THE NUMBER OF POLYTOPES, CONFIGURATIONS
AND REAL MATROIDS

NOGA ALON

Abstract.  'We show that the number of combinatorially distinct labelled
d-polytopes on n vertices is at most (n/d)*"+°0) as n/d >oc. A similar
bound for the number of simplicial polytopes has previously been proved by
Goodman and Pollack. This bound improves considerably the previous known
bounds. We also obtain sharp upper and lower bounds for the numbers of
real oriented and unoriented matroids with n elements of rank d. Our main
tool is a theorem of Milnor and Thom from real algebraic geometry.

§1. Introduction. Let ¢(n, d) denote the number of (combinatorial types
of} d-polytopes on n labelled vertices and let ¢,(n, d) denote the number of
simplicial d-polytopes on n labelled vertices. The problem of determining or
estimating these two functions (especially for 3-polytopes) was the subject of
much effort and frustration of nineteenth-century geometers. E%o.cmv it
follows from Tarski's Theorem on the decidability of first order sentences in
the real field that the problem of computing c(n, d) is solvable (¢f. [Gr. pp
91-92]), it seems extremely difficult actually to determine this number even
for relatively small n and d. Both Cayley and Kirkman failed to determine
c(n, 3) or ¢,(n,3) despite a lot of effort. Detailed historical surveys of these
attempts were given by Briickner [Br] and Steinitz [Ste] (see also [Gr. pp.
288-290]). Briickner [Br] determined c,(n, 3) for n<10. Hermes [He] tried
to extend Briickner's work for n=11,12, but both his enumeration and
Briickner’s extensive attempts to correct it were incomplete, as shown by Grace
[Gra]. Hermes [He] determined ¢ (n, 3) for n < 8 and Grace [Gra] determined
¢,(11,3}. More recently, Griinbaum and Sreedharan [GS] determined ¢,(8, 4)
and Altshuler and Steinberg [AS}, AS2] determined c(8,4). Determining
c(n, d} and c,(n, d) for small values of n and d, however, does not, of course,
solve the general problem. Write 8 =n—d. The cases d <2 or B <2 are quite
easy; there is only one polygon with n (unlabelled) vertices and there are
{d"/4] d-polytopes on d + 2 (unlabelled) vertices, [d/2] of which are simplicial,
(see [Gr. pp. 98-101]).

Using a Gale Diagram, Perles (¢f. [Gr. pp. 112-114]; found an explicit
formula for ¢.{d + 3. d)and determined the asymptouic behaviourof c(d +3, 4}
as d tends to infinitv. An expiicit formula for ¢{d +3. d) was given later by
Lievd {Li].

The asympiotic behaviour of ¢{n, 3; and ¢in 2 was determined almost
preciseiy by Tutte [ Tu] and by Richmond and Wormald [RW], (see also [Gr.
pp 289-29G1). However, as mentioned in [Gr. p 290]. it seems that the determi-
nationof cindyorcln.d  ford=4 and n=d+4is a problem of an entirely
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different order of magnitude. Until recently, the best general upper bound for
c.{n d) was n** This follows easily from the upper bound theorem
[Kl, M, St], and the argument applies also to bound the number of triangulated
(d-1)-spheres. (Recall that the boundary complex of a simplicial d-polytope
is a triangulated (d-1) sphere, but the converse is false when d, B =4).

A major development was very recently achieved by Goodman and Pollack
[GP2). A simple configuration of n points in R4 is an ordered n-tuple of points
in general position in R Two such configurations A and B are isomorphic
if there is a bijection ¢ : A > B such that the orientation of each d + 1 {ordered)
points is the same as that of their images. By a clever use of a theorem of
Milnor {Mi] from real algebraic geometry Goodman and Pollack showed that
the number of simple configurations of n points in R is less than n?'47""
This is close to the truth at least for fixed d and large n since it is easy to
show that this number is at least

Enns:.qo.;ow d/legn))

Moreover, their result gives immediately that ¢(n,d)=< nddTin improving

considerably the best previously known bound.

