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Abstract. Recent combinatorial algorithms for linear programming can also be
applied to certain nonlinear problems. We call these Generalized Linear-
Programming, or GLP, problems. We connect this class to a collection of results
from combinatorial geometry called Helly-type theorems. We show that there is a
Helly-type theorem about the constraint set of every GLP problem. Given a
family H of sets with a Helly-type theorem, we give a paradigm for finding whether
the intersection of H is empty, by formulating the question as a GLP problem. This
leads to many applications, including linear expected time algorithms for finding line
transversals and mini-max hyperplane fitting. Our applications include GLP prob-
lems with the surprising property that the constraints are nonconvex or even
disconnected.

1. Introduction

The fixed-dimensional linear programming aigorithms developed in computa-
tional geometry have a very combinatorial flavor. Both Clarkson {C] and Seidel
[S] gave linear programming algorithms which, because they relied only on the
combinatorial rather than the geometric properties of linear half-spaces, could be
applied to various nonlinear problems. The deterministic fixed-dimensional algo-
rithms of Dyer [D2] and Megiddo [M1] were generalized to specific nonlinear
problems albeit with considerable effort [D3], [M2]. In an important step, Sharir
and Welzl [SW] gave a randomized algorithm, and defined an abstract framework
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under which their algorithm could be applied. They gave a number of nonlinear
problems that fell into this framework. A reanalysis [MSW] of this algorithm, in
response to the subexponential randomized simplex algorithm given by Kalai [K],
showed that it too could solve arbitrary-dimensional linear programming in
expected subexponential time, although this result does not immediately apply to
any of the nonlinear problems. The abstract framework of [SW] applies to [C]
as well, which, with an additional assumption, can be derandomized to give
deterministic linear-time algorithms for fixed-dimensional problems [CM]. We
call the class of problems described by the abstract framework Generalized
Linear Programming, or GLP, problems.

We may begin to wonder about the relationship between GLP and the vast
body of previous work in combinatorial geometry and mathematical program-
ming. Does the framework merely restate some known characterization of “easy”
nonlinear problems? For instance, both Clarkson [C] and Seidel [S] noted that
their algorithms can be applied to the convex programming problem: minimize a
convex objective function over the intersection of a family of convex sets. Most
of the known examples of GLP problems can be formulated as convex programs.
Can they all?

In this paper we forge a connection to one relevant area of combinatorial
geometry, the class of results known as Helly-type theorems. Helly-type
theorems have the same combinatorial structure as the following archetypical
theorem:

Helly’s Theorem. Let K be a family of at least d + | convex sets in E°, and
assume K is finite or that every member of K is compact. If every d + 1 members

of K has a point in common, then there is a point common to all the members
of K.

This is one of the fundamental properties of convexity. There are many similar
theorems with the same logical structure, for objects other than convex sets, for
properties other than intersection, or for special cases in which d + 1 is replaced by
a different constant k. Combinatorial geometers collect Helly-type theorems in
much the same way that computer scientists collect NP-complete problems
[DGK], [GPW], [E].

There is a natural computational problem associated with any Helly-type
theorem. For instance, we might ask if Helly’s theorem can help us get an algorithm
that takes a family of convex sets and returns a point in their intersection, if one
exists. An algorithm for this problem in [AH] uses O(n’*!) calls to a subroutine
that finds a point in the intersection of d + 1 convex sets. Finding the minimum
point in the intersection, with respect to a convex objective function, is convex
programming. For fixed dimension d, the GLP algorithms solve convex pro-
gramming using only expected O(n) calls to a slightly stronger subroutine that
finds the minimum in the intersection of d + 1 sets. Can we apply GLP in an
analogous way to all Helly theorems? What should play the role of the objective
function?
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2. Definitions and Background

Let C be a family of objects, and let 2 be a predicate on subsets of C. A Helly-type
theorem for C is something of the form:

There is a constant k such that, for all finite H < C, 2(H), if and only if, for every
B = H with |B| < k, #(B).

The constant k is called the Helly number of C with respect to the predicate 2.
We are interested in a particular subclass of Helly-type theorems, in which the
objects in C are sets, and Z(G), G < C, is that the sets in G intersect in a common
point. We write () G for {xe X|xeh,Vhe G}, and we say that a family of sets
intersects when () G # J, that is, when 2(G) is true.

A set system is a pair (X, C), where X is a set and C is a family of subsets of
X. We say (X, C) is a Helly system if there is a k such that C has Helly number
k with respect to the intersection predicate 2. The natural computational problem
associated with a Helly system is, given a subset H < C, return a point x € (N H,
or show that [\ H = .

Most Helly-type theorems can be restated in terms of the intersection predicate.
For example, consider the theorem that family H of points in E? is contained
in a unit ball if and only if every d + 1 points are contained in a unit ball.
This is equivalent to saying that the family of unit balls centered at points of H
intersects if and only if every subfamily of d + 1 balls centered at points of H
intersects.

We can state most Helly-type theorems as follows. There is a set X (E% in the
example), a family C < 2% (the points of E%, and a set Y (the set of all unit balls).
The Helly-type theorem is given in terms of a predicate # on subsets of C (that
the points are contained in a unit ball), where 2 is defined in terms of another
predicate 2 on pairs in C x Y (that the unit ball ye Y contains a point p e E%).
For H < C, 2(H) iff 3(y € Y) ¥(h € H)2(h, y). To state the theorem in terms of the
intersection predicate, let ¢, = {ye Y|2(h, y)}, for he H (the set of all unit balls
containing point h, which, when represented by their centers, forms a unit ball
around h), and C' = {¢,|he H}. Then (Y, C) is a Helly system.

