N such that the matrix

consisting of the columns (N \ d') U d is a nil-matrix. However, we have not
required that ' € N\ N'.

3 Relation between bases and extended cir-
cuits of a matroid

Let M = (E, B) be a matroid of rank r on the set £ with the set B of bases.
Let C be the set of all circuits of M.

Definition 3.1 A subset = C E is an ertended circuit of a matroid M if
there ezists a circuit ¢ € C such that D ¢ and for anye € ¢, (z\e) € B.

Denote by X the set of all extended circuits of a matroid M. For any
r € X we have [z| =7+ 1.

Example. Let M = (E, C) be the matroid below, i.e. E = {1,...,5},, C =
{123, 1245, 1345,2345}.



1 2 3
Then the set of all extended circuits of M is X = {1234, 1235, 1245, 1345, 2345}.

The relation A C (X x B) is defined as follows: (z,b) € A, iff b C z for
r € X and b € B. The incidence matrix A = ||a, ;|| takes the form

azp=1,1fbCz,and a3, =0, ifbZ z (5)

For the relation A C (X x B) with a fixed ordering ¢ of X we can
construct (according to Section 1) the matroid M (o) = (B, P,) on the set
B of bases of the matroid M. Let r, be the rank of M (o) and ¥ = max, r,.
We have the following

Conjecure 3.2 The pair (B, P), where
P={p: pel P, and |p| =1}
v
is a matroid.
In the interesting paper (3] there is a definition of a matroid on the set

of bases of the initial matroid. Connection between this matroid and the
matroids M(o) from Section 3 will be studied separately.

4 Matroids for a relation with the I'-property

4.1 Matrices with the T-property and graphoids

In section 3 we have considered a relation between the extended circuits and
the bases of a matroid M. Such relation satisfy the following property.
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Definition 4.1 We will say that an incidence matriz A = ||a;i|| has the
T-property if it does not have any second order submatriz

Qik Qi
itk Qg
1 1
1 1

Proposition 4.2 Let M be a matroid on E with the set B of bases and X

the sct of all extended circuits of M. Let A = |laz)l, = € X, b € B be the
incidence matriz (5) for the matroid M. The matriz A has the T-property.

that has the form

Proof. We will show that the matrix A cannot have a second order
submatrix with all the elements equal to “1”. Suppose that the opposite is
true, i.e. there are two extended circuits z,z’ € X, £ # z’ and two bases
b € B, b# V suchthat b C z, ' Czand bC 2/, ' C 2'. Sinceb C z
and V' C x, then bU b C z. Note that since |z] = r + 1 and b # b’ then the
set bU b has at least 7 + 1 elements. Therefore, x = bUV'. Similarly, we can
obtain that 2’ = bU V. Thus, z = . We have obtained a contradiction. O

Consider the following geometrical object related to the matrix with the
T-property:

Definition 4.3 Let V be a finite set (a set of vertices) and F' a set of subsets
f c V. A pair (V,F) is called a graphoid if the following conditions are
satisfied:

DO forany f, '€ F (T-property)

2) UF=V
fEF

3| f|>1 forany f € F.

Let (V, F) be a graphoid with the set of vertices V. Any subset f € F can
be considered as a k-dimensional simplex (a k-monade), where k = |f| — 1.
The T-property means that any two monades from F' cannot have an edge
in common. Thus, graphoid is a special case of a simplicial complex.
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Proposition 4.4 There is a one-to-one correspondence between graphoids
and 0 — 1 matrices || acq ||, c € C, d € D with the following properties:

1) T-property;

2) ¥ 4aca>0, foranyce C

3)>.a.q4>1, foranyd € D.

Proof. Consider a 0 —1 matrix || a.q4 ||, c € C, d € D. Let us correspond
to it the following graphoid: to each row ¢ € C we correspond a vertex v and
to each column d € D we correspond the set fy = {c: a.q = 1}. It is easy
to see that the properties 1)-3) of the matrix || a.q || are equivalent to the
properties 1)-3) of a graphoid. O

Graphoid generalizes a graph without isolated vertices and multiple edges.
Indeed, if |f| = 2 for any f € F, then (V, F) is a graph. (In this case the
corresponding T-matrix has no more than two “1” in each column.)

