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Abstract

We give a lower bound of Q( fl4/2]) for the
number of vertices of a d-dimensional poly-
tope with f facets which can appear on the
outer boundary of a projection to any di-
mension 2 < k < d. By duality, this implies
a lower bound of Q(nl¥2) for the num-
ber of facets in a k-dimensional slice of a
d-dimensional polytope with n vertices. At
the same time, the Upper Bound Theorem
provides an O(nl%2) upper bound for this
quantity. For cyclic polytopes, however, we
show an upper bound of O(n) on this quan-
tity in dimension four. We give a new algo-
rithm for the construction of the boundary
of the projection.
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1 Introduction

A d-dimensional polytope with f facets
may have no more than
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vertices, which is O(ngJ); this is the dual
statement of the Upper Bound Theorem for
polytopes. This bound is achieved by the
duals of the cyclic polytopes, defined be-
low. The shadow of a d-dimensional poly-
tope P is the set of points (z1,z2) such
that some point (21, 2,...,24) belongs to
P, or, equivalently, the projection of P to
the (21,7)-plane. The shadow is a con-
vex polygon. How many vertices can the
shadow of a d-polytope with f facets have?
This question can be generalized in the ob-
vious way, to k-dimensional shadows (k-
shadows) for 2 < k < d — 1, where it also
makes sense to ask for the number of ¢-
faces, 0 < i<k — 1.

It is not inherently unreasonable to hope
that the complexity of the shadow of P
might be asymptotically less than that
of P itself. We show, however, that
the k-dimensional shadow of a polytope
with f facets in d dimensions might, in
the worst case, have complexity Q(ngJ).
Let Ms(f,d) denote the maximal num-
ber of vertices in the shadow (i.e., of any
2-dimensional projection) of a simple d-
polytope with f facets. Then My(f,d) <



M(f.d) is immediate. We show that both
functions have the same order ©( f19/2]) for
fixed d. This is somewhat puzzling, since
our results on projections of duals of cyclic
polytopes suggest that My(f,d) may not
coincide with M(f,d) even for d = 4.

Shadows are natural objects in combina-
torial geometry, and they have a number
of algorithmic applications. Perhaps most
importantly, the shadow vertex algorithm
for linear programming chooses a sim-
plex path by following a two-dimensional
shadow [GS, Borg]. Lower bounds on the
size of the two-dimensional shadow provide
lower hounds for this algorithm. Exponen-
tial lower bounds in the special case f = 2d
were given by Murty [Mu] and Goldfarb
[Goll, Gol2]; our example handles the case
where d is fixed and provides worst-case
bounds of ©(fl%2]). This is in contrast
to the results of Borgwardt [Borg], who has
established a polynomial bound of at most
O(d*f) for the expected number of steps
of the shadow vertex algorithm on random
linear programs. A randomized version of
the shadow-vertex rule that may be polyno-
mial on every linear program was suggested
by Gartner & Ziegler [?].

Our main result is a construction for a
d-dimensional polytope, with at most f
facets, such that My(d, f) = O(fL%/2]). In
the full version of this paper we define a
class of polytopes, called deformed prod-
ucts, which include these polytopes, the
constructions of Goldfarb, above, the poly-
topes of Klee and Minty [KIMi], and a num-
ber of other bad examples for various sim-
plex rules.

The case of fixed dimension is important
also for other optimization problems involv-
ing shadows. One optimization problem is
the maximization of a convex function in
k variables xy....,z} over a polytope P.
The maximum is achieved at some vertex
of the k-shadow. In [AAAS] this maxi-
mization is applied to finding the largest

similar copy of one convex polygon con-
tained in another, a problem with applica-
tions in vision and robotics. The computa-
tion of shadows was studied in [PoFa] and
[PSSBM]. In [PoFa] a set of stable three-
finger grasps, with friction, of a polygon
in the plane, is represented by the three-
shadow of a five-polytope. This result is
extended in [PSSBM], where a subset of
the stabe four-finger grasps, with friction,
of a polyhedron in R® is computed by tak-
ing the 8-shadow of an 11-dimensional poly-
tope. Their algorithms and experimental
results are reviewed in section 6.