In this paper we apply another (similar) theorem of Milnor and Thom to
bound the number of simple and nonsimple configurations of n points in RY,
and hence to bound the number of arbitrary d-polytopes on n-vertices. We
also slightly improve the bound of [GP2] and show, in particular, that for
fixed d = 2 the numbers of simple or of nonsimple configurations of n points
:n RY both have the form n®"'*°" a5 n>oc. For polytopes we obtain

A: M Qv:mxn MnAAB.&VMmAP QVM ﬁ!\&vmn::&h:_om_ﬁum ,\:::.‘_om .,:x&:...
and show that the total number of polytopes on n vertices is at most
Very recently, Kalai [K] showed that the total number of triangulated spheres
on n vertices is at least 22 . Thus, very few of these are boundary complexes
of simplicial polytopes.

Our methods also enable us to obtain sharp bounds on the asymptotic
number of real and complex matroids with n elements of rank d. For fixed d
and n - o, these numbers have the form n®4 " The total number of complex
matroids on n elements is bounded by 20" a very small part of the total
aumber of matroids on n points which is at least 202 0% a5 shown by Knuth
[Kn].

Our paper is organized as follows: in Section 2 we apply Milnor’'s Theorem
to obtain a general bound on the number of sign paiterns of a sequence of
polvnomials. In Section 3 we deal with the number of real and complex
matroids on n points, and in Section 4 we consider the number of configurations
of n points in R In the final Section 5 we prove our bounds for the number

of d-polvtopes.

M:‘,.#O;uv

$2. The Number of Sign Pauerns. let P=Pix, x. . .X 1
1
i
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g, =sign P(c,, ;.. ... ¢,). The total number of sign patterns as ¢ ranges over
all points of R", denoted by s(P,,..., P,), is clearly at most 3”. Using a
theorem of Milnor [Mi] (see also Thom [Th]) from real algebraic geometry,
we bound this number by a function of n and the degrees of the P. All our
upper bounds in the paper are derived from this bound (and us analogue for
complex polynomials).

We first state Milnor’s theorem.

TueorEM 2.1 (Milnor [Mi, Theorem 2]). Let V be a variety in R', defined
by the polynomial equations

q\a_.A..H_..qu...uHL”O« A~”m4u}v

If each ﬁo@:oiﬁcﬂ has degree < k, then the sum of the Betti numbers of V is
ar most k(2k —1)"7", In particular, the number of connected components of V is
at most k(2k —1)""".

Using this theorem we prove

THeoreMm 2.2, Let P,=P,(x,,...,x,)....,P,=P,(x,,...,x,) be real
polynomials. Ler d,=deg P(=1) be the degree of P, 1<j<sm Pul
J={1,2,....,m} and let ’

J=Jiule.. 0l

be a partition of J into k pairwise disjoint parts. Define

k=4 max AM &v.

1=<r=<kh jed.
Then the number of sign parterns of the P, sarisfies

s(P, ..., P k(2k-1)"""""

x.winw» w.w. By taking the trivial partition of J into one part, we conclude
that N,», r HM?._ d, then s(P,. ..., P,)=<4r(8r—1)". By using another theorem
of Milnor [Mi, Theorem 3], we can show that in fact

s(P,,...,P)Y<(2+2r(1+21)""". 2.1

For our applications, however, Theorem
f

2 will usually give asymptotically
better bounds. We omit the detailed proof of

of (2.1}

,N#oc,.\,o.w Theorem 2.2. Let C < R" be a finite set of points that represents
all the sign patterns of the P,. (Clearly there is such a C satisfying [{C|=<3").
For ¢c=(c;,¢5.....¢, 1€ C and 1<i<m we denote P(c,,....c,) by Plc)
Define £ >>0 by ) (.