4.2 Matroids on a graphoid

In Section 1 we have constructed matroids M (o) for an incidence matrix. In
Subsection 4.1 we have defined a graphoid or equivalently, a 0 —1 matrix with
the T-property (see Proposition 4.4). Thus we can study matroids M (o) on
a graphoid. Below is the reformulation of the construction from Section 1 of
the matroids M(c) in graphoid terms3.

Let G = (V, F) be a graphoid and ¢ = (v;,,v;,,...) be an ordering of V.
Denote Fy = {f : v;, € f},

Fr={f:v, € fand f€ L U...U Fr_1} (6)
Consider the following subset of monades t C F'

t = {(Fl\fl)U(FQ\fQ)U }, where fk € Fk (7)

By varying fi € Fj we obtain different sets t. Let 7, be the set of all ¢
constructed for a fixed ordering o of V.
Similarly, consider a set t* C F

*={f1,..., fx}, where fi € F} (8)

3Note that this construction is applied here to any graphoid and not neccessarily to a
graphoid that was obtained from the incidence matrix || az 4 || of a matroid M.
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and denote by T the set of all such ¢* for a fixed ordering o.

Let A be the incidence matrix of the relation A C (V x F). Let M(c) =
(F,P,) and M*(0) = (F,Q,) be the matroids constructed (according to
Section 1) for the matrix A with the ordering o of V. It is easy to check that
the following proposition holds.

Proposition 4.5 There is a one-to-one correspondence between the set P,

and the set T,,. There is a one-to-one correspondence between the set @, and
the set T, .

4.3 Graph matroids as a special case of matroids M,

In this Subsection we continue to use the notations from Subsection 4.2.

Proposition 4.6 Let G = (V,F) be a graph without multiple edges and
isolated vertices. Let A be the incidence matriz between vertices v € V and
edges f € F.
1. Let ¢ = (vi,,vi,,...) be an ordering of V. Let t* = {fi,..., fx} be a
set (8) for the ordering o. The set t* is a tree (not neccessarily connected).
2. For any spanning tree t of the graph G there ezists an ordering o of V
such thatt € T?.

Proof. 1. Consider t* € T,. Suppose that the opposite statement is true,
i.e. t*={f1,..., fr} contains a cycle s C t*. This means that any vertex of
the cycle s belongs to at least two edges of the cycle. Note that for any edge
fx € t* we have the corresponding (distinguished) vertex v;,. Among all the
edges of the cycle s consider an edge f; such that the corresponding vertex v;;
has the least number. Then according to formula (6) any Fi, where k& > 1,
does not contain any edge that has the vertex v;;. Therefore, s C ¢* does
not contain any edge, other than f;, that has the vertex v;,. Therefore, the
vertex v;, belongs to only one of the edges of s. The obtained contradiction
completes the proof.

2. Suppose i is a spanning tree of the graph G. Note that a spanning
tree of a graph G (without isolated vertices ) contains all its vertices.

Let us construct the following ordering of V. Consider an “end branch” of
the tree {, and denote it by f;. Let v;, be the vertex of f; such that it belongs
to only one edge (i.e. v;, is an end vertex), we have v;, € f;. Consider now
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the subtree ¢ \ f; and let f, be its “end branch”. We choose an end vertex
of f; and denote it v;,. We have v;, € f;. By continuing the process we
obtain the ordering o of all v € V (since { is a spanning tree.) We have also
obtained the ordering (fy, f2,...) of edges of ¢ and we have v;, € fi.

For this ordering o of V we define F) according to formula (6). We need
to prove that £ € T7, i.e. fix € Fy, where f; € {. Clearly, f; € F;. Consider
f2. We have v;, € f,. Let us show that f; € F;. Suppose the opposite is
true, i.e. f; € Fi. This means that there are two edges fi, f2 € t such that
vi, € fi, vi, € fo. But this contradicts with the condition that v;, is the
end vertex” of the tree {. Thus, f, ¢ Fy, and we have f, € F,. Similarly,
since { is a tree we can prove that fj d(FU...UF_y)and fi, € F;. O

Let G = (V, E) be a graph without multiple edges and isolated vertices.
Let M = (FE, B) be the usual matroid of this graph, i.e. B is the set of all
spanning trees on G. From Proposition 4.6 follows Theorem 4.7.

Let- o be an ordering of V. Let r, = |t*|, where t* € T, is defined by
formulas (6), (8). Denote # = max, r,. Denote also

Tr={t":t" €| JT, and |t*| = 7}.