Now we review the abstract framework for generalized linear programming
from [MSW]. A GLP problem is a family H of constraints and an objective
function w from subfamilies of H to a totally ordered set A. The pair (H, w) must
obey the following conditions:

1. Monotonicity: For all F = G & H, w(F) < w(G).
2. Locality: For all F < G < H such that w(F) = WG) and for each heH,
w(F + h) > w(F) if and only if w(G + h) > w(G).

The set A must contain a special maximal element Q; for G = H, if w(G) = Q, we
say G is infeasible; otherwise we call G feasible. A basis is a subfamily B such that,
for every he B, w(B — h) < w(B). Notice that every G < H contains a basis B G
with w(G) = w(B); B is called a basis for G. The combinatorial dimension of a GLP
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problem is the maximum size d of any feasible basis; an infeasible basis may have
size d + 1.

A GLP algorithm takes a GLP problem (H, w) and returns a basis B for H.
The randomized GLP algorithm of Matousek et al. [MSW] uses two primitive
operations. A basis computation takes a family G of at most d + 1 constraints and
finds a basis for G. A violation test takes a basis B and a constraint h, and returns
true if B is a basis of B + h. Let t, be the time required for a violation test and
let 1,, be the time required for a basis computation. Their algorithm runs in expected
time linear in n and subexponential in d, assuming that both t, and ¢, are
polynomial in d.

A GLP problem is fixed dimensional if d is constant. With the dependence on
d hidden in the big-Oh notation, the algorithm of [MSW] takes expected
O(t,n + t, 1g n) time. Thus to get an algorithm that runs in expected linear time,
t, must be O(1), although we can afford to spend up to O(n/lg n) time per basis
computation.

3. Statement of Results

Our starting point is the following simple theorem.

Theorem 3.1. Let (H, w) be a GLP problem with combinatorial dimension k. H has
the property w(H) < A if and only if every B < H with |H| < k + 1 has the property
w(B) < 4.

This means that there is a Helly-type theorem corresponding to the constraint set
of every fixed-dimensional GLP problem.

Our Main Theorem (Theorem 5.1) goes in the other direction; we give a
paradigm for solving the natural computational problem associated with a
Helly-type theorem as a fixed-dimensional GLP problem. What this means is that
we construct an objective function w for a set system (X, H) with Helly number
k, so that (H, w) is a GLP problem. Intuitively, the objective function is defined
by the following process. We shrink the sets in H until they fail to intersect,
then gradually grow them back to their original size. The value of w on a
subfamily G < H is the time at which G first intersects. For a Helly-type theorem
about geometric objects, we can usually accomplish this by scaling the objects
themselves.

A problem (H,w) constructed using our paradigm meets the Monotonicity
Condition and has combinatorial dimension k, but does not necessarily meet the
Locality Condition. We observe, however, that when the the constraints in every
subfumily G < H first intersect in a single unique point, then (H, w) does meet the
Locality Condition and is a fixed-dimensional GLP problem. We call this the
Unique Minimum Condition.

As applications of our paradigm, we show that the following are fixed-
dimensional GLP problems, giving expected linear-time algorithms:
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1. Finding a line transversal of translates of a convex (but possibly complicated)
object in the plane.

2. Finding a line transversal in E for some special classes of objects.

3. Finding the closest hyperplane to a family of points under the weighted L”
metric, in which every coefficient of every point is equipped with a weight.

4. Finding the closest line to a family of points under the weighted L” metric.

5. Finding the closest hyperplane to a family of points under a convex polytopal
metric.

6. Finding, for a convex object C of constant complexity and a family K of
convex objects of constant complexity, the largest homothet of C contained
in the intersection of K, or the smallest homothet of C containing K, or the
smallest homothet of C intersecting every member of K.

A second way to apply the paradigm is to assume that there is a single set
A € H that grows with time. The value of w on a subfamily G is then the first time
at which G + A intersects. This second approach gives a GLP (H, w) of combina-
torial dimension k — 1 rather than k, again assuming that the problem meets the
Unique Minimum Condition. As an application, we give a fixed-dimensional GLP
for finding a point in the intersection of a family of sets, each of which is the union
of two convex sets, given that the intersection never has more than two connected
components. Notice that this is an example of a GLP that is certainly not a convex
programming problem; the feasible region fails not only to be convex, but also
to be connected.

For linear programming, one way of ensuring the Unique Minimum Condition
is using a lexicographic objective function. We consider lexicographic objective
functions for general GLP problems. Although they are useful in specific applica-
tions, we find that they do not provide a general theoretical solution to the problem
of establishing the Unique Minimum Condition, since there are GLP problems
for which adopting a lexicographic objective function causes the combinatorial
dimension to double.

In fact, we show that there is no completely general construction of an objective
function for a Helly system, by giving the following example.

Theorem 3.2. For all n > 1, there is a family H of 2n sets with Helly number two
such that, for any function w that assigns the value Q to infeasible subfamilies, and
such that (H, w) meets the Monotonicity and Locality Conditions, the combinatorial
dimension of (H, w) is n.

Besides the applications presented here, we expect this work will be useful
in identifying new GLP problems. It is often difficult and sometimes impossible
to reduce a GLP problem to linear or convex form; these results give an
alternative approach to getting an efficient algorithm. It also makes it easier
to implement programs for these problems, since a single implementation of a
GLP algorithm can be equipped with specialized subroutines to solve any one of
them.
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4. Helly-Type Theorems from GLP Problems

We begin with the proof that there is Helly-type theorem corresponding to the
constraint family of every fixed-dimensional GLP problem.

