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AN ARRANGEMENT OF REAL HYPERPLANES
AND THE PARTITION FUNCTION CONNECTED WITH IT
UDC 517.88

T. V. ALEKSEEVSKAYA, I. M. GEL'FAND, AND A. V. ZELEVINSKII

Many essential questions in the geometry of Lie groups and the corresponding dual
questions in representation theory depend on the structure of a simple function called
the partition function, in its continuous [1] and discrete (2] variants. The study of this
function leads to geometric problems that are undoubtedly of independent interest. These
problems are closely connected with the calculus of Heaviside functions constructed in
[7). The present note is mainly devoted to these geometric problems; an application of
them to the investigation of the partition function will be given at the end of the paper.

1. Formulation of the geometric problems: chambers and simplicial cones.
Let Ly,...,L, be a finite collection of one-dimensional subspaces and Wi,...,Wn a
finite collection of subspaces of codimension 1 in an [-dimensional real vector space V.
Assume the condition

(C1) Every vector subspace of V spanned by some of the Ly, ..., L,, can be represented
as an intersection of some of the Wy,...,Wn,.

This condition includes, in particular, the requirement that Wy N ---N Wy, = 0. The
situation when L, +-+ -+ L, = V is the case most important for applications. In this case

~ condition (C1) is equivalent for applications. In this case condition (C1) is equivalent

to all the subspaces of codimensional 1 spanned by some of the Ly,..., Ly being in the

“ collection Wy, ..., Wp,.

For all 1 = 1,...,n we now choose an open half-line L;-* C L; with origin at 0 such
that

(C2) All the half-lines Lf lie on one side of some hyperplane in V passing through 0.

In an example important for applications the L},...,L} are chosen to be half-lines
passing through the positive roots of some root system in V. We are interested in
geometric objects of two kinds: simplicial cones C; generated by the L;", and chambers
' determined by the subspaces Wy, ..., Wp,.

A subset I C [1,n] is said to be independent if the subspaces L; with ¢ € I are in
general position, i.e., they generate a vector subspace of dimension |I] in V. Denote by
C; the closed convex cone spanned by the half-lines L} with 7 € I. For example, Cgp is
the cone consisting of the single point 0. It is clear that all the cones C) corresponding
to independent subsets I are simplicial.

We say that two points z,y € V lie in a single chamber I if for each 7y =1,...,m
the segiment [z, y] either does not intersect W; or lies entirely in W;. For example, the I-
dimensional chambers in V are the connected components of the space V\(U;<,<m W;).
The chambers are clearly convex polyhedral cones in V. They are all nonclosed, with
the exception of the chamber consisting of the single point 0.

It follows from condition (C1) that each cone C; is a union of chambers. We introduce
the incidence matrix M. Its rows are parametrized by the chambers I', and its columns
are parametrized by the independent subsets I C [1,n]; the intersection of the row I' and
the column I contains a number (T, Cy) equal to 1 if I' C Cr and 0 otherwise.
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We sol\:g_t“hgjglb_vvi\nQOblems:
ind a complete system of linear relations among the columns of the matrix M.
2. Construct a basis in the vector space generated by the columns of M.
1" and 2'. The same problems for the rows of M.
Let M,, r =0,...,1, be the submatrix of M consisting of the rows I and columns
with |[I] = dimT = r. We solve these problems also for all submatrices M, . Jt is especially
« ~afiportant for applications to investigate the submatrix M, of M corresponding to the h

3 . . , [VAS .
chambers and cones of highest dimension. g

~

Denote by ¢; the column of M corresponding to the independent subset I, and by LH (J °

Yr the row of M corresponding to the chamber I'. If |[I| = dimT = r, then let o7 and
¥ be the corresponding column and row of M,. Let & be the vector space generated by
the columns p;, and ¥ the vector space generated by the columns tr. Similarly, let &,
and ¥, be the vector spaces generated by the columns and rows, respectively, of M,.

It is clear from the definitions that ® can be naturally identified with the vector
space of functions on V that is generated by the characteristic functions of the cones
C;. The elements of ¥ can be naturally thought of as linear functionals on @, i.e., as
“distributions” on V connected with the space $ of test functions.