Theorem 4.7 A pair (E,T;) is a matroid and it coincides with the matroid

M = (E, B) of the graph G = (V, E).

5 Geometrical bases of a relation.

In Sections 5, 6 we consider again an arbitrary relation A C (C x D). Let A
be its incidence matrix. Let Vp be the linear space generated by the columns
d € D over a field of characteristic 0. Recall that a subset f C D, |f| > 1 is
a circuit if all the columns d € f of the matrix A are linearly dependent in
Vb but any proper subset of f is a linearly independent set. Denote by Fy
the set of all circuits f (i.e. all the circuits of the column matroid* on A).
In this Section we will define a geometrical basis of the relation A with
respect to F', where F' C Fy. Sometimes in applications only a certain subset
F of circuits is known (from "geometric reasons”) nevertheless the bases has

4The column matroid on A is a matroid defined by the columns of A considered as
vectors in Vp.
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to be constructed. It seems to us that the notion of a geometrical basis might
be helpful in constructing bases using a subset of circuits and also as a way
of expressing combinatorially an element (a column d € D) in terms of a
basis (see examples in Section 7).

_ Remark. Note that if F' = F{ then any basis of the column matroid on
A is geometrical with respect to F.

Definition 5.1 Let b C D. We say that an element d € b is expressed in
one step “in terms of the set b using F” if there exists f € F such that
de f, and f\dCb.

We say that an element d € b can be expressed in k steps in terms of the
set b using F' if there exists a sequence dy,...,dy; d; € D such that d, = d
and d, is expressed in one step in terms of the set b (using F), dy is expressed
in one step in terms of the set bU dy, ete. Finally, d; is expressed in one
step in terms of the set bU dy ... U di_;.

Definition 5.2 A geometrical basis b of a relation A with respect to F is a
subset b C D that satisfies the following conditions:

1) b is a basis in Vp;

2) For anyd € D, d € b there exists k such that d can be expressed in k
steps in terms of b using F.

Partition D = Ko U... ;. The notion of a geometrical basis leads to the
following partition of the set D. Let b be a geometrical basis with respect to
F. We define:
Ko=b
Ky = {d: d is expressed in one step but not in zero steps, in terms of Ky using F}

K; = {d: d is expressed in not less than ¢ steps in terms of KoUK} ...U

Ki_, using F}

Since B is a geometrical basis, there exists n such that

D=Kou...UK,, K;UK; =0, 1# ;. (9)
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6 Connection between geometrical bases and
combinatorial prebases of a relation.

Let A C (C x D) be a relation with the incidence matrix A and rank(A) = r.
Let Vp be the linear space generated by the elements d € D over some field
of characteristic 0. Let Fy be the set of all circuits f on A (see Section 5). Let
F C Fy. Consider the following relation U C (F x D) , where f € F, d € D,
and

(f,d)eU, iffde f (10)

Denote also by U the incidence matrix of this relation.

Theorem 6.1 and Theorem 6.3 establish connections between geometrical
bases of the relation A C (C x D) with respect to F' C Fy and combinatorial
prebases (see Section 1) of the relation U for an ordering o of F.

Let o be an ordering of F. Denote by M(c) the matroid constructed
(according to Section 1) for the relation U = (F x D) and the ordering o.
Let P, be the set of bases of M(o) (i.e. the set of combinatorial prebases).

Theorem 6.1 1. Let b be a geometrical basis of the relation A with respect
to F such that for any d € b there exists f € F such that d € f. ° Then
there exists an ordering o of F such that b is a combinatorial prebasis of the
relation U for the ordering o, i.e. b € P,.

2. For the ordering o defined in 1. any combinatorial prebasis p € P, of
the relation U is a geometrical basis of the relation A with respect to F.

Proof. 1. Let b be a geometrical basis of the relation A with respect
to F. In order to construct the ordering o of F let us first rearrange the
elements d € D in the following way. Consider the partition (9), i.e.

D= KyU...UK,, where Ky = b.

First, we write all the elements d € D that correspond to d € Ky, with an
arbitrary order within K, then all the elements d € K; (with an arbitrary
order within K7}), etc.