This question about shadows is only in-
teresting in dimensions four and higher.
In three dimensions, it is not too difficult
to construct simple polytopes in which ev-
ery vertex appears on the shadow. Other
questions concerning the shadows of three-
dimensional polytopes are considered in

[CEG].

2 Results

We relay on the following observation.

Observation 1 A lower bound on the
complezxity of the two-dimensional shadow
of a polytope also is a lower bound on the
complexity of any k-shadow.

This becomes obvious when we imagine do-
ing the projection to two dimensions by
projecting first to dimension & and then to
the plane. Any vertex which shows up on
the planar shadow has to correspond to at
least one vertex on the k-shadow.

To prove the theorem, then, it is suffi-
cient to exhibit a d-dimensional polytope
with f facets which has a two-dimensional
shadow with O(fl%/2]) vertices. Qur con-
struction of such a polytope essentially fol-
lows an example by Klee and Minty [KIMi]
of a polytope with a long monotone path.
We do the construction so as to be able to



project the whole path to the plane. This
gives us our main theorem.

Theorem 2 For all d > 4, f > 2d, there
ts a d-dimenstonal polytope P with at most
[ facets, such that the k-shadow of P has
O( fL42) vertices.

This result answers an equally natural
question in the dual setting. The dual of
a polytope P with f facets is a polytope
with f vertices. But what is the dual of its
k-shadow?” The (d—1)-dimensional shadow
of P is the intersection of the linear halfs-
paces parallel to the 24 axis and containing
P. In the dual, this is the intersection of
the dual of P with the hyperplane z4 = 0.
So the dual of the k-shadow of a polytope is
the intersection of the dual polytope with
a k-dimensional hyperplane.

Corollary 3 For all d > 4,n > 2d, there
15 a d-dimensional polytope P with at most
n vertices, and a k-dimensional plane p in
R?. such that the intersection pP is a
k-polytope with O(nl4/21Y facets.

Recall that the projection of the lower
envelope of a polytope to R*™! is a regu-
lar (d — 1)-dimensional triangulation of the
projected vertices of the lower envelope. If,
in the example above, we consider a projec-
tion to R?™! in any direction parallel to p,
we get the following configuration.

Corollary 4 There is a regular triangula-
tion T of a set of n points in R, and a
(k — 1)-plane p, which intersects O(n[4/2)
of the simplices of T.

The cyclic polytope duals maximize the
number of vertices over all d-dimensional
polytopes with f facets, providing the lower
bound example matching the Upper Bound
Theorem. Somewhat surprisingly, we show
the following upper bound on the complex-
ity of the shadow of a cyclic polytope dual.

Theorem 5 The projection of the dual
of a 4-dimensional cyclic polytope with f
facets to the plane can have at most 3 f ver-
tices.

We also give an example of a projec-
tion of a 4-dimensional cyclic polytope dual
which achieves 3f — 10 vertices on the
boundary of the projection.

Finally, although the k-shadow of a poly-
tope P may have asyptotically as many
vertices as P itself, in many cases it has
far fewer. We survey existing algorithms
for the output-sensitive construction of k-
shadows, and present a new algorithm
which is efficient for large k.

3 The fourth dimension

In this section we develop the 4-dimensional
case in detail. In the following section, we
give the higher dimensional generalization.

Theorem 6 There s a 4-dimensional
polytope P with 2m facets, such that the
shadow of P has m(m + 1)/2 vertices.

Proof: We construct P in three steps:
first, we take the cross-product of two m-
gons to get a 4-dimensional polytope P’.
Then we deform P’, without changing its
combinatorial structure, to make a new
polytope P”. Finally we perform a projec-
tive transformation of P” to get P.

Let A be an m-gon, m divisible by 4, in
the (@1, z2) coordinate plane, with vertices
evenly spaced on the unit circle, so that ver-
tex v;(A4) = (cos(ia),sin(ia)) for @ = 27 /m
and i =0...m—1, and edge €;(A) = v;v;4,
(i+1 is taken mod m, here and throughout;
that is, the edge v;v;+1 might be v, v1). Let
B be the same m-gon in the z3, 24 coordi-
nate plane. The cross-product of 4 and B
(the set of all points with z1,z2 in A and
z3,24 in B) is a 4-dimensional polytope P’.



