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We prove that a finite family .«/ of compact connected sets in R has a hyper-
plane transversal if and only if for some k, 0 <k < d, there exists an acyclic oriented
matroid of rank &+ 1 on ./ such that every k42 sets in ./ have an oriented
A-transversal which meets the sets consistently with that oriented matroid.  « 1996
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Let .o/ be a finite family of compact convex sets in RY. A k-transversal for
</ 1s an affine subspace of dimension k which intersects every member of
/. A hyperplane transversal for o/ is a hyperplane which intersects every
member of .«/. Under what conditions does the family ./ have a hyper-
plane transversal?

Hadwiger in 1957 gave the first such conditions for line transversals in
the plane [3]. He noted that a directed line transversal intersects pairwise
disjoint sets in a specific order. He used this ordering to give conditions for
the existence of line transversals.

Turorem 1 (Hadwiger’s Transversal Theorem [3]). A4 finite family s/
of pairwise disjoint compact convex sets in the plane has a line transversal if
and only if there is a linear ordering of ./ such that every three convex sets
have a directed line transversal meeting them consistently with that ordering.
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In 1988 Goodman and Pollack generalized Hadwiger’s theorem and
proof to hyperplane transversals [2]. Although they did not do so, we
restate their theorem in the language of oriented matroids.

THEOREM 2 (Goodman and Pollack [2]). A4 (d—2)-separated family <
of compact convex sets in R has a hyperplane transversed if and only if there
iy an acyelic oriented matroid of rank d on of such that every d+1 of
the sets have a hyperplane transversal meeting them consistently with that
oriented matroid.

A family of convex sets is k-separated if no subset of size k+2 has a
k-transversal. A rank r acyclic oriented matroid on 7 is a set of orienta-
tions on r-tuples of .« which form an acyclic oriented matroid with
elements .«7; i.e., an acyclic oriented matroid on </ is defined by a mapping
zi/" > {—=1,0,1}, called a chirotope, which satisfies certain axioms.
{See [1] for axioms defining a chirotope and much other information on
oriented matroids.) An oriented k-transversal meets a family of connected
scts consistently with a given acyclic oriented matroid if one can choose a
point from the intersection of each set and the k-transversal such that the
orientation of every (k -+ 1)-tuple of points matches the orientation of the
corresponding (k + 1)-tuples of ..

Goodman and Pollack originally formulated Theorem 2 using order
tvpes, or realizable oriented matroids. An acyclic oriented matroid of rank
k41 is realizable if it can be represented as the set of orientations of a set
of points in R*. As was subsequently noted, the proof given by Goodman
and Pollack does not depend upon the oriented matroid being realizable.

Wenger showed that the pairwise disjointness condition could be dropped
from Hadwiger’s theorem on line transversal in the plane, giving a new
topological proof of Hadwiger’s theorem [7]. Subsequently, Pollack and
Wenger proved Theorem 2 without the separated condition [ 6].

Turorem 3 (Pollack and Wenger [6]). A4 family o/ of compact con-
nected sets in RY has a hyperplane transversal if and only if for some k,
0 <k <d, there is a realizable acyclic oriented matroid of rank k + 1 such
that every k+2 of the sets have a k-transversal meeting them consistently
with that oriented matroid.

This theorem is stated for compact connected sets instead of just com-
pact convex sets. Note that a hyperplane /4 intersects a connected set a if
and only /i intersects the convex hull of a.

The proof in [ 6] depended upon the oriented matroid being realizable.
Gil Kalai asked whether Theorem 3 still held when that assumption was
dropped. In this paper we answer that question in the affirmative, giving
the following theorem which generalizes all the theorems listed above.
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THrorReM 4. A family <7 of compact connected sets in RY has a hyper-
plane transversal if and if for some k, 0 <k <d, there is an acyclic oriented
matroid of rank k + 1 such that every k +2 of the sets have a k-transversal
meeting them consistently with that oriented matroid.