5We assume here that there are no zero columns in the matrix U. A zero colurpn do
in the matrix U can appear in two cases: 1) do is a zero column in the matrix A and
naturally such element do has to be disregarded; or 2) do is a basis element such that
every d € D,d # dp can be expressed in terms of b\ dg. In this case the element dp has to
be added to the combinatorial prebasis b.
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By the definition of Kj;, for any d € Kj; there is an element f € F (not
necessarily unique) such that 1) d € f; 2) f\d C KoU...U K;_;. Let us
assign one such f to eachd € K U...UK,. We have obtained an ordering of
some f € F and this ordering corresponds to the ordering of K, K»,..., K,.
Let all the rest of f € F follow in an arbitrary order. The obtained ordering
of F we define as o.

For the ordering o of F we will construct a combinatorial prebasis p € P,
and will show that b == p. Let D = D; U...U Dy be the partition of D
defined by formula (2). We have Dy = 0 and D; # @ for any i = 1,...,k. In
order to construct p we need to choose d; € D; for : = 1,...,k. Note that
from the construction of the ordering o it follows that:

1) each element d € K; U...U K, belongs to one and only one set D;;

2)ifd,d € K1U...UK, and d € D; then d' € D;, where 1 # j;

N k=|Kq|+...+ K.l

This implies that any set D;, 1 = 1,...,k contains one and only one
element d € K1U...UK,. Then we can denote by Jl, ceny dy, all t~he elements
from K, U...UK,, where d; € D;. We define p = UL (D; \ d). Clearly,
p€ P,

Let us show that p = b. Indeed, ifd € p, thend € D\ (K, U...UK,) =
Ko=0b. If d € b= Ky then since Dy = @ we haved € D; U...U D;. But
d¢ K U...UK,, therefore, d € UX_,(D; \(1.7,) =p. Thus, b € P,.

2. Let us prove that for the above ordering o of F' any combinatorial
prebasis p € P, of the relation U C (F x D) is a geometrical basis of the
relation A C (C x D) with respect to F. Let p € P,, p # b. Since b,p € P,
and b is a basis in Vp, we have |p| = r. Therefore, we only need to prove
that for any d € D there exists [ such that d is expressed in ! steps in terms
of p using F.

Let ¢ = (f1, f2,--.) be the ordering defined above. Consider the parti-
tion (2). We have Dy = @ and D; # @ for any ¢ = 1,...,k ( since b is a
geometrical basis). Let d € p. Then d € D; for some .

First, consider the case when d € D,. According to (3) for any d' #
d, d € D) we have d’ € p. This means that d is expressed in one step in
terms of p using f; , l.e. d € K.

Let d € D,. Then using f; the element d can be expressed in terms of
pU K, i.e. sinced € p we have d € K U K».

Finally, if d € D, we obtain that d € K; U ... U K.

17



Thus, we have proved that for any d € p there exists 7 such that d is

expressed in ¢ steps in terms of p using F, i.e. p € P,, p # b is a geometrical
basis of the relation A with respect to F. O

Remark. If we know one geometrical basis of a relation A with respect
to F' then Theorem 6.1 gives the way of constructing more geometrical bases
of this relation (with respect to F).

We will now describe (Theorem 6.3) some conditions when a combina-
torial prebasis of the relation U C (F x D) with an ordering o of F is a
geometrical basis of the relation A C (C x D) with respect to F.

Let A C (C x D) be a relation with the incidence matrix A and r =
rank(A). Let Fp be the set of all circuits fon Aand F C F,. For the
relation U defined by formula (10) and an ordering o of F let us consider the
partition (2). Let Ak, be the number of nonempty sets D; in this partition

and r, the rank of the matroid M(c) (see Theorem 1.1).

Proposition 6.2 Let 0 be an ordering of F such that in the partition (2)
Do=0. Thenr <r,.

Proof. Let ¢ = (f1, f2,...) be an ordering of F such that Dy = @. Let
p € P, (see formula (3).) We need to prove that r < |p|. Since Dy = @, we
have D = pU (dy U...Ud,,).

Let us prove that any element dy,...,dk, can be expressed in terms of p
using F'. Consider d;. We have d; € fi, and for any d € f1, d # d; we have
d € p, i.e. dy is expressed in one step in terms of p using f;. Consider d,.
We have d; € fa. Any other element d # d; from f; either belongs to p or
is equal to d;. But d; is expressed in terms of p using F, therefore, dy can
be expressed in terms of p using F. Similarly, we obtain that any element
di, 1=1,...,k, is expressed in terms of p using F.