A facet of I’ is the cross-product either
of A with an edge of B (an A-facet), or
of B with an edge of A (a B-facet), so
P’ has 2m facets, each a cylinder over an
m-gon. There are two kinds of two-faces.

Figure 1: A facet of P’

The cross-product of an edge of A with an
edge of B is a square, a side of a cylindrical
three-face. (The topologically inclined may
notice that these square faces are a polyg-
onalization of the flat torus.) The cross-
product of B with a vertex v;(A4) is a copy
of B in the two-flat (z1,22) = v;(A). We
will call these m-gonal faces B-ridges; the
A-ridges are defined similarly. There are m
B-ridges, each containing m distinct ver-
tices, so P’ has m? vertices. We write u; ;

for the vertex which is the cross product of
v;(A) with v;(B).

For a fixed i. the orthographic projection
to the (zy,29)-plane takes all the vertices
in a B-ridge B; to a single point (see Fig-
ure  3). We now deform P’ into P”, so
that these vertices are distributed along a
line segment in the projection, without dis-
turbing the combinatorial structure of the
polvtope.

We do this by tilting each of the B-facets
of P'. All the B-facets are parallel to the
w3 and x4 axes. For i even, we tilt the sup-
porting three-plane of the B-facet contain-
ing edge €;(A) in towards the positive z3
axis, maintaining the incidence with e;(A4)
and keeping it parallel to the z4 axis. For ¢
odd, we tilt it towards the negative z3 axis
in the same way and by the same amount.
We use a gentle enough angle, defined pre-

cisely in a moment, so that the combina-

torial structure of P” remains the same as
that of P’.

After the tilting, the three-planes sup-
porting the B-facets are defined by linear
equations in (21, &9, z3). Each B-ridge lies
in the intersection of two B-facets. We
can use this intersection to eliminate the
x3 variable, which means that a B-ridge
lies in a three-plane determined by a lin-
ear equation in (1, z3), so that it does in-
deed project to a line segment in the z{, x4
plane.

In order to verify that we can accomplish
this tilting without changing the combina-
torial structure, we consider the motion of
the vertices induced by the tilting. A vertex
is the intersection of two adjacent A-facets
and two adjacent B-facets. The intersec-
tion of two adjacent A-facets is a two-plane
with constant z3, 24 coordinates, so tilting
the B-facets will not affect the z3, z4 coor-
dinates of the vertices.

We consider the extremal two-plane p,, ..
in the positive z3 direction containing A-
ridge Ag. The intersection of p with any
plane supporting a B-facet is a line, and the
intersections of all of the positive halfspaces
of these lines is Ag, an m-gon. For even 1,
the tilting causes the line corresponding to
the B-facet through e;(A) to move towards
the origin, without changing its slope. For
odd ¢, the line moves away from the origin.
So the edges of Ag corresponding to even ¢
get longer, and the edges corresponding to
odd 7 get shorter. The behavior of A,,/, on
the the extremal two-plane in the negative
x3 direction is just the opposite; even edges
get shorter and odd edges get longer. See
Figure 2.

In the central two-planes containing ridges
Amya and Agp, 4, there will be no motion
at all, and the intermediate two-planes will
exhibit more moderate behavior than the
extremal ones.



Figure 2: Ag and A, /, after tilting

We claim that so long as we tilt the the
three-planes supporting the B-facets by a
small enough amount so that none of the
shrinking edges of the A-ridges disappear
entirely, the combinatorial structure of the
resulting polytope P” remains the same as
that of P’

A combinatorial change would occur
if the orientation between a vertex and
one of the three-planes supporting a facet
changed. This cannot happen in the case
of the A-facets, since they are supported
bv planes defined by a single linear equa-
tion in 3, 24, and the z3, x4 coordinates of
all the vertices do not change. In the case
of the B-facets, the orientation of all the
vertices in each A-ridge remains the same
with respect to each three-plane support-
ing a B-facet, since each A-ridge remains a
convex m-gon. This establishes the claim.