Theorem 3.1.  Let (H, w) be a GLP problem with combinatorial dimension k. H has
the property w(H) < 1 if and only if every B = H with |B| < k + 1 has the property
w(B) < 4.

Proof. Let w(H) < 4. By the Monotonicity Condition, every B < H must have
w(B) < w(H) < 1. Going in the other direction, H must contain a basis B with
w(B) = w(H), with |B} <k + 1. So if every subfamily B with |B| <k + | has
w(B) < 4, then w(H) = w(B) < A. O

[t is interesting that this proof does not use the Locality Condition. Notice that
when 1 is the special symbol Q, this means that every infeasible family of
constraints contains an infeasible subfamily of size <(k + 1). We can use this idea
to prove new Helly-type theorems.

Application 4.1. Line transversal of boxes in E“.

A line transversal of a family of objects is a line that intersects every object. Let
a positive line transversal be one directed into the positive orthant of E% An
argument in [A] implies that finding a positive line transversal of a family of
axis-aligned boxes in E* is a GLP problem with combinatorial dimension four
(this problem was later reduced to linear programming [M3]). This gives the
following Helly-type theorem: there is a positive line transversal of a family of
axis-aligned boxes in E? if and only if there is a positive line transversal for every
subfamily B of boxes such that |B| < 5. Or, in terms of the intersection property,
the system (X, C) has Helly number five, where X is the set of positive lines in E3,
and every ce C is the set of positive lines intersecting some axis-aligned box in
the input family.

We can also show that certain problems are not GLP using Theorem 3.1. This
is useful in the same way as a lower bound, in that it rules out a particular line
of attack.

Application 4.2. Line transversal of convex sets in E>.

In [AGPW] the authors give an example of a linearly ordered family 4 of n
disjoint convex compact sets in E* that has no line transversal, although every
(n — 2)-element subfamily of 4 has a line transversal consistent with the ordering.
This tells us that we cannot hope to apply GLP in this situation, even given a
linear ordering.
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5. Paradigm for Constructing GLP

Now we turn to the question of constructing a GLP problem to solve the natural
computational problem concerning a Helly system (X, C): given a family H = C,
find a point in () H or show that none exists.

Recall that the range A of a GLP objective function w can be any totally
ordered set. We define an objective function using a well-behaved function
w’: X = A on the points x € X, which we call a ground-set objective function.

Definition 5.1. For a G < C, let w(G) = min{w/(x)|x € ﬂ G}, and w(G) = Q when
ﬂ G = (5. We call w: 2¥ — A the objective function induced by w' on (X, C).

For example, when formulating linear programming in the GLP framework, the
value of w on a subfamily G of constraints is the minimum value that a linear
ground-set objective function w' achieves on the points that are feasible with
respect to G.

There is a problem with this definition, however, since there may be no
minimum point even when () G s ¢J, for instance, when a linear program is
unbounded below.

Definition 5.2. An objective function w induced by a ground-set objective function
w’ is well defined when w(G) is defined for every G < H.

In linear programming we get a well-defined objective function by putting a
“bounding box” around the problem, or symbolically compactifying the space by
representing points at infinity.

Observation 5.1. A GLP problem (H,w) satisfies the Monotonicity Condition
whenever w is a well-defined objective function induced by a ground-set objective
function w'.

This follows from the fact that adding a constraint only eliminates feasible points,
so the value of the minimum remaining feasible point can only go up. Certain
functions w' also produce a function w that meets the Locality Condition.

Definition 5.3. Let w be a weli-defined objective function induced by a ground-set
objective function w'. If [{x € [} G|w'(x) = w(G)}| = 1, for all G = H, then we say
w' satisfies the Unique Minimum Condition on (X, H).

This definition says that every subfamily not only has a minimum, but that this
minimum is achieved by a unique point.

Observation 5.2.  If w' meets the Unique Minimum Condition on (X, H), then (H, w)
satisfies the Locality Condition.
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This is because if w(G) = w(F), for F < G, is achieved only at a single point x, then
w(G + h) > w(G) only if x ¢ h, in which case w(F + h) > w(F). There is one easy
way to satisfy the Unique Minimum Condition.

Observation 5.3. If w'(x) # w(y) for any two distinct points x, ye X, then w'
satisfies the Unique Minimum Condition on (X, H), for any H < 2%,

In general, however, the GLP we get when we use an arbitrary function w' to
ensure the Unique Minimum Condition will not be fixed-dimensional.

We now define an extension of a Helly system to a structure that admits an
objective function in a natural way.

Definition 5.4. A nested family is an indexed family of subsets h = {h,;| 1€ A}, such
that h, < hy, for all «, fe A with o < f.

Let H be a family of nested families. We write H, = {h,|he H and 1€ A}. For
example, A might be [0, 1], and each ke H might be the set of balls of radius at
most one centered at a particular point, indexed by the radius. Then H, would
be a family of balls of radius exactly A.

Definition 5.5. A set system (X x A, H) is a parametrized Helly-system with Helly
number k, when:

1. Every he H is a nested family.
2. (X, H)) is a Helly system, with Helly number k, VA.

Figure 1 is a schematic diagram of a parametrized Helly system. The whole
stack represents X x A, and each of the fluted things represents a set h e H. Each
h is a subset of X x A. Because all the & are monotone with respect to A, the
cross section at A (represented by one of the planes) is equivalent to the Helly
system (X, H;). Notice that if G = H does not intersect at some value 4,, then G
also fails to intersect at all A, < 4,, and if G = H intersects at 4, then G also
intersects at all 4, > 4,.