The proof of Theorem 3 in [6] uses a realization of the oriented matroid
to apply the Borsuk-Ulam theorem on antipodal mappings from a sphere
S* to R*. The Borsuk—Ulam theorem states that if there exists a continuous
antipodal mapping from $* to S¢ then k <d. To prove our result we will
first prove a combinatorial lemma which will play the same role in our
proof that the Borsuk—Ulam theorem played in [6].

Recall that if E is a set of points in affine Euclidean space, a Radon parti-
tion of E'is a partition (A4, B) of E such that conv(A) n conv(B) # . This
notion can be expressed in terms of oriented matroids, a fact we will use
in the proof of Theorem 4.

One way of describing an oriented matroid of rank » on o/ is as a set .«
together with a collection of signed circuits of <7, i.e., a collection of subsets
of ./ of size at most r 4+ | with a sign “+” or “—" assigned to each element
of each subset. (See [ 1].) For example, if .«7 is a finite set of points in affine
rank r space, consider the set # of all minimal Random partitions (A, B)
with /A, Bc.o/. Then {A*B : (A, B)e #} is the set of signed circuits of an
oriented matroid. Such an oriented matroid will be acyclic, i.e., it will have
no signed circuits of the form A+,

The Folkman-Lawrence topological respresentation theorem gives
another representation for oriented matroids. An oriented matroid M of
rank r can be defined by an arrangement of oriented pseudospheres
‘D, ue/} onS" ', each dividing S"~' into open hemispheres D and
D, . An arrangement of oriented pseudospheres is a set of topological
spheres (homeomorphic to $”~?) with intersection properties similar to
those of great circles on S’. (See [1].) The signed circuits of the oriented
matroid are given by minimal sets of hemispheres whose intersection is
empty. with signs determined by whether the positive, D, or negative,
D, . hemisphere is used. The oriented matroid is acyclic if (.., D} # &.
For any ae .o/, the deletion M\« of a from M is the oriented matroid
represented by the pseudospheres in .o/ \{a}. The contraction of M on a,
Ma, is the oriented matroid of rank (rank(M )-1) represented by the set of
pseudospheres {D, N D, be.<Z\{a}}.

Let M be an oriented matroid on .o/ represented by an arrangement of
pseudospheres {D,:ae./} on S'~! each dividing S ' into open
hemispheres D and D . We define the nerve N,, of M to be the nerve of
this collection of hemispheres. That is, if '={D}:aue/} V{D; :ae.},
then Ny ={¢=T N, .,7#}. N, is a simplicial complex. Different
representations of M by arrangements of pseudospheres lead to isomorphic
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copies of N,,. M is acyclic if and only if T={D}:aeo/} and
~T={D, :ae .o/} are simplices of N,,.

Let f: S’ — N,, be a function from points of S* to simplices of N,,. f'is
lower semi-continuous if every point p € S* has a neighborhood U, such that
Jipy< fip') for all p'e U,. That is, f'is lower semi-continuous if it 1s con-
tinuous with respect to the usual topology on S and the topology on N,
generated by open stars. For each face ge Ny, let —¢p={D,:D e} u
‘D7D, €¢} be the “antipodal” face to ¢. f is antipodal if f( p) = ¢ implies
H=p)=—9¢. B

We can now state our analog to the Borsuk-Ulam theorem. T is the
closure of T, the set of all subsets of 7.

LEMMA 1. Let M be an acyclic oriented matroid with nerve N, If
128! N, is a lower semi-continuous antipodal map from points on S9 to
simplices of N,,, then d<rank(M)—1. If addition f~"(T)= &, then
d<rank(M)—2.

The proof of the first half of Lemma 1 involves constructing an antipodal
simplicial map from N,, to S M) =1 and composing it with the map f to
get an antipodal map from S$7 to S ~1 1t then would follow, by the
Borsuk--Ulam theorem, that d<rank(M)—1. For the second half of
Lemma 1, we would like to similarly construct a map from “N, \{T, —T'}”
to S™KM) 2 However, Ny \{T, —T} is not a simplicial complex, since
cvery vertex of Ny, is in T or —T. Instead, we form a cell complex from
pairs of the positive and negative vertices of N,,.