The final step in the construction is just
a projective transformation. For some very
small constant ¢, we multiply every point
in the space by the matrix

L 0 0 ¢ 0
0 1 0 ¢ 0
00 1 00
0 0 01 0
000 01

The resulting polytope is P. The projec-
tion of P” to the z;,z; plane took ev-
ery B-ridge B; to a line segment. This
transformation “adds back” some of the
x4 coordinate of each 4-dimensional ver-
tex to 1ts xy,x, coordinates, so that the

vertices of B; lie on an ellipse in the
projection, with the arc containing ver-
tices u; 1, ..., U;m/a—1, Where 24 is positive,
curving away from the origin and onto the

convex hull. See Figure 3 once again. The
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Figure 3: The projections of the ridges B;
in P', P”, and, below, P

constant € can be chosen small enough so
that the angle formed, in the projection, be-
tween u;—1,m, i 0, i1 remains smaller than
7. In that case, the vertices u;0,- .., %; /2
appear on the boundary of the projection,
for every B;, giving the shadow a total of

m(m + 1)/2 vertices. O

Note that B might be replaced with a
roughly semi-circular (m/2 + 1)-gon, the
convex hull of vertices vo, ..., vy /2, giving
a polytope with fewer facets but the same
number of vertices on the shadow. This
improves the constants in the construction
but makes it uglier.

4 Main theorem

We now generalize the 4-dimensional con-
struction to any higher dimension d. Ba-
sically, we replace B in the construction
above with a (d — 2)-dimensional polytope
whose shadow has O(fl%/271) vertices.



Theorem 7 for all d, there is a d-
dimensional polytope P with [ facets, such
that the shadow of P has O( fL4/2]) vertices.

Proof: Let A be a planar f/2-gon in the
(y,22) coordinate plane. We recursively
construct a (¢ — 2)-dimensional polytope
Bin ws...., vy, with f/2 facets, such that
the shadow of B in the (z3,z4)-plane has
O( fl42=11) vertices. For simplicity, we also
stipulate that the shadow is a polygon sym-
metrical about the z3 and z4 axes, with
unique maximal and minimal vertices in
3, properties that this construction recur-
sively ensures.

We take the cross-product P’/ of A and
B. The A-facets P’ are the cross-products
of 4 with the facets of B, and the B-facets
are the cross-products of B with the edges
of A, so P’ has f facets. A B-ridge is again
the cross-product of B with a vertex of A.

We now deform P’ into P”. For even
edges ¢ of A, we tilt the corresponding B-
facet slightly towards the positive z3 axis,
maintaining its contact with the edge 7 and
keeping it parallel to the x4,..., 24 axes.
For odd edges ¢, we similarly tilt the cor-
responding B-facet towards the negative 3
axis.

We argue again that a small enough tilt-
ing leaves the combinatorial structure of P”
the same as that of P’. An A-facet is sup-
ported by a half-space orthogonal to a facet
of B, a linear equation in z3,...,z4. The
A-facets are unmoved, and the intersection
of d—2 of them is a two-plane with constant
L. ....%4 coordinates. A vertex is the in-
tersection of d—2 A-facets and two B-facets,
so the ws, ..., 2, coordinates of each vertex
are unchanged by the tilting, and the rela-
tionship of each A-facet with the vertices is
undisturbed.

Now cousider the two-spaces formed by
the intersection of the hyperplanes support-
ing d — 2 adjacent A-facets (the facets are
adjacent if thev are the cross-product of a

single edge of A with the d — 2 facets of
B meeting at a vertex). The intersection
of the halfspace supporting a B-facet with
such a two-plane is a half-plane. Before
the tilting, the intersections of these f/2
halfplanes form an f/2-gon identical to A.
Consider the minimal and maximal two-
faces with respect to z3 coordinate, ppin
and ppgz. In prmag, the tilting again moves
the even edges of these f/2-gons in towards
the origin, and the odd ones outwards, and
it does the opposite in p,,i,. Again, if we
tilt the B facets gently enough so that all of
these two-faces remain convex f/2-gons, no
combinatorial change can occur between a
B-facet and a vertex as a result of the tilt-
ing.