.\w : i AVie o ; N
e=min{{PlciiceC, 1<jsm and Plc)#0i.

o - e - 4 s o . .
Let & >0 satisfy 8< ¢ . 1s1sh Define h poivnomials f,, f>,.. ., ., with
variables x,. x-, .. .. X, V. Voo, ¥ by
fiix,. . ... B O Vv,
=y —a= T iPix o xm e Pix, X T
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The degree of f; is clearly AM‘,.Q_ d =<k Also,if c= {(¢,,...,¢x)€ C then
] (Pc)—e)*(Ple)+ £)’> 8,
jed,
and hence there exist real values by,..., b, such that
filciy ooy br o, by) =0, (1=i<h).

For ce C denote by & a real vector {¢;,..., Cn, b,...., b,) that satisfies the
last system. Let V be the variety in R™*" defined by

.\mmx—u.,.q.X:ud..uq...».ﬂrvuo A~M~M}v

By definition every vector &(c€ C) is a point of V. We now claim that if
¢, c;€ C represent distinct sign patterns of the P, then ¢, (; are not in the
same connected component of V. Indeed, if ¢;, ¢, € C represent distinct sign
patterns, there exists some 1<j<m, such that sign Pc,)#sign P{cy). If
j€J,, this implies, by continuity and the choice of ¢, that any path in R™*
joining ¢ to ¢, contains a point  (X;,..., %5, ¥iy- - , ¥ ) such that
P(x,,...,x,)=¢ 0r Pix;,...,x,)=-¢, i.e., a point where

.\mﬁxuw...u.\df\vnhulxﬁwlamM|mAO.

This point is thus not in V and our claim follows. Since C represents all the
sigp patterns of the F;, we conclude that the number of sign patterns is at
most the number of connected components of V whichis, by Milnor’s Theorem
(Theorem 2.1), at most k(2k — 1)"**7!, This completes the proof of the theorem.

For our applications we will also be interested in the number of sign
patterns of complex polynomials. If Q(z;,. ..,2,), 1<i<m, are complex
polynomials and b=(b,,..., b,) e C", the sign pattern of the Q; at b is the
m-tuple (g,,...,&,)€{0,1}7, where ¢ =sign |Q,(b)l. By applying Theorem
2.2 to the real polynomials P;=(Re Q) +(Im OLM, 1<j<m in the 2n real
variables Re z; and Im z,, 1 <)< n, we can bound the number of sign patterns
of the Q, in terms of their degrees. Moreover, since in this case F, =0, we can
slightly improve the estimate by defining here f; = —vi=&+11(P - £). This
gives the following theorem, whose detailed proof is omitted.

THEOREM 2.4. Let O_AN:....NL"..;Osi:..;ni be complex poly-
nomials. Pui d; = deg Q,(=1), J={1,2....,m}andlet J=J,u ] . .u J, be
a partition of J into h pairwise disjoint parts. Define

i€i<k /

k=4 max AM mJ

el

Then the number of sign patterns of the Q, is ar mosi

k(2k =170

§2 The Number of Rational. Real and Complex Matrowds. There are
several known asymptotic estimates for the number of nonisomarphic matroids
of several kinds on n points. See [We, pp. 305-308] for bounds on the number
of all matroids on n points, the number of transversal matroids on # pointe.

and the number of matroids on n points which are representable over & finite
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field with g elements. Knuth [Knlshowed tha ( )
. . 1 [Kn t the number of labell i
matroids on n points is at least sbelied imple)

Here we ocnm.mn sharp bounds on the numbers r(n d Q), rin,d R) and
r(n, d, C), which are the numbers of matroids on n points with Bsw\m.. which

are representable over the rationals, the 5
. s reals and the complex num
respectively. Clearly P ere

rind, Qj<rindR)= rin d C).
Here we show that

{d=1v'n—0id nr(log d~loglog ni‘log n* -

n srind Qi=r(ndR)
< pfd-11dn+Oind toglog ‘_:oms_. (3.1)
that
rind Cj< p2i@-11dn=0ind ioglog :;om:w (3.2)
and that for every d <n
rin,d, R)<r(n d C)<2°"" (3.3)