Thus, if the ordering o is such that Dy = @ then any element d € D is
expressed in terms of p using F. Therefore r < |p| = 7,. O

From Proposition 6.2 it is clear that a combinatorial prebasis p € P, can
be a geometrical basis of A with respect to F only if the ordering o of F is
such that r = |D| — k, (see Theorem 1.1).

Theorem 6.3 Let A C (C x D) be a relation with the incidence matriz A

-

and rank(A) = r. Let U C (F x D) be the relation defined by formula (10).
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If there exists an ordering o of F such that in the partition (2) for the relation
U:

1) Do =0,

2) k, =|D|—r,
then any combinatorial prebasis p € P, defined by (3) for the relation U is a
geometrical basis of the relation A with respect to F.

Proof. Let ¢ = (fi, f2,...) be an ordering satisfying the above con-
ditions. We have Dy = @ and Dy # @,...,D¢, # 0. Let p € P,, then
D =pU(dU...Ud,) (according to (3)). Then any element d € D can
be expressed in terms of p using F' (see proof of Proposition 6.2). Since
|p| = |D| = ks = r we conclude that p is a geometrical basis of the relation
A with respect to F. O

7 Examples of geometrical bases.

7.1 Geometrical bases of simplices.

Let F = (e1,e2,...,en), N > n be a finite set of points in an n-dimensional
affine space V. Let P = conv(E) be the convex hull of E. Let o =
o(ei,. .., €i,,,) bean n-dimensional simplex with the vertices e;,,...,€;,,, €

E. Denote by T the set of all such simplices o. All the simplices ¢ (as a rule
overlapping) cover the polytope P. The simplices o divide the polytope P
into a finite number of chambers 7 (see Definition 7.1). Denote by I" the set
of all chambers v in P.

Definition 7.1 Let 0 € £ and G be the boundary of o. Let T = Useg @ and
P =P\ X. Let 5 be a connected component of P and ~ be closure of 5. We
call v a chamber and 5 an open chamber.

Let A C (¥ x I') be the inclusion relation of chambers v in simplices o,
L.e.
(o,y) € Aiffy Coo.
Let A be the incidence matrix of A. Consider the linear space Vs generated
by the rows of A over some field of characteristic 0. In Section 7.1 we will
prove (Theorem 7.4) that the bases in Vi constructed in [2] are geometrical
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with respect to F' defined in [1]. Let us show first (Theorem 7.3) that the
linear relations f € F are circuits of the row matroid on A.

Consider a subset S C E consisting of n + 2 points and such that S
contains at least n + 1 points in general position. Denote

f={o:0(e,...,€,,,) €L and ¢, € S} (11)

Thus, with each such S we associate a subset f C T (clearly, f # 0). Let F
be the set of all such f corresponding to all possible S C E.

Definition 7.2 We say that a point p of affine space is visible from the point
e, e # p, with respect to the simpler o if the open segment (e,p) does not
intersect o, t.e. (e,p)No=0.

We say also that a subset S of points is visible from the point e if every
point of this subset is visible from e.

Theorem 7.3 6 Let 0 € T be a simplez and e € E a point that is not a
verter of o.

1. There is the following linear relation in Vs among simplices:

g = Z o(gi,e) = E o(q,e), (12)
7.€Q* 7:€Q-

where

Q* is the set of all facets (i.e. (n—1)-dimensional faces ) q; of the simplez
o that are not visible from e (with respect to o );

Q™ is the set of all facets q; of the simplez o that are visible from e (with
respect to o);

o(qi, e) is the n-dimensional simplez spanned by the facet q; of the simplez
o and the point e.

2. Any proper subset of simplices o; o(qi,€), where ¢; € Q*; o(qi,e),
where ¢; € Q™ is a linearly independent set.

Proof. 1. Let us reformulate what a linear relation among simplices
is. Let oy,...,01, € L. Denote by ¢,(z) the characteristic function of o,
ie. ¢o(r) =1,if z € 0 and ¢,(z) = 0 if £ € 0. Note that each of these

The statement 1. of this theorem is stated in [1] in another form. Here we use the
important geometric notion of visibility.
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characteristic functions ¢,(z) is constant within every open chamber v € T'.
Therefore, it is easy to check that the relation 3~ A;o; = 0 in Vg is equivalent
to the relation - Ai¢o,(z) = 0 for any z € Uy.