Finally, we apply the projective transfor-
mation

100 ¢ 0 0 0]
01 0e¢ 0 --00
0010 0 -0 0
0000 0 - 1
L0000 0 -~ 0 1]

to P” to produce P. This “adds back”
some of the z4 coordinate of each vertex
to the (2y,xy)-coordinates, causing every
B-ridge to project to a convex polygon in
the (21, z3)-plane. Again, € can be chosen
small enough so that half of the vertices of
every B-ridge end up on the boundary of
the shadow. O

5 The shadow of a cyclic
polytope

The dual of a cyclic polytope has the max-
imum number of faces of all dimensions
among polytopes with f facets. We show,
however, that the duals of cyclic polytopes
do not maximize the complexity of the
shadow among all polytopes with f facets.
In fact we show that the shadow of a 4-
dimensional cyclic polytope dual must have



asymptotically fewer vertices than the poly-
tope itself.

et us review the definition and proper-
ties of a cyclic polytope; for more details,
see [Z]. Let C' be a curve of order d in R,
meaning that any (d — 1)-plane intersects
(" in at most d points. The convex hull of
any set of n points on C' is a d-dimensional
cyclic polytope Py.  Sturmfels [Stur] has
shown that any polytope that is combina-
torially isomorphic to a cyclic polytope has
its vertices on some curve of order d. In
four and higher dimensions, every pair of
vertices in P; is connected by an edge, in
dimension six or higher every triple form a
two-face, and so on.

A facet of Py is supported by a (d — 1)-
plane which passes through d vertices. Let
us index the vertices vy, ..., v, along C'. If
(" passes outside a facet at a vertex v;, it
must come back inside at v;43, since oth-
erwise v;47 would be outside P;. So the
set of vertices determining a facet is made
up of adjacent pairs v;, v;4;. Every face of
smaller dimension is determined by a subset
of the set of vertices determining a facet. In
four dimensions this means that every two-
face of P4 is the convex hull of three vertices
{vi vig1,v;}. with v; distinct from both v;
and v; 1 (recall that ¢ + 1 is taken mod n,
as above).

Theorem 8 lLet Py be any cyclic polytope
in R? with n vertices, and let P; be the
dual of Py. The shadow of P} in R* may
have at most 3n, and might have at many
as 3n — 10, vertices.

Proof: Any projection of the dual Pj into
R? is the dual of the the intersection of the
cyclic polytope Py with some two-plane F3.
This intersection is a convex polygon P, in
E,. We show that P, has at most 3n, and
night have as many as 3n — 10, vertices.

Consider each possible vertex v; in turn.
There are at most n — 2 triangular faces

T;; of Py involving v;, one for each possi-
ble v;. Construct a three-plane F;,; through
Fy and v;. If F, hits a triangular face Tj;,
then the edge {v;,vi+1} is cut, in Py, by
the halfspace of F,; bounded by [ and not
containing v;. The vertices v; and v;41 are

Figure 4: Projection to R? along Fp. F,
projects to a point.

connected by a segment of C; if one of them
lies below F,, and the other lies above it,
this segment of ' must also cross F,, at
least once. But any three-plane intersects
C' at most four times; and for F, , one of
those intersections is v;. Hence there are at
most three pairs v;, v;;; separated by F,,,
and there are at most three vertices of P,
for every vertex v;. This gives the upper
bound of 3n.

Now we construct a cyclic polytope that
realizes the lower bound. Select two three-
planes F, and F,,, intersecting in a com-
mon two-plane Fy. Figure 5 again repre-
sents the projection from R?* to R? along
F,. Select an order four curve C such that
intersections of the 3-flats with € occur in
the order indicated.

Let v, be the intersection of F,, with
C, vs be the intersection of F, with C,
and put vertices vg,...,v,—1 along C, be-
tween vs and wv,. Finally, position ver-
tices v; through v4 on C as shown, so that
the segments connecting the adjacent pairs
{v1,v2}, {v2,v3} and {v3, va} all cross both
F,, and F,,.
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Figure 5: Projection to R? along Fy.

bvery 2-face of Py formed by {vi,vq},
{v2.v3} or {vs,v4}, together with any one
of the vertices vs,...,v,, crosses Fy. This
gives 3(n — 4) vertices in P,. In addition,
the two-faces {vy,vs,v5} and {vy, vy, v1}
also cross £y, for a total of 3n — 10. O

6 Computation of shadows
and slices

In this section we review the known algo-
rithms for computing k-shadows, and give
a new one which should be more efficient in
sorue situations.