2. Linear relations among the columns ¢; and ©7. A subset J C [1,n] is said
to be weakly dependent if dim 2 ics Li = |J| — 1. With each weakly dependent subset J
we associate a linear relation among the columns p; that correspond to the independent
subsets I C J.

Choose a vector v; in L} for every i € J. Since J is weakly dependent, there is a
linear relation 2 ics 0 = 0 among the vectors v; that is unique to within a factor. Let
Jy={i€Jia;>0},J.={i€J:a <0} and Jo= {1 € J:a; =0}. It is clear that
the partition J = J, U J_ U Jy does not depend on the choice of the vectors v; and is
uniquely determined by J to within an interchange of J, and J_. Note that the subsets

J+ and J_ are nonempty in view of (C2). Obviously, the subset J\t is independent for -
allie J, uJ_.

THEOREM 1. (a) For each weakly dependent subset J = JyuJ_UJy l/
(1) Yo (=i o = DN G L iR
@#0CJ, @#0CJ-

(b) All the linear relations amonyg the elements o € & are linear combinations of the
relations (1).

THEOREM 2. (a) For each weakly dependent subset J = JyUJ_UJy with |J| = r+1
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(b) All the linear relations among the elements ©] € d, are linear combinations of the b\ *5\\\
relations (2). : AR . S AN

3. Linear relations among the rows Yr and yr. First of all, it is clear that

(3) ¥r = 0 if the chamber T is not contained in any of the cones Cr.

l“»‘\ IV 3
To describe the remaining relations we give some definitions. A vector subspace U C V ‘) }/‘pcd\ . lj
is called a divider if it is an intersection of some of the subspaces W,,...,W,,s The
dividers spanned by some of the subspaces Ly,..., L, are said to be essential, and the

rest are said to be nonessential. For example, the one-dimensional essential dividers are ‘
the subspaces L;,..., L

Let T be a chamber, and T the closure of T in V; we say that T' adjoins a divider U
if the intersection T N U contains a chamber that is open in U.
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THEOREM 3. (a) Let L be a one-dimensional nonessential divider, W an arbiirary
subspace of co-dimension 1 in'V that contains L and does not contain any other dividers,
and Vi one of the two open half-spaces bounded by W. Then
(4) Z(_l)dim F=1yr =0, 'f\%,}

r

where T runs through the chambers adjoining L and contained in Vb
(b) All the linear relations among the elements ¥r € ¥ are linear combinations of (3)
and (4). L o
An r-flag is defined to be an increasing chaimn F=(0=UyCcU; C---C U,) of -
dividers, where dimU, = s for all s. We say that an r-flag F is oriented if one of the two MQI‘Z,
connected components U} in Us\U,—1 has been chosen for all s = 1,...,r; an oriented deo” a4
flag F is denoted by F. A chamber T is said to adjoin the flag F if it adjoins all the W‘Q«W,’??
dividers of F. If a chamber T' adjoints an oriented r-flag F, then we let (T, F)=+lor "
1, depending on the parity of the number of s € [1,r] for which I' 0 Ul =0.
Following (7], for each oriented r-flag F we define an element ¢'(ﬁ) € ¥, by the
formula ¥"(F) = YLr g(T, F) - ¢, where T runs through the r-dimensional chambers
adjoining F (it is easy to see that there are exactly 27 such chambers). It is clear that
the elements " (F) connected with different orientations of the same flag can differ only
by a sign.
: THEOREM 4. (a) For each oriented r-flag F with a nonessential 1-dimensional di-
I uder,

<

(5) Y’ (F) = 0.

(b) All the linear relations among the elements Y. € ¥, are linear combinations of the
relations (5) and the relations Y. = 0 for all r-dimensional chambers T not contained in
any of the cones Cy. ]

"~ REMARK. The relations (4) and (5) can be included in a unified system of relations.
We do not give it for lack of space.

4. Bases in the spaces ®, and ®. We choose a mapping 7 of the set of nonzero
essential dividers into [1,n] that satisfies the condition

(C3) If r(U) =1, then L, C U.