Then, instead of the relation (12) we need to prove the following:

Let 0 € ¥ and e € F be a point that is not a vertex of o, then

$o(z) = Z Po(gie)(T) — E ¢o(4i,e)(z)v for any r € U v (13)
7:€Q* 9i€Q- v€r

Two cases are possible: 1) e € 0; 2) e € 0. Consider the case 1). In this

case the system of simplices o(g;, €), where ¢; is a facet of the simplex o gives a

subdivision of o into these simplices. Therefore, for any point = € conv(o,€)

we have: r € ¢ and there exists only one j such that = € o(q;,€). Since in

the case 1) any facet ¢; of the simplex o is nonvisible from e with respect to

o, we have ¢; € @*. Then in the relation (13) there are only two summands
that cancel out and, therefore, (13) is satisfied.

Consider the case 2), i.e. e ¢ 0. Let € conv(o,e). Consider the ray
from the point e that passes through the point z, i.e. the points ae + 8z,
where a + 3 = 1, 8 > 0. This ray intersects the boundary of the simplex o
in two points: 2’ = a’e+ 'z and " = o'e+ "z, 0 < B’ < (”. Clearly, the
point z’ is visible from the point e with respect to o and the point z” is not
visible.

For the point z (a = 0,3 = 1) there are two possibilities: a) z € (e, z’),
le. 0<pB<p <p"orb)ze(z,2"),ie. 0< B <p<p".

Case a). Note that the point z’ is an interior point of only one of the
facets of o, i.e. z' € qi for some k. Indeed, if 2’ belongs to the two facets g
and g; then the point z € (e, z’) would lie on the boundary of some chamber
~ but we need to consider only the points z that lie in an open chamber
veT.

For the same reason the point z” is an interior point of only one facet g;
of the simplex 0. We have ¢ € @~ and ¢; € Q.

Then it is easy to see that the point z belongs only to the following
simplices: z € o(qx, €) and = € o(q;, €). Therefore, in the equality (13) there
are only two summands that cancel out and, therefore, (13) is satisfied.

Case b). Using the same reasoning as in case a) we obtain that the point
z belongs only to the followings simplices: z € o and =z € o(q;,€) , where
q; € Q7 is the only facet such that the point z” is its interior point. We
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obtained again that there are only two summands in the equality (13) and
they cancel out.

Proof of the statement 2. We need to prove that any proper subset of
simplices 0; o(gi,€), ¢; € Q*; 0(gi,e), ¢ € Q@ is a linearly independent set.

Throughout the proof we will again use the ray (e,z) from the point e
that passes through a point z € conv(o,e). We will assume that the points
z',z" are the two points on this ray such that z’,z"” lie on the boundary of
the simplex o and z’ is visible from e (with respect to o), while z” is not
visible from e.

Consider the following linear combination

Ao + Z Xio(qi,e) + Z Aio(gi,e) =0 (14)
7i€Q+ 7i€Q~

We will consider three cases.

Case 1. Let us prove that all these simplices without the simplex o are
linearly independent, i.e. if A = 0 then in (14) all the other coefficients are
0.

First let us show that if A = 0 then all the ); corresponding to the
nonvisible facets ¢; € Q% are equal to 0. Indeed, consider a point z €
conv(co, e) such that the corresponding point z” (on the ray (e,z)) is an
interior point of some facet ¢; € @*. Then it is easy to see that the pont z
belongs only to the two simplices: z € o and z € o(g;,€). Since A = 0, we
conclude that A; = 0, where A; corresponds to the term o(q;,¢€), ¢; € Q™.

Now let us show that the coefficients A; corresponding to the visible facets
are equal to 0. Consider a point z such that the corresponding point z’ (on
the ray (e, z) ) is an interior point of a visible facet g of the simplex o. Then
z belongs only to the two following simplices: z € o(q, €) and = € o(gj,€),
where z” € ¢; and ¢; € @Q*. We may assume (see reasoning in the proof of
1, case a) of this theorem) that z” is an interior point of the facet g;. Since
g; € @ then, as we have shown above, A\; = 0. Therefore, the coefficient A;
by the term o(qx, €) is also equal to 0. Thus, all the coefficients in the linear
combination (14) are equal to zero and therefore all the simplices without
the simplex o are linearly independent.