Since we have shown that the asymptotic
complexity of a polytope shadow can be as
great as that of the polytope itself, a worst-
case optimal algorithm for computing the
k-shadow of a polytope P given as the in-
tersection of a family H of halfspaces is to
compute P, using a worst-case optimal al-
gorithm, and then test each of its faces to
determine which of them fall on the bound-
ary of the projection into the k-dimensional
subspace. So the interesting problem is
to develop an output-sensitive algorithm,
where the running time is bounded by some
function of the size of the shadow. This
problem is closely related to the more basic
problem of finding an output-sensitive al-
gorithm for convex hulls, which is still not
entirely solved in higher dimensions.

We might measure the size of a k-shadow
by counting either its facets or its vertices.
We will let s be the number of shadow

facets and v be the number of shadow ver-

. tices. Since a vertex in the polytope P is
. adjacent to at most (kil) faces of dimen-
i sion (k — 1), a shadow vertex is as well, so
q,1: O(v). But v can be O(slk/2),

In the following discussion we will as-

'sume that P is simple, that is, that H is

This can be ensured
using standard perturbation techniques, al-
though the size of P, and of its shadow,
might increase as result. We also assume,
without loss of generality, that no face is
parallel to the z; axis.

in general position.

We define a wertical flat as one which
is parallel to the direction of projection,
that is, to the zxy1,...,24 axes. Notice
that there is exactly one vertical hyper-
plane through every non-vertical (k — 1)-
flat.

Significant work on the computation of k-
shadows appears in Ponce, et al. [PSSBM].
They analyze two algorithms and report
on experiments with implementations of
both on their grasp polytopes. The first
algorithm is a refinement of the Fourier-
Motzkin elimination algoithm for convex
hulls. We test each (d — k£ + 1)-tuple of in-
put halfspaces to determine whether their
intersection supports a vertical hyperplane.
Those that do are potential shadow facets.
Each of these is then tested, by linear pro-
gramming, to see if it is in fact a shadow
facet. The running time is O(f4%+2).
1" This algorithm only finds the shadow
facets; it does not compute their convex
hull to find the shadow vertices. This is
sufficient for their application.

The second algorithm is a pivoting al-
gorithm. We find the minimum vertex in
the 21 direction, which is a shadow vertex,
by linear programming. We then trace the

"Note that we use the notation (d — k) where
[PSSBM] uses k, and visa versa.



the shadow by following the edges that are
supported by vertical hyperplanes. At each
vertex p, we have to find the vertex at the
other end of each new shadow edge e. We
intersect the ray supporting e anchored at
p with each of the input halfspaces. The
intersection nearest p is the next vertex.
The running time of this second algorithm

is O(vf).

They implemented both algorithms,
and tested them on a sequence of 11-
dimensional grasp polytopes. The running
time pivoting algorithm was a slow growing
linear function in the size of the polytope,
while the running time of the elimination
algorithm grew quickly with f, as expected.
Theoretically, they note that the running
time of the pivoting algorithm can be im-
proved using the ray-shooting data struc-
ture of Matousek and Schwazkopf [Mat] (a
similar observation is found in [Chan)).

There is another approach to output-
sensitive convex hulls, due to Seidel [Sei],
which is more efficient for computing inter-
sections of halfsapces when the number of
vertices greatly exceeds the number of in-
put halfspaces. This is a plane-sweep al-
gorithm; a sweep-hyperplane moves across
P from vertex to vertex, maintaining the
{d — 1)-dimensional slice of P.

The algorithim takes advantage of the
fact that, in higher dimensions, most of the
events in the sweep are vertices for which
every hyperplane which participates in an
outgoing edge also participates in an in-
coming edge (which is certainly not the
case in dimensions two and three!). Such
events can be scheduled dynamically, once
the sweep-hyperplane intersects all the in-
coming edges. Scheduling and processing
all these events requires O(vlg f) time.