A parametrized Helly system has a natural objective function w.

NN\_/\/ [

A 7 \/
v V

X

Fig. 1. A parametrized Helly system.
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Definition 5.6. For a point (x, )€ X x A, let w'(x, A) = 1. The objective function
induced by w’ is the natural objective function of a parametrized Helly system
(A x X, H).

So the function w' is just projection into the A coordinate, and, for G < H,
w(G) = i* = min{l|[) G, # &}, or w(G) = Q if G does not intersect at any value
of A

Theorem 5.1 (Main Theorem). Let (X x A, H) be a parametrized Helly system
with Helly number k and natural objective function w. If w is well defined and meets
the Unigue Minimum Condition, then (H,w) is a GLP problem of combinatorial
dimension k.

Proof. Observations 5.1 and 5.2 indicate that (H, w) meets the Monotonicity and
Locality Conditions.

To prove that (H, w) has combinatorial dimension k, we have to show that the
size of any basis is at most k. Consider any basis B < H. The definition of a basis
says that, for any he B, w(B — h) < w(B). Let A™* = max{w(B — h)|he B}. The
basis B does not intersect at A™*, but, for any i € B, w(B — h) < 2™, which means
that B — h intersects at 4™, Since (X, H jm) has Helly number k, B must contain
a subfamily 4 with | 4| < k, such that 4 does not intersect at A™**. Every he B
must be in A, since otherwise it would be the case that A4 < (B — h) for some h.
This cannot be, because 4 does not intersect at A™* while every (B — h) does.
Therefore B = A4 and |B| < k. O

Application 5.1. Line transversal of translates in the plane.

Let T be a family of disjoint translates of a single convex object O in EZ.
Tverberg [T2] showed that if every family B < H with |B| <5 admits a line
transversal, then H also admits a line transversal. Egyed and Wenger [EW] gave
a deterministic linear-time algorithm to find a line transversal. Showing that the
problem can be formulated as GLP gives a simpler, although randomized,
linear-time algorithm.

We assume that the family of translates is in general position (we define general
position in a moment); if not, we use a standard perturbation argument. The set
X is the set of lines in the plane, and we let A = [0, 1]. We abuse notation so that
t refers both to a translate t € T and to the set of lines intersecting t. So a subfamily
G < T intersects when there is a line that intersects every translate in G. We pick
a distinguished point ¢ in the interior of the archetypical object O. For a particular
translate ¢, let At be the homothet of O that results from scaling translate ¢ by a
factor of 4, keeping the point corresponding to g fixed in the plane. Let the family
t={0<i<1}and T = {t|teT}.

Every line that intersects the homothet A,r also intersects A,¢ for any 4, > 4.
So each f is a nested family of lines. The t, are always disjoint, every (X, AT) is a
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Fig. 2. Degenerate input.

Helly system with Helly number five, and (X x A, T) is a parametrized Helly
system.

The natural objective function w(G), where G < T, is the minimum A such that
G, intersects. In the case where G consists of a single translate, we define w(G) = 0.
Notice that for certain degenerate placements of the translates (see Fig. 2)
it 15 possible for there to be two or even three distinct line transversals at

A* = w(G).

The general position assumption is that the line transversal at 1* is always
unique.

(T, w) is a GLP problem with combinatorial dimension 5. Either the GLP
algorithm finds a line transversal at some value of A < 1, or no line transversal of
the input exists.

When O is a polygon with a constant number of sides, neither this algorithm
nor Egyed and Wenger’s is very interesting, since we can find a line transversal
via a constant number of fixed-dimensional linear-programming problems. Both
algorithms are useful only for more complicated polygons, in which the number
of sides depends on n, or for nonpolygonal objects.

Recall that the algorithm in [MSW] runs in O(t,n + t, Ig n) time, where ¢, is
the time required for a violation test and ¢, is the time required for a basis
computation. In this application a violation test determines whether the current
minimum line x intersects a new homothet At. For any x, there is a diametral pair
of points on O such that x intersects a homothet At if and only if x passes between
the corresponding points on At. We require the basis computation subroutine to
find such a diametral pair whenever it finds a new minimum line x, so ¢, is O(1).
The running time is then limited by ¢,; when the complexity of O is such that ¢,
is O(n/lg n), we get an expected linear-time algorithm.

Notice that here the dimension of the space X of lines in the plane is two. If
there were an affine structure on X such that the constraints T were convex subsets
of X, then the Helly number of the system (X, T) would be three. However,
examples show that the bound of five is in fact tight, which means that this is a
GLP that is not a convex program. This is also a natural example of a GLP
problem in which the minimal object does not “touch” every constraint in the
basts.

This paradigm may be profitably applied to many other Helly-type theorems.
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Application 5.2. Homothets spanning convex sets.
We use Theorem 2.1 from [DGK].

Theorem (Vincensini and Klee). Let K be a finite family of at least d + 1 convex
sets in E% and let C be a convex set in R%. Then there is a translate of C that
[intersects/is contained in/contains] all members of K if and only if there is such a
translate for every every d + 1 members of K.

We apply the paradigm by either growing or shrinking the convex body C, to
get an algorithm that takes as input a finite family K of at least d + 1 convex sets
in E* and a convex set C and returns either the smallest homothet of C that
contains | ) K, the largest homothet of C contained in ﬂ K, or the smallest
homothet of C that intersects every member of K. These problems can be seen as
generalizations of Megiddo’s problem of finding the smallest ball containing a set
of balls [M2]. All of them are convex programming problems. The combinatorial
dimension in each case is d + 1, and the running time again depends on the
complexity of the objects. When C and all the elements of K are of constant
complexity we get an expected linear-time algorithm. In other cases, preprocessing
can often be used to reduce the obvious running times.

