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Computing Volumes of Polyhedra
By Eugene L. Allgower and Phillip H. Schmidt

Abstract. L this note we give two simple methods for caleulating the volume of any closed
bounded polyhedron in R” having an orentable ~oundary which is triangulated into a st of
(n - 1-dimensional simplices. The formulay given require only voordinates of the vertices of
the polshedron

1. Introduction. The purpose of this note is to give two simple methods for
calculating the volume of any closed bounded polvhedron P in R" having an
orientable boundary 3P which is triangulated into a set T of (n — 1)-dimensional
simplices. Following Hadwiger (2], we define a polyhedron to be the union of
pairwise disjoint convex polyhedra. each of which is the convex hull of a finite
number of points.

In [1] we have described an algorithm for obtaining a piecewise linear manifold
which closely approximates an implicitly defined manifold. If P has been given in
such a way. then the affine pieces of 8P are in general easy to triangulate with an
inherited orientation. For polyhedra P which are determined by a given system of
inequalities. methods and programs for triangulating P have been given in [5]. [6].
For such polyhedra, a triangulation of the boundary is not easily available. so our
method is inappropriate. Of course. our approach would also be unnecessary for
computing the volume of a parallelotope.

Practical applications of the methods given here may be made to the approxima-
tion of an area bounded by an impticitly defined curve or to approximation of the
volume of a solid which is bounded by an implicitly defined surface.

Although some formulas for the volume of convex polyhedra in R" appear in the
literature (.g.. [3]). these formulas generalh require the computation of the (# — 1)-
volume of the facets and additionally they involve extra computations of certain
distances. The volume formulas we give here involve only the coordinates of the
vertices of P.

2. Volume Formulas. Let us assume that the boundary 9P is trianguiated into
(n — 1)-simplices ¢ € T which are positively oriented relative to the outward
normals to the facets in 3P. For our purpose it is only necessary that the simplices
are so oriented as to form a boundary chain (see [7]).
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Our first formula for the n-volume V,(P) of the polyhedron P derives from the
classical formula for the volume of an n-simplex.
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Here the v,(o) are the vertices of the (n — 1)-simplex o ordered according to the
orientation of a.

Each term in the sum in (2.1) represents the signed volume of an n-simplex 7(0)
(possibly degenerate) having one vertex at the origin and the remaining vertices
being those of o. The orientation of o gives the same sign to the volume as that of
the inner product of b(a), the position vector from the origin to the barycenter of 0.
and n(o). the outward normal to o.

Formula (2.1) is a special case of formula (17) on page 42 of Hadwiger [2].but we
include its derivation for completeness. Let

AQ IS5 u._iovﬂiav > ow and E_= T_ e ﬂ_ievwiqv < i.

x
P

Then P = closure{U,cx_7(0)/U, = Tt0)} and hence.due to the sign properties
of the classes £ ,. 2 _,

v(P)= L V,(sle))+ Vv, (1(a))

n

and (2.1) follows.

Our second formula for V,(P) is a generalization of the trapezoidal rule for
calculating the area of a polygon. We form the sum of the signed volumes of
n-dimensional prisms p(o) each of which is bounded “above” by an (n — 1)-simplex
o belonging to T, “below” by a coordinate plane. and laterally by the planes which
are orthogonal to this coordinate plane and contain an (17 — 2)-face of o. The
resulting formula is
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where the v,’s are the ordered vertices of o as discussed above. Here ¢ is the nth

coordinate of v, and &7 is the projection of ¢, into R"~! obtained by deleting the nth
coordinate from ¢,.

Each term in (2.2) corresponds to the signed volume of a prism p(a). which 1
easily seen to be the product of its average height multiplied by the signed
(n ~ 1)-volume of its base. The orientation gives the same sign to this term as that of
the inner product between n(g) and the unit vector orthogonal to the plane x* = 0

in the direction of h(o).
The formula (2.2} can be verified in the same manner as (2.1), but with
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where e, is the nth standard unit vector.

COMPUTING VOL'. MES OF POLYHEDRA H
3. Computational Considerations. Before we discuss computational consideratio
related to Formulas (2.1) and (2.2) we interpret these formulas in the two-dime
sional case where the area of a polygon is calculated. Suppose that the boundary
the polygon is the piecewise linear path formed by traversing the points {(x,. »,)};
in order. ’
Formula (2.1) is illustrated by Figure (i). The formula becomes
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Formula (2.2) is illustrated by Figure (ii): here the formula is
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Notice that Formula (3.2) requires only one multiplication per term while (3
requires two. It is generally true that the determinant in Formula (2.2) is equivale
to one of order (n — 1) while that in (2.1) is of order n. Thus, (2.2) is compu
tionally more efficient than (2.1).