.?.m first prove the upper bounds. We begin by considering real matroids
~.H 1s easy to check that every real matroid of rank d is representable in xu.
ie., for each point of the matroid we have a vector in R? and a set of o:,:M
is independent, if, and only if, the corresponding vectors are linearly M:aﬁmﬁmnm
dent. Let .A.«: ceeesXpady o (X0, ..., x,4) € RY be the vectors 3?.2«:::.
9: .Sw:o_a, and consider the set of all (J)d by d determinants det {x w
.Nmf?..; C.T i=1,...,d wherel<i <i,< ‘..A(EM:. m:ormanﬁmawsm.rm
is non-zero, if, and only if. the corresponding set is a base of the Em:,ow.a
Hence Ew.mwmn pattern of these () polynomials of degree d in the dn <m1m2mﬁ.
X, %.83::3 the matroid represented by the given values of the x,. (In mmn.,
the sign pattern determines more, and we get here an upper Goc_\wa on EM
95:...9. o,ﬁ oriented real matroids—see Section 4). Thus the total number of
Mwﬁﬂo_mw is at most the number of sign patterns of the (]) degree d polynomials
Mm”mmoammﬂwwnwzmm x,. Divide the polvnomials into [n/log n] groups, each of

nyo, . n? 7 logn
~ vP?:omim:4e;:;
td-11"

and apply Theorem 2 2 with

k=[n/logn]. (=4 oilir—

Inequahity (3.2

3 follows from Remark 2.3

A/wgg dn Jm:mzmmw to get the upper bound in inequ
follows similarly from Theorem 2.4. Inequality (3
tor Thecrem 2.2 wi ‘

pol¥nomials is at most (Jid < 2'p
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The only remaining part is the lower bound in equality (3.1). 1t suffices
to show that
[n/log n]’ n—in/log nj
(d-1) v .
Let M be a labelled set of [n/log n] points in Q? 7", i.e., in the real Euclidear
space of dimension d — 1, with all coordinates having rational values. Assume,
further, that the set M is in a generic position. For every subset N c M,
IN|=(d —1)°, we define a point p(N )¢ Q¢! as follows. Let N=N, U N,y
...u N,_, be a partition of N into d —1 equal parts, the first consisting of the
first (d — 1) points of N, the second consisting of the next (d — 1) points of N
and so on. Let H, be the hyperplane of R4~} containing the points in N, and
let p(N) be the intersection point of these hyperplanes. By the generic position
of our points each H, is uniquely defined and p(N)is a point. Also, different
choices of the N, vield different points p(N }. Moreover, as is easily checked,
p(N)e Q%" (since it is a solution of a linear system of equations with rational
coefficients). We now add to M another labelled set of n—[n/log n] points,

each being one of the p(N ). There are

. :lm-_..;omi
A?:om.ﬁ niz,n:
{(d-1)
possibilities for this construction, each supplying a set of n labelled points in
QY. If x;=(xy,...,Xia-n) are the coordinates of the i-th point. put
y;=(Xy,..., Xia-1), 1). The y, form a representation of a rational matroid on
n points with rank d, in which {i,,..., iy} is independent if x,, ..., Xx,, span
R ie., are not contained in a hyperplane in R“"'. It is easy to check that
all our h(n, d) labelled sets of points supply distinct matroids. and the lower
bound of inequality (3.1) follows.