Case 2. Let in the equality (14) a simplex o(q;, €), g; € @*, be missing,
i.e. let A; = 0. Let us show that then A = 0. Indeed, consider a point = such
that the corresponding point z” is an interior point of the facet g;. Then z
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belongs only to the two simplices: z € 0(q;,€) and = € o. Since A; = 0, we
obtain that A = 0. Thus, we have reduced Case 2 to Case 1.

Case 3. Let in the equality (14) a simplex o(gx, €), g« € @™, be missing,
i.e. Ay = 0. Consider a point z such that the corresponding point z' is an
interior point of the facet gx. The corresponding point z” (on the ray (e, z))
lies on some facet ¢; € Q% (we may again assume that z” is an interior point
of g;.) It is easy to see that the point = belongs only to the two following
simplices: z € o(qx, €) and = € o(qg;,e). Since A = 0 then the coefficient A;
by the term o(q;,€) , q¢; € QF, is equal to 0. Thus, we have reduced Case 3
to Case 2. The theorem is proved. O

Now we will describe the bases of simplices constructed for the case ’
n=2in[2].

Let E be a finite set of N points on the affine plane and ¥ a set of all
triangles with vertices from E. Let us introduce the following notations. Let
es, €, €y € E. Then o(es, €4, €,) is the triangle with the vertices e,, e;, €,,. We
also denote by (e,|e¢, e, ) the cone (an angle) with the vertex e, and bounded
by the rays (e,, e;) and (e,, €4).

Let e;,...,en be an ordering & of the points E such that for any k the
following condition is satisfied:

conv(ey,...,ex) N conv(eppr,...,en) =0 (15)

Consider the point e;. This point is connected with the points es,...,en.
Consider the rays (e, ez2),...,(€e1,en). The minimal convex cone with the
vertex e; that contains P = conv(E) is subdivided by these rays into the non-
intersecting cones (open cones) of the form (e |e;, €,). Let us enumerate these
rays consecutively (for example, clockwise) by ¢1,...,¢. Note that | < N—1
(there can be several points from E on the same ray). On each ray g, we
choose two points e;, , e;, from E (they can coincide). With the point e; we as-
sociate the following set b; of triangles: o(ey, €;,, €5, ), o(€1, €i,, €55 ), o(€1, €55 €5, ), - - -

Consider the point e; of the ordering and the polygon P, = conv(E \ e;).
Disregarding the point e; we associate similarly the set b, of triangles with
the point e;.

A question of existence of geometrical bases of simplices in the n-dimensional space is
a matter of a separate study.
8the proof of existence of such an ordering one can find, for example, in [2]
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Repeating the construction for the points e3,... we will obtain the set
b=1b;UbyU... of triangles. Note that there are no more than N — 2 sets b;.
As it is proved in [2] the set b = by Uby U... is a basis in Vk.

Theorem 7.4 A basis of simplices b is a geometrical basis with respect to F
defined by (11).

Proof. We need to prove that for any simplex o € T there exists k such
that o can be expressed in k steps in terms of b using F.

Let e),...,en be the ordering of the points ¢; € F which was used to
construct the basis b. For a simplex o(e;,, €;,, €;;) we will assume that the
point ¢;, is the minimal point among e;,, €;,, €;, with respect to the ordering
€1,...,en. Let us denote by ¥; C ¥ the set of simplices o(e;,,¢€;,,¢€;,) for
which iy = N —i. We have £y = 0, £, = 0, I, either contains only one
simplex o(en, en-1,en—-2) or L2 = (. Clearly, we have 2 =%, U...UZn_,,
( where £,N%; =0, i # 7).

Let o(en-i, €;, €i5) € ;. Consider two rays (en-i, €;,) and (en—;, €;,) and
the open domain (an angle) (en—_;|e;,, €;;) formed by the two rays.

Consider E N (en—ilei,, ei;). Note that if ex € E N (en—ilei,,ei,) then
k > N — i (due to the condition (15) ).

Denote by ¥ C I, the set of all simplices o(en=i, €, €, ) such that
IE n (eN-gleiz,e;3)| = 7. We have

-2 .
i = JZ!, whereZINEl =0, #k.
=0

We will prove the theorem by induction. Suppose that any o € £,_; can
be expressed in terms of b using F. Let us prove that this statement is true
for 0 € £;. We know that I; = UX.