For instance, there is an O(k + n 1g? n) algorithm in [T1] for finding the largest
homothet of a k-vertex convex polygon P inside an n-vertex convex polygon Q in
E?. The problem arises as a restriction of a pattern-matching problem; we can
think of Q as input from a low-level vision system and P as a model of an object
we would like to match. This is a restriction of the problem because we allow P
to scale and translate, but not to rotate.

In this simple case the GLP formulation, after preprocessing, is just linear
programming. We use the half-spaces supporting Q as constraints. Let us identify
translates of P with translates of an arbitrary distinguished point p € P. For a fixed
scale factor A, the possible translates that put P on the correct side of a half-space
h put p in a half-space I’ parallel to h and offset by the distance from p to some
vertex v of P. We can assign the correct vertex v to each half-space h in O(n + k)
time by merging the lists of face normals for P and Q. As we increase the scale
factor «, the distance from p to v changes linearly, and 4’ traces out a three-
dimensional half-space in A x E2. The linear program maximizes A over the
intersection of the &’ in O(n) time, so the total time is O(n + k).

Application 5.3. Special cases of line transversals in E°.

In general, finding line transversals is significantly more difficult in dimension
d > 2 than it is in the plane, but there are a few special cases in which Helly-type
theorems help us get a linear-time algorithm. Theorems 5.6 and 5.7 in [DGK],
due to Griinbaum, concern, respectively, a family of (d — 1)-dimensional convex
sets, all of which lie in a family of parallel hyperplanes, and a family of closed
balls such that the distance between any two is greater than the sum of their
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diameters. In both these cases, if there is a line through every 2d — 1 objects, then
there is a line through all of them. Again, the paradigm can be applied to give a
linear-time algorithm to find a line transversal. When the parallel convex sets are
polytopes, we can formulate this GLP as a linear program as well. In the case of
the closed balls, the Helly-type theorem breaks down when the balls get too close
together. Therefore the constraints (a constraint is the set of lines that intersects
a ball) again cannot be convex under any affine structure we may impose on the
space of lines, and this is another example of a nonconvex GLP problem.

6. Optimization Problems

Notice that, for example, the line-transversal algorithm for translates in Applica-
tion 5.1 finds a line that minimizes the maximum distance from the family of fixed
points, under the quasi-metric whose unit ball is the object 0. This mini-max
property is useful in and of itself. We can use the Main Theorem with known
GLP problems much as we would apply parametric search, to find a minimum
parameter value at which the problem is feasible. While parametric search usually
adds an additional logarithmic factor to the running time, here the expected time
remains linear.

Application 6.1. Weighted L™ linear interpolation.

The input to this problem is a family of n points in R? with an axis-aligned
rectangle T, centered at each point p. Note that each T, may have different
dimensions. We define the distance from a hyperplane y to p to be the smallest
nonnegative real value 4 such that T, intersects y when scaled by A around p. We
call this the weighted L™ metric. The linear interpolation problem is to find the
hyperplane y that minimizes the maximum distance to any point.

This problem arises when each coordinate of each point is given a weight,
producing box-shaped error regions. This occurs, for example, when the point
coordinates are calculated and error is bounded using interval arithmetic, or when
complicated error regions are approximated by bounding boxes. The general-
dimensional version of the problem was considered in [R], [D1], and [PR], where
it was shown to be NP-hard. Showing that the problem can be formulated as
GLP gives an expected linear-time algorithm for the fixed-dimensional case.

Define a positive hyperplane to be one that is oriented so that its normal vector
is directed into the positive orthant of E%. There is a diametral pair of vertices v,
v” on each box such that, at any fixed value of 4, a positive hyperplane y intersects
the box if and only if »* and v~ lie in its positive and negative half-spaces,
respectively. Finding a positive hyperplane transversal of the boxes at a fixed value
of 1 is thus the geometric dual form of a d-dimensional linear program with 2n
constraints. If a fixed positive hyperplane y goes through a box at 4,, it also does
so at any 4, > 4,. So, for each constraint point v in the linear program, the set
of hyperplanes for which v lies in the correct half-space form a nested family
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parametrized by A. The natural objective function returns the minimum value A*
at which a positive hyperplane transversal of the boxes exists.

For degenerate input, the boxes might admit a transversal by a lower-
dimensional affine subspace at A*, and there would be an infinite set of positive
hyperplane transversals. The simplest example is when three rectangles in E* meet
in a point. We again use a perturbation argument to ensure that the boxes are in
general position.

We conclude that finding the closest positive hyperplane in the weighted L*
metric is a GLP problem of combinatorial dimension d + 1. Even when the boxes
all have the same dimensions, the problem cannot be formulated as a linear
program. For a given family of boxes, we define a separate GLP problem for each
orthant of E*. The solution to the whole problem will be a hyperplane that achieves
the minimum A of any of the 2 GLP problems.

Application 6.2. Linear interpolation with a polytopal metric.

Consider the problem of finding a hyperplane transversal of a family of
polytopes whose facets are drawn from a set U that is the union of a constant
number of families of parallel hyperplanes. In [AD] there is a similar reduction
of this problem to a fixed number of linear programming problems. Applying our
paradigm gives an expected linear-time algorithm for fitting a hyperplane to a
point family under any quasi-metric whose unit ball is a polytope with a constant
number of sides, or, more generally, in which each point has an error metric whose
unit ball 1s a polytope with facets drawn from U.