rind, Q) WA

§4. The Number of Configurations. 1f (P,. P,,..., P4) is a sequence of d+1
points in RY with P.=(x,....,x,) for each i, we say they have positive
orientation, written P,. .. P;> 0, 1f det (X, )oe;<q > 0 where x;, = 1 for each &
The conditions P,... P, <0and P,... P, =0 are defined similarly. The order
type of a configuration C of n labelled points P, P ... Pin R? is afunction
w from the set of all (d+ I)-subsets of {1,2,....n} to {0. =1}, where for
S={ig.d,..., 040 with 1<, <i, < ... <ig=<n wiS)=+] if P...P >0,
w(S)=—-1if P, ... P, <0, and w(§)=0 if P...P_ =0 The configuration
is simple if w(S)#0 for every such S. Notice that w(S ) is just sign det {x, ;.
O<k j<d where P =ix ;,...,x.4) and x,, = 1for0< k=d The order tvpe
of a configuration C of points is sometimes known as the oriented matroid
structure determined by €. (See [GP1] for more details.) Let rin, dj denote
the number of distinct order tvpes of configurations of n labelled points in
RY and let 1.(n d) denote the number ¢f order types of simple configuration:
of n labelled points in R% In [GP1] Goodman and Pollack showed thai
tin di<n”. Veryrecently[GP2], they found a clever way of using a theorem
of Milner {mentioned in Remark 2.3 above} to prove thut

J.od-1mn {

rindi=sn®

E S
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This bound has several interesting applications (see [GP2], [AFR])

Goodman and Pollack also showed that

Tﬂ.:u QV = :tux_,m#oﬂ_owm ‘log ns)

asymptotic behaviour of both functions #(n, d
much greater than d n,d) and t(n, d),

THEOREM 4.1.

; 3vdin+O(dnied
(n/d; )<t (nd)<tind)

; 3yd7n( (i . toglogirnsdiyy
Mﬁaxav :,TvOA,_ow:r: ’ m_oMmmﬂn\m:
Y

Proof. The low is ] i i
e er bound is just inequality (4.2). (Notice that d*"

M&; sign vmzwaw E, (4Z,) polynomials of degree d in the dn real variables

(Xiys ooy Xig s which are the coordinates of the i-th point. The vo:..noBmm_M

are just all the determinants det (x, ), 0<k, j<d where x,, =1 ~.O~M: k mnn...
. ] o T <

H =1, < oo < n& =n. mU: -—m € ﬁv H nomiais into : = m n —C n & v_ ciasses
o = 18 S o1y 1 — { ,
o / m { \ ; u SH] £l

A n o\ glog(n/d)_nt
d+1 . MM!mmomA:\n:.

Apply Theorem 2.2 with

h=[n/login/d}], k=4
d!

(and dn variables) to conclude that

\d .
e apdRe T en N\ A
1(n, dy<(2k) ;;émAmAMv _omﬁin&

- ».B\Qym‘.n:tmi\it.r S logiogin d. oy

Viogin/d-  diogin di 0"

Theorem 4.1 implies that if d /ary /
o a1 e that If 4 and n vary and log d/log n >0, then both

m.ﬁ‘,nwwn?:;4olf danil+cily;

In particular we obtain the foliowing.

&

o Y L
COROLLARY 4.2, Forfixed d >2, av n-»x

tin di=in/d)mimet o g

«_\E,h‘_NA,S‘,Q.Wn.:.T.:W ”3...; tealti;
With a ‘hat 2 i |
o mwgmﬁsmf more careful computation one can extend the range in
h.,... 74 o 3 ; e - -
: ich «in dv and 1tn,d, have the form (4.2;. The most imponiant cas
. . ) g S PO s
1owever, seem to be these covered by Corollary 4.2 i o

(4.2)
::_.Mmuﬂwmwmw,oﬁ_vrwgaws 2.2 to show that the total number of order tyvpes
, much bigger than t,(n, d). In fact we also sl i (

. : J(n, d). so slightly improve (4.
and prove the following theorem, which supplies very sharp wmmBMmm moM QMM

at least for n

). To get the upper bound, notice that #(nd) is just the number
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Remark 4.3. By a similar application of Theorem 2.2 one can easily show
that for every n and 4,
t(n d)<t(n d)<2770".

We omit the details.