First, let o(en-i, €i,,€;,) € X2, i.e. there are no points from E in the
open domain (en_i|ei,,e;,). If there are also no points from E on the rays
(en-i,ei,) and (en—i, €;,) then o(en—;,€;,,€;,) € b by the construction of b.

If there exists a point e, € E such that e, € (en—;,e;,) then for the
set S of the points (en—i, €i,, €, €x) we have the set f € F of simplices f =
{o(en—i, €5, €k), 0(eNn—i €3y, €5 ), 0(€iy, €6y, €) }. Note that o(en—;, €;,, x) does
not define any 2-dimensional simplex. We have the simplex o(e;,, €, €x) €
X;-1 and, as we have supposed, it can be expressed in terms of b using F.
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One of the simplices o(en—;, €;,, €i;) or o(en—i, €k, €i,) belongs to b by the
construction of b. Thus, two out of three simplices in f can be expressed in

terms of b using F. Therefore, using f we can express the third simplex in
terms of b.

Suppose that for o € Zf-"'l the statement of the theorem is proved. Let us
prove it for ¢ € L. Consider a simplex o(en—;, €, €i,) € X7, i.e. there exist
exactly j points from E in the open domain (en—;|ei;, €i;). Let ex € E be one
of such points. Then the set S of the points (en;, €i,, €i;, €x) defines f € F ,
where f = {o(en-i, €y, €is), T(EN—is €iyy €k), T(EN=is €ig, ex), 0(€iys €ig, ek)}'

Three of these simplices can be expressed in terms of b using F'. Indeed,
we have:

o(ei,, €5y €k) € Ei-y and, as we have supposed, it can be expressed in
terms of b using F';

o(en—i, €y, k) € 7, where m < j. Indeed, there is the following strict
inclusion for the angles: (en—i|e:,,ex) C (en=ilei,, €iy)-

Similarly, we have o(en_;, €y, €x) € E}"', where m’ < 7. But as we have
supposed any o € £27! can be expressed in terms of b using F.

We have three simplices in f that can be expressed in terms of b using

F. Therefore, the simplex o(en—i, €:,,€i;) € L can be expressed in terms of
b using F.

We also need to check the first nontrivial step of induction. We have ¥y =
¥, = 0. Let Z;, be the first nonempty set, i.e. the points en,...,en_(ip-1)
lie on a straight line but the point ey_;, does not lie on this line. In this case
¥;, consists of all the triangles o(en—i, €k, €m), Where k,m > N — .

Note that due to the condition (15) all the points en,...,en—(j,-1) are
ordered on the straight line according to their numbers, i.e. if e;,, €;,, €;, are
such points and 7; < i3 < i3 then the point e;, lies between the points e;,
and €is-

We need to prove that any o € I;, can be expressed in terms of b using
F. We have L,, = UL]. By construction the set b includes the following
triangles

O(EN—igs ENy EN=1)s O(ENigs EN=1, EN=2)s« - - s O(EN—igy EN—ig+2s EN=ig+1 )

i.e. all the triangles o € I). Repeating the induction on j (as we have
already done above for £ ) we will obtain that any o € £,; can be expressed
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in terms of b using F. The theorem is proved. O

7.2 Geometrical bases of chambers.

In Subsection 7.1 we have considered the relation A C (¥ x I') and have
proved that the bases of simplices constructed in [2] are geometrical with
respect to a certain subset F of circuits among simplices. For the same
relation A C (X x I') we can also consider bases of chambers. In [1] there
is a theorem describing geometrically a certain subset F' of circuits of the
column matroid on A. Roughly speaking, if there are N points e € F in
the n-dimensional affine space then for any vertex w of a chamber such that
w & E there is a linear relation f’ among all the chambers® adjacent to the
vertex w. Any linear relation among chambers 4 € T is a linear combination
of f' € F' (i.e. the system of linear relations F' is complete).

In [2] there is an algorithm of construction of bases of chambers and it is
proved- that these bases are geometrical with respect to F’. There is also an
example showing that not every basis b C I' is geometrical with respect to
F' though F’ is a complete system of linear relations.

We want to mention that the construction of bases of chambers described
in [2] played an important role in the results of the present paper. Note
that the present paper gives the algorithm different from the ones in [2] for
constructing bases of simplices and bases of chambers.
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