Application 6.3. Line fitting in the weighted L metric.

Megiddo has shown [M3] that the problem of finding a line transversal for a
family of axis-aligned boxes in EY can be formulated as a collection of linear
programs in dimension 2d — 2. We can again apply the paradigm to find the
closest line to a family of points under the weighted L* metric defined above. This
technique can be extended to take two input sets of points and weights (P, T)),
(P,, T;). and find a pair of parallel lines /,, /, such that the maximum of the
weighted L™ distance from (P,, T;) to !, and from (P,, T;) to I, is minimized.

7. Nesting by Intersection

To use our paradigm, we had to assume that each constraint could be parametrized
to form a nested family. So far we have been able to do this in a natural way by
shrinking or growing geometric objects, but it is not clear that this technique is
applicable to all problems. In this section, we present another way of parametrizing
a family of constraints, essentially due to Hoffman [H]. He assumes the existence
of one nested family of constraints and uses it to build an objective function. In
this way he relates the Helly number k to something he calls the binding constraint
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number; in our terms he shows that the size of every basis is no greater than
k — 1. Convex programming is an example of a GLP that can be defined in this
way.

Theorem 7.1. Let (X, C) be a Helly system with Helly number k, with A < C such
that A is a nested family, and &3, X € A. (X, C) can be extended to a parametrized
Helly system (X x A, C) with natural objective function w. When, on a finite
subfamily H < C, w is well defined and meets the Unique Minimum Condition, then
(H, w) is a GLP problem of combinatorial dimension k — 1.

Proof. The range of our objective function will be the nested family A itself. So
s.€ A is a subset of X, rather than, for instance, a real number.

We extend every element h e C of our original family of constraints to a nested
family h as follows. For A€ A, we let h, = h ~ 4. Again we write C = {h|he C}
and C, = {h;lhe C}.

The natural objective function w and the corresponding ground-set objective
function w' are defined as usual for a parametrized Helly system. Assuming that
w' meets the Unique Minimum Condition on (X x A, H), the Main Theorem tells
us that (H, w) is a GLP problem of combinatorial dimension no greater than k.
It remains therefore to be shown that the combinatorial dimension is in fact no
greater than k — 1, that is, that any feasible basis B < H has |B| < k — 1.

We use another version of the argument in the proof of the Main Theorem.
Let A* = w(B). There is an element h™*¢ B, such that A™* = w(B — ™) >
w(B — h) for all h e B. Remember that 1™ e C.

Now let B = {he C|he B}. A = B + 4™ fails to intersect because B fails to
intersect. Since B is a basis, B — h + A™¥ does intersect, for every he B, and we
know that B intersects because B;. intersects.

So all of A’s proper subsets do intersect, while A does not. Since A = C and
(X, () is a Helly system with Helly number k, |4| < k. This means |B|=
[B| <k —1. O

The tricky part here is using the nested family A itself as the range of the
objective function. We have to do it this way because A may have any order type;
it may not be isomorphic to some convenient totally ordered set like the real line.

Recall that the Main Theorem used the fact that the Helly number of each
(X. I1,) was k to show that the combinatorial dimension was bounded by k. Here,
although the combinatorial dimension is at most k — 1, the Helly number of each
(X, H,) can still be as great as k. For example, in Fig. 3 the constraints and A are
all convex. The combinatorial dimension of the problem is two, while the Helly
number is three.

Of course, we have no guarantee that a Helly system contains a nested family
A that we can use to construct a function w that satisfies the Unique Minimum
Condition. We can, however, find such sets in specific applications. As an
example, we use nesting by intersection to define a GLP problem in which the
constraints are not even connected, let alone convex. This is interesting in that it
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Fig. 3. Combinatorial dimension 2 and Helly number 3.

implies we can sometimes use a single GLP to solve mathematical programming
problems in which the feasible region becomes disconnected, as long as the number
of connected components remains fixed.

Application 7.1. Pairs of convex sets.

Let C be the set of all convex sets in EY, defined so as to include the empty set.
Let Z be the family of all sets consisting of at most two disjoint convex sets,
Z=1(C,uCy|C,,CeC and C;nC, = J}. A sets formed by taking the
intersection of a subfamily of Z does not necessarily belong to Z. However,
consider a subfamily Z' < Z with the special property that (YGeZforanyG c Z'.
(E4, Z') is a Helly system with Helly number 2d + 2 [GM]. As a concrete example,
let each ze Z' be a pair of closed balls of radius 1, separated by a distance of 1
(kind of like dumbbells).

Notice that we can adjoin the set A of closed balls centered at the origin to
any family of pairs Z’, so that Z' U A still has the special property. Each ball can
be considered a pair with the empty set, and the intersection of a ball with any
pair of convex sets will produce < 2 convex sets. Let S, be the ball of radius r
centered at the origin. For any he Z', let h = {h,|h, = h 1 §,}. So, for any G < Z,
the natural objective function w(G) is the smallest r such that (VGnS, #J.
Notice that, for any G, if r = w(G), then |[) G n S,|€{1,2}. The appropriate
general position assumption, which we can simulate by perturbation of one
member of each pair of sets, is that |ﬂ GnS,|=1.S0(Z,w)is a GLP problem,
with combinatorial dimension 2d + 1.