Remark 4.4. A linear space P on a set N={1,2,...,n}of n points is a
family L of subsets (called lines) I, ..., L of N, such that every two points
belong to a unique line. If P can be realized by embedding the points in the
plane R where L is the set of all maximal collinear subsets of N, P is called
a representable linear space. By Corollary 4.2 (with d = 2) the number of distinct
representable linear spaces on n labelled points is at most n# e On the
other hand, it is easy to see that the number of distinct linear spaces on n
labelled points is much bigger—it is at least gtrier 0t 1ndeed, take a fixed
Steiner triple system on =n—3 of our points and let

B..B.,...,B, (m=n’/6+0(n))

be the set of its blocks. For every subset F of the set of these blocks, we define
a linear space on N whose lines are all the blocks in F together with all pairs
of points {i,j} that do not lie in any commen block of F. This supplies
2ni/6)+0(n) distinct linear spaces on N.

There are obvious generalizations of this remark to higher dimensions.

§5. The Number of Convex Polytopes. Let ¢(n, d) denote the number (up
to combinatorial isomorphism) of d-polytopes on n labelled vertices and let
¢.(n, d) be the number of simplicial d-polytopes on n labelied vertices. The
problem of determining or estimating c¢{n, d) and ¢(n, d) has a long history,
part of which, including some previous results, is outlined in Section 1. Very
recently, Goodman and Pollack [GP2] used their bound for t,{n,d) (see
inequality (4.1) above) to show that

c(n, dy<i(n d)<n®?"
This follows immediately from the fact that the two vertex sets of two
inequivalent simplicial polytopes with vertices in general position in R? form
distinct simple configurations. Indeed, one can easily check (see, e.g., {GP1D
that the order type of a configuration that spans R9 determines which sets of
its points lie on supporting hyperplanes of its convex hull. This also holds
for non-simple configurations. Hence, the order type of a configuration on &
set N={1,2,....n} of n points in RY which is the set of vertices of a convex
polytope P determines its facets and thus its complete combinatonal type.
A

This implies that ¢,(n, discin dr<tin d). and by Theorem 4.1 and the
remarks following it we obtain:

THECOREM 5.1
Rnw..., 1+ Oﬂ,_ﬂn.,uﬂwn‘# ..“m‘_wm\..n_% H

cind)<clndy<{n/d)

In particular, if n'd—~ ther
den et (50

cindiscindi<in/d)
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Furthermore, for every d and n

cln, dys2779m

L}

and hence the toial number of polvtopes on n points is az most 27 79",

As mentioned in [GPZ], one can show that the estimate given for ¢.(n, d)
and c(n,d) by (5.1} is not so far from the truth. Indeed, one can show that
for n=2d

¢in d)=

3'&V:mf& \ i
— . (5.2)

d

/

To see this, take a cyclic polytope P on the first n/2 points (see [Gr]). Then
P has =({n—di/d;¥? facets. Put the last n/2 labelled points, in all
possibilities, each one ‘“close” to a facet of P. This implies (5.2). In [Sh]
Shemer proved that even the number of (unlabelied) distinct neighbourh:
polytopes with n points in R? is =n“", where limy. ¢; = 1/2. By (5.1) this
shows that for fixed d{>4) this number is of roughly the same order of
magnitude as the totai number of d-polytopes on n vertices; quite a surprising
fact (especially in view of Motzkin's old conjecture [Mo] that there is only
one neighbourly d-polyvtope on n points).

We conclude our paper by noting that, as observed by G. Kalai, both
Theorem 4.1 and Theorem 5.1 can be somewhat improved for the case
n—d = o{(n). In fact, by being more careful we can prove that, for fixed § >0

c.(d+B,d)<c(d+B,d)<i(d+p, d)<nfednrenn

We omit the details.

Acknowledgment. 1 thank J. Goodman and R. Pollack for stimulating
discussions. I also thank G. Kalai for many extremely helpful suggestions.

Note added in proof. A result simiiar to Theorem 2.2 but for the number
of sign patterns that consist of =1 terms only was proved by Warren in Trans.
Amer. Math. Soc., 132 (1968), 167-178.
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