The remaining events are those vertices
at which a new facet makes its first appear-
ance. These events are scheduled before
the start of the sweep, by doing a (d — 1)-
dimensional linear program in the bound-

abc abc
bed -

aed P

abd
acd

abd

abd
abc

bed

Figure 6: Two vertices of a four-polytope
which can be scheduled dynamically, and,
below, one which cannot. The labels on the
edges indicate incedent facets.

ing hyperplane of each input halfspace, to
determine where, if ever, it first intersects
P. This requires O(f?) time, for an overall
running time of O(f2 4+ vlg f). The O(f?)
term can be improved to O(f2_2/(L§J) +
€) by using the data structure for linear
prgramming queries due to Matousek and
Schwarzkopf.

We adapt this convex hull algorithm to
get an algorithm for higher dimensional
k-shadows that is more efficent when the
number of shadow vertices greatly exceeds
the number of shadow facets. Here is the
basic algorithm.

Theorem 9 A k-shadow of a polytope P,
given as the intersection of an input set
H of halfspaces, can be computed in time
O(sf* + vigf), where f = |H|, s is the
number of facets in the shadow, and v is
the total number of faces of the shadow.

Proof: The idea is to trace, by pivoting,
the (k — 1)-faces of P which project to
shadow facets, and find the minimal ver-
tex of each one with respect to the sweep
direction, and finally to run the sweep, ex-
actly as in the convex hull algorithm, to
compute the k-dimensional convex hull of
the projected shadow facets.

We will sweep in the increasing 1 di-
rection. We find the vertex p of P which



minimzes xy by linear programming. The
vertex p is adjacent to (kil) faces of dimen-
sion (k—1), some of which will be supported
by vertical hyperplanes, and hence project
to shadow facets.

A (k — 1)face f of P lies in the inter-
section of some set Hy of (d — k + 1) input
hyperplanes. An adjacent (k — 1)-face f’
lies in the intersetion of some some set H},
which differs from Hy in only one element.
For each known shadow facet f, we find
all the adjacent shadow facets as follows.
For each input hyperplane h not in Hy, we
substitute i for each of the (d — k£ + 1) hy-
perplanes of Hy in turn to get a different
(k — 1) flat f’. For efficiency, we can avoid
checking any (d + —k + 1)-tuple more than
once by using a dictionary. If f’ does not
have a vertical supporting hyperplane, we
discard it. Otherwise we then run a (k—1)-
dimensional linear program f’, again with
the sweep direction as the objective func-
tion and with the intersections of the input
halfspaces with f’ as constraints, and find
the first point p in which f’ first intersects
P. If f’ fails to intersect P, then it does not
support a shadow facet; otherwise the point
p found by the linear program projects to
the first point on the shadow facet encoun-
tered by the sweep plane.

A shadow facet might be adjacent to as
many as f others. For each shadow facet,
we find all adjacet facets by running at
most f linear programs in dimension (k-1),
each requiring O(f) time. This requires

O(sf?) time.

With the first vertex of every shadow
facet known. we can compute their convex
hull using the sweep phase of Seidel’s con-
vex hull algorithm, in O(vlg f) time. O

Notice that the first phase of the algo-
rithm consists of fs linear programming
queries on the set H of input halfspaces, so
we can apply the linear programming query
data structure. To optimize the overall run-
ning time, the preprocessing time for the

data structure must be balanced against
the time required to answer all the queries.
Since we do not know s in advance, we need
to apply the (fairly standard) trick of an-
swering queries 2 f through 21 — 1 f using
a data structure designed for 2° queries, as
in the remarks after Corollaries 2.4 and 3.4
in [Chan]. This gives us the following the-

orem.

Theorem 10 A k-shadow of a polytope P,
given as the intersection of an input set H
of f halfspaces, can be computed in time
O((.sz)l_l/(LgJH'6 + vlg f), where s is the
number of shadow facets and v is the num-
ber of shadow vertices.

The first stage of our algorithm finds the
shadow facets at least as efficiently as the
elimination algorithm of [PSSBM], and, in
addition, it sets up the computation of the
convex hull. Our algorithm is more effi-
cient than their pivoting algorithm when
v > O(sf), which is possible only for k& > 4.
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