8. Lexicographic Objective Functions

So far our theoretical arguments have just assumed the Unique Minimum
Condition. Even for linear programming, this requires a perturbation argument.
The objective function

minimize X,
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fails to ensure a unique minimum, since the minimal value of x, might be achieved
over a face of any dimension in the feasible polytope. One conceptural approach
to this problem is to perturb each of the constraint hyperplanes, but this is messy
in practice. Another approach is to perturb the objective function, or equivalently
rotate the polytope slightly so that no facet is parallel to the hyperplane x, = 0.
This can also be messy in practice. Instead, we usually use a lexicographic objective
function

minimize {xq, X1, ..., X4,

where the minimum point is the one that minimizes x,_,, over all that minimize
X4- 3, etc. On any finite instance of linear programming, this linear lexicographic
function is equivalent to the perturbed linear function

Xo+ex, +e%x, + o+ el x, (1)

for & infinitesimally small.

In this section we use this idea to build a GLP objective function for other
Helly systems. It is tempting to hope that we can construct a lexicographic
objective function that ensures the Unique Minimum Condition for any Helly
problem, but in fact we find that lexicographic objective functions interact
strangely with the combinatorial dimension.

Here is one way of looking at a problem with a lexicographic objective function.
Say v, is a lexicographic objective function whose range has p parameters. The
most significant parameter is determined by a simple one-parameter objective
function w,, so that (H, w,) is a problem that meets the Monotonicity Condition
but not necessarily the Locality Condition. At each value A of wy, H, is the
constraint set of another problem whose lexicographic objective function v,_ has
p — 1 parameters. By analogy with linear programming, if every subproblem
(H,, v, ) has combinatorial dimension d, we expect the whole problem (H, v,) to
have combinatorial dimension d + 1. This is in fact the case when v, is equivalent
to a perturbation of a single-parameter objective function. However, this equi-
valence relies on geometric arguments and is not inherent in the GLP framework.
In fact, when every (H,,v,_,) has a combinatorial dimension at most d, the
combinatorial dimension of (H,v,) might be as great as d + k, where k is the
combinatorial dimension of (H, w,).

Despite this theoretical oddity, in most applications of interest, lexicographic
objective functions are equivalent to perturbations of single-parameter objective
functions, and so can be used without increasing the combinatorial dimension. In
particular, lexicographic objective functions can be used to remove the general
position assumption for the optimization problems of Section 6 and the pairs of
convex sets in Application 7.1.

Let (X x A, H) be a parametrized Helly system with Helly number k and
natural objective function w. For all Ae A, we assume a function v,: 2% - A/,
where A’ is a totally ordered set containing a maximum element , such that
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(H,.v,) 1s a GLP problem of combinatorial dimension at most d. The functions
v, may themselves be lexicographic. We define a lexicographic objective function
v in terms of w and the functions v,. Let v: 27 - A x A’ be t(G) = (1*, k*), where
G < H, }* = w(G), and * = v,4G,.). We impose a lexicographic order on A x A/,
with (A, k) > (A, k)if A > A, orif A= 4" and k > K.

Theorem 8.1. If (X x A, H) is a parametrized Helly system with Helly number k
and natural objective function w such that

1. w is well defined, and
2. for all A, there is a function v,: 22" — A’, where A’ is a totally ordered set, such
that (H,,v,) is a GLP problem of combinatorial dimension d,

then there is a function v such that (H,v) is a GLP problem of combinatorial
dimension < k + d.

Proof. Let v be defined as above. We know that v is well defined because w and
all of the v, are well defined. As usual, Observation 5.1 tells us that (H, v) obeys
the Monotonicity Condition.

Now consider F = G < H, with o(G) = v(F) = (4*, *) and (G + h) = (4, ) >
(G). Either 4 > A* or k > xk*. If 4 > A*, then v,,(G,. + h,) = Q, by the definition
of w, and v,{G;x + hjs) > v,:(G,s). Otherwise, k > k*, that is, v,.(G. + hy) >
v,{G ). In either case, by the Locality Condition on vy, v;{F ;. + hj) > v,.(F )
and o(F + h) > o(F). So the lexicographic function v also satisfies the Locality
Condition.

Finally, we consider the combinatorial dimension. Let B be a basis for any
G = H. Then (B — h) = (4, k) < v(B) = (A*, k*), for any he B. Let the subset
B, = {he B|v(B — h) = (4, x) and A < A*}. Since the combinatorial dimension of
(B« v3) is d, B — B, contains at most d constraints.

As we did in the proof of the Main Theorem, let

imx — max{i|o(B — h) = (4, k), he B, }.

Again, B fails to intersect at 4™ ar_ld hence must contain a set 4 of si%e < k that
also fails to intersect. Again, every he B, must also be in A4, since B — h intersects
at 2™ and A does not, so A ¢ B—h. So |B,;| <|4A|<kand |[B|<k+d. O

Notice that since the parametrized system (X x A, H) has Helly number k, so
does the Helly system (X, H,.), and Theorem 3.1 tells us that k < d + 1. So the
combinatorial dimension of a problem for which every (H,, v,) has combinatorial
dimension d is at most 2d + 1.

Certainly, this bound on the combinatorial dimension is not always tight. For
d-dimensional linear programming, for instance, this theorem gives an upper
bound of 2d — 1 on the combinatorial dimension, since each H; is the constraint
set of a (d — 1)-dimensional linear program, and (E% H) is a parametrized Helly
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system with Helly number d. Nonetheless, the theorem gives the best general
bound, as shown by the following example.

Theorem 8.2.  There is a parametrized Helly system (X x A, H) with Helly number
d + 1, and a family of functions v; such that every (G,,v,) is a GLP problem with
combinatorial dimension d, such that (H,v) has combinatorial dimension 2d + 1,
where v is the lexicographic objective function.