The calculations of the determinants involved in these formulas present
difficulty if n is 2. If n is large. then an efficient method for computing them
desirable. Such a method is possible if the simplices of T can be traversed so t
successive (n — 1)-simplices share an (r ~ 2)-face. This is exactly the scheme in
and this volume calculation procedurz could be easily added to the algorith
described there.

In case the polyhedron is described as in [1]. the successive determinants differ
sign and in the entries of the column corresponding to the vertices of the (n —
simplices which are opposite the commen (7 — 2)-face of these simplices. Thus o
a rank-one change is made between the two matrices whose determinants
successively computed. If an LU factcrization of this matrix is stored, then the
rank-one updates may be efficiently and stably carried out by the method
Fletcher and Matthews [4]. Furthermore. the determinants in (2.2) are easy
compute from these factors. ,

@ (i1}
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An estimate of the number of operations needed to calculate the volume
possible if one knows M. the number of (n — 1)-simplices in the triangulation of the
boundary. Each full LU factorization takes in* operations while the updates each
take approximately 2.6n? operations [4]. If the entire boundary can be traversed by
moving between (n ~ 1)-simplices which share a common (n — 2)-face. then the
number of operations needed to compute the volume would be approximately
2.6 Mn>. Even if occasional full factorizations were needed because of the inability to
move to an adjacent (n — 1)-simplex. the preceding estimate should serve. since n
general M > n.

4. Concluding Remarks. Formulas (2.1)=(2.2) are not restricted to simply con-
nected polyhedra. If 3P consists of separated components, one merely needs to
account in T for the oriented triangulations of all components of 9P. where of
course the orientations of the components must be mutually consistent. This will be
the case if P itself is triangulated into consistently oriented n-simplices and the
triangulation of 3P inherits this orientation.

These formulas can be modified for the purpose of computing the centroid of P or
for other geometric computations.
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Numerical Solution of Large
Sets of Algebraic Nonlinear Equations

By Ph. L. Toint

Abstract. This paper describes the application of the partitioned updating quasi-Newton
methods for the solution of high-dimensional systems of algebraic nonlinear equations. This
concept was introduced and successfully tested in nonlinear optimization of partially separa-
ble functions (see [6]). Here its application to the vase of nenlinear equations is mzu_c?d
Nonlinear systems of this nature arise in many large-seale applications, including finite
clements and econometry. It is shown that the method presents some advantages in efficiency
over competing algorithms, and that use of the partiallv separable structure of the system can
lead to significant improvements also in the more classival discrete Newton method.

1. Introduction. In recent vears, many researchers have investigated the solution
nonlinear problems involving an increasingly large number of variables. The fin
¢lement method has been very instrumental in this interest. since nonlinear part
differential equations give rise, by this method. to sets of nonlinear algebr:
equations whose number of variables is proportional to the number omrnc:
considered in the discretization of the problem (see [13] for example). In this field.
is not uncommon that the Jacobian matrix of the svstem is unavatlable or costly
compute, and one may be tempted 1o use quasi-Newton approximations for .z
important matrix. This type of procedure has indeed proven to be useful in sm
dense problems [2], and had been extended [10] to take into account the spars
inherent in many of the large problems.

In the related field of unconstrained optimization. similar efforts were made
obtain methods that could handle efficiently a large number of nonlinear variabl
Sparse quasi-Newton algorithms were proposed [12}. {7]. [11]. and. more recentlv
new class of methods, applicable to so-called " partially separable”™ functions I
shown a lot of promise for the efficient solution of minimization problems invols
several thousands of nonlinear variables (see [3]. [4]. [5] and [6]). These partia
separable functions are functions that can be written as

m

(n flx)= ¥ f(x).

=1
where x is the vector of variables belonging to R". and where each “elem
function™ f,(x) involves only a few components of this vector. or has a low-r.
Hessian matrix for other reasons. Problems of this nature arise in discretiz

variational calculations, free-knots splines. nonlinear least squares. nonlinear n
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