We define the class % of independent subsets of [1,n] by the following requirements:

(a) Q€ S

(b) if I is a nonempty independent subset of [1,n) and 7(}_,c; Li) = 1o, then I € A
if and only if ig € I and I\7p € 7.

THEOREM 5. The elements o} for all I € 5 with \I| = r form a basis in ®;.
THEOREM 6. The elements ¢y for all I € F; form a basts in ®.

REMARK. The definition of the class _% was in essence given in [3]. The class of “sets
without open cycles” considered in [4] and [7] appears as % for a special choice of the
mapping 7.

5. Bases in the space ¥, and ¥. Let 7 be the same mapping as in §4. Denote by
F." the set of all oriented r-flags F = (Up C --- C Uy) such that: (a) all the dividers U,
are essential; and (b) if 7(Us) = 1s, then LI cUf,s=1,...,r.

THEOREM 7. The elements y'(F) for all FeZ" form a basis in ¥,.

For each oriented r-flag F we define an element Y(F) € ¥ by the formula Y(F) =
Y orel(l, F)yr, where T runs through the r-dimensional chambers adjoining F. Let & =
UOSTSI ‘9;’ ’
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THEOREM 8. The elements ¥(F) for all F € %, form a basis in ¥.

The basis in Theorem 7 consists not of the elements Yt themselves, but of linear
combinations of them; in this sense it is “more complicated” than the basis in Theorem
5. However, it has the following agreeable property.

THEOREM 9. For each r-dimensional chamber T all the coefficients in the decompo-
sition of the element Y. with respect to the basis in Theorem 7 are equal to 0 or 1.

6. Applications to the structure of the partition function. We consider the
space R™ and the “positive orthant” R’ in it. Let V5 C R™ be an (n — {)-dimensional
vector subspace such that Vo MR7% = 0. Then for every z € R™ the parallel plane Vy + z
intersects R in the compact (possibly empty) convex polyhedron A, = (Vo + z) N R7.
The partmon function is by definition the “volume” of A,; it clearly depends only on the
image of 7 in the quotient space V = R™/Vj. The “volume” is understood in the following
sense. We define in R™ a differential (n — l)-form w with polynomial coefficients and
choose mutually compatible orientations in all the planes Vp + z; the partition function
is defined by the formula P, (v) = | a, W, where v € V is the image of the point z € R"
under the natural progectlon p: R" - V.

The function P, (v) is piecewise polynomial. To study it we use the technique worked
out above in the following situation. Let €;,...,e, be the standard basis in R®, and
define the one-dimensional subspaces L;,...,L, of V by L; = p(Re;). As Wy,..., W,
we take all the subspaces of codimension 1 in V that have the form p(R') for some
coordinate subspace R of R™. Finally, we choose the half-line L+ CLiy,t=1,...,n,
passing through the point p(e;). Conditions (C1) and (C2) are easy to verify.

Let V' = V\(U, W;) be the union of all the [-dimensional chambers in V. For each
independent I-element subset I C [1,n] let x; stand for the characteristic function of the
convex open cone C;NV'.

It is proved in [4] that the function P, on V' admits the decomposition

(6) P, =3 Pl xi
I

where the P! are certain polynomials on V (see also [5] and [6]). The decomposition (6)
is not unique in general, because the functions x; can be linearly dependent. A complete
system of linear relations among the functions x; is given by Theorem 2 (it is clear from
the definitions that these are the same relations that exist among the elements ol € ).
By Theorem 5, the decomposition (6) becomes unique if we leave in it only the terms
with I € .7,

It follows from (6), in particular, that on each [-dimensional chamber T the function
P, is equal to some polynomial PL. Specifying all the polynomials PU describes P,
“in the dual way” with respect to the decomposition (6). Theorem 4 gives a complete
system of universal (i.e., independent of w) linear relations among the polynomials Pr
(it follows easﬂy from the definitions that these are the same relations that exist among
the elements ¥k € ¥;). As Theorem 7 shows, to compute all the polynomials P it

suffices to compute the “flag” linear combinations " &(T, F)PF for all the oriented I-
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flags F € Z by Theorem 9, each PT can be represented as a sum of some of these
“flag” combinations.
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