Proof. We define a problem in which every H, is the constraint set of a
d-dimensional linear programming problem. Every nested family /e H is a subset
of E* x # of the form a- x > b,, where a is a vector, - is dot-product, x € X, and
b, is a scalar quantity that varies with 4 as follows. Let b and ¢ be constants. For
A<¢ by =b,and, for 1 > ¢, b, = — 0. Essentially, a constraint remains in force
below ¢, and recedes to — oo above. The function v, can be any linear function.
Notice that (E¢ x #, H) is a parametrized Helly system with Helly number d + 1,
and that every (G,, v;) has combinatorial dimension d.

We can easily construct an instance of this problem for which a basis B A
has size | B| = 2d + 1. Figure 4 is an example for the case d = 1. The constraints
hy and h, determine the minimum value of 4, while constraint h; determines the
minimum value of x.

To construct an example in general dimension, let u be any linear objective
function on E?. Construct a tiny simplex by intersecting a family A’ of positive
half-spaces with |A’| =d + 1. Let A be the corresponding family of negative
half-spaces; A is the constraint set of an infeasible d-dimensional linear program,
with 4 a basis for (4, u). Now let B be the basis of a feasible d-dimensional
linear-programming problem, with the same objective function u, such that |B| = d
and the simplex s is strictly contained in the interior of () B. We parametrize 4
and B by 4, as above, assigning some arbitrary value ¢, to every he A, and some
other value ¢, > ¢, to every he B. Let the constraint set of the whole problem be
H = AU B. For every i€, let the function v, be u. Then v(H) = (1*, k*), with
A¥:z¢,, and k* =u(B). For any he A, w(H — h) = — oo, and, for any he B,
uHy — hy) < k*. So H is a basis for H of size 2d + 1. O

/////////////

Fig. 4. Size of basis is three.



Helly-Type Theorems and Generalized Linear Programming 259

Finally, we formalize the statement that if there is a single-parameter objective
function w that is equivalent to a lexicographic objective function v, then the
combinatorial dimension of (H, v) is no greater than that of (H, w).

Observation 8.1. Let (H,v) be a GLP problem, with v a lexicographic objective
function. If there is a function w such that (H, w) is a GLP problem of combinatorial
dimension k, and v(F) = v(G) implies w(F) = w(G), for F < G < H, then the combina-
torial dimension of (H, v) is no greater than k.

Notice that we are not actually required to produce such a function w; the fact
that it exists ensures that the combinatorial dimension is bounded by k even when
using the lexicographic function v. So, for example, given an instance of d-
dimensional linear programming, we do not actually have to find an ¢ small enough
to define the perturbed linear function in Expression 1.

9. Helly Systems with Unbounded Combinatorial Dimension

We have given a paradigm for constructing a GLP objective function for a Helly
system, given the Unique Minimum Condition. We now show that some such
additional condition is necessary, by exhibiting a set system with a fixed Helly
number that cannot be turned into a fixed-dimensional GLP problem.

Theorem 3.2. For all n > 1, there is a family H of 2n sets with Helly number two
such that, for any function w that assigns the value Q to infeasible subfamilies, and
such that (H, w) meets the Monotonicity and Locality Conditions, the combinatorial
dimension of (H, w) is n.

Proof. Let the universe X consist of the 2" points at the vertices of an n-
dimensional hypercube, and let the constraint family H be the 2n subsets each of
which lies in a facet of the hypercube. Notice that if a subfamily G = H includes
any pair of opposite facets, then G fails to intersect, and otherwise G does intersect.
So the Helly number of (X, H) is two.

Any objective function w must assign w(G) = Q to the infeasible families G that
contain a pair of opposite facets. Meanwhile any feasible G that does not contain
a pair of opposite facets will have w(G) = A€ A, with 4 < Q. Let

™ = max{ie A4 < Q and A = w(G) for some G < H},

and consider a subfamily G with w(G) = 2™, If |G| < n, then a pair (h*,h”) of
facets exists such that G contains neither A* nor 4. This means that G + k™ is
also feasible. By the Monotonicity Condition, w(G + h*) = w(G); and since w(G)
is maximal, we can conclude that w(G + h*) = w(G) = A™**. This argument shows
that there must be a subfamily G of size n with w(G) = A™*
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Now we show that there is no basis B for such a subfamily G such that B # G.
Assume, for the sake of contradiction, and without loss of generality, that
there is an element h* € G such that h* ¢ B. Then B+ h™ is still feasible,
so w(B + h™) = w(B) = A™**. However, w(G + h™) = Q. Since B = G and w(B) =
w(G), this means that w fails to satisfy the Locality Condition, contrary to
the assumption of the theorem. So w must be a function which makes B = G, and
(H, w) must have combinatorial dimension n. O

This theorem says that the class of problems whose constraint sets have a fixed
Helly number with respect to the intersection property is strictly greater than the
class of fixed-dimensional GLP problems.

10. Concluding Remarks

Our parametrized Helly system paradigm should be useful in producing computa-
tional versions of other interesting Helly theorems such as those using spherical
convexity and those concerning separating surfaces.

There are other similar collections of theorems, such as Gallai-type theorems
and Hadwiger-type theorems, and Helly-type theorems in which the fact that all
subfamilies of size at most k have some property # implies that the whole family
has some other property 2. It would be interesting to find algorithmic applications
of these.

The major open problem is to characterize the Helly systems (X, H) for which
there is an objective function w that gives a fixed-dimensional GLP problem (H, w).
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