Let 2 be a simplicial complex whose vertices are partitioned into two
sets V and W. (For instance, the vertices of N,, are partitioned into
{DPae/} and {D;:ae./}.) For every face ¢ € 2, where ¢ £ V and
dEW, let ¢7 ={(v,w):vednV, wedn W}. Form a cell complex &*
whose vertices are V7* ={{v,w}:veV, we W} and whose cells are
1" pet, LV and ¢ £ W}, This is a piecewise linear cell complex,
although not a simplicial one. If |$| is a geometric realization of ¢, then ¢*
is realized as the intersection of |¢| with a hyperplane separating ¢ NV
from ¢ ~ W. Note that the dimension of ¢ is one less than the dimension
of ¢. Thus N7 is the complex with vertices {{D, D, }:a,be.s/} and
cells {¢7:dpeN,, ¢ £T, and ¢ £ —T}.

As above, let —¢7 ={D :DIe¢”}u
“antipodal” face to ¢*. A map f:S“>NZ
implies f(—p)= —¢7.

N, and N, are the nerves of the oriented matroids M\a and M/a,
respectively. N,,, is a subcomplex of N, consisting of ¢ N,,, where
Dy ¢¢and D, ¢¢. N, is a subcomplex of N,,, consisting of €N ,,\,,

(D;:D; c¢?} be the
is antipodal if f(p)=¢*
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where ¢u{DS}eN, and ¢u{D,}eN,. N7, is a subcomplex of
N 7. which is a subcomplex of N 7.

The open sets in I” give an acyclic cover of the sphere S -1 Thys,
in light of Cech theory. the following result is not surprising.

Lemma 2. If M is an acyclic oriented matroid of rank r, then there is an
antipodal simplicial map from a refinement of N, to 8"~ and an antipodal
simplicial map from a refinement of N % to S" 72,

Proof of Lemma 2. We first give an antipodal PL deformation retract
from N,, to S"~'. That is, we give a sequence of antipodal pairs of elemen-
tary collapses from N,, to a triangulation of §"~'. Since an elementary
collapse is a PL map, this sequence of collapses is a PL map. Thus the
collapse from N,, to 8"~ can be realized as an antipodal simplicial map
from a refinement of N,, to a triangulation of §"~'. (This part of the proof
does not rely on M being acyclic.)

The construction is by induction on r. If r =1, then N,, consists of two
disjoint simplices, which retracts to S°. Now assume we have such a
sequence of collapses for any oriented matroid of rank less than r. Choose
some ¢e.of. We will collapse N,, to S% = N .. Our induction hypothesis
then collapses this to "',

If ¢ is a maximal simplex of N,,, then either D} or D_ is a vertex
of ¢. On the other hand, if v is a simplex of N,,.,, then either y U {D}
or y u{D_} or both are simplices of N,,. Collapse all maximal simplices
¢=y u{D}} €Ny, where yu{D } ¢N,.,yeN,,,. through the face .
Similarly collapse all maximal simplices ¢=y u{D }eN,,, where
Yy uiD/S} Ny, b eN,y.,, through the face . Note if =4y U {D}} e N,,
and yU{D;}¢N,, then —p=—yu{D }eN, and —puU{D}}¢
Ny, so these collapses come in antipodal pairs. Repeat these collapses until
no such simplices remain. These collapses reduce N, to N, and N, to
the join {}1D .7}, { D, }} * Ny, . By induction N, collapses to S" 2, and
so the join above collapses to §"".

To prove the second statement of the lemma, we give a sequence of
antipodal pairs of collapses from N7, to {S®* N,,.} *. This last term is
isomorphic to a PL refinement of N,,,. The argument above gives a
further sequence of collapses to S" 2.

If 7 is a maximal cell of N}, ¢ € N,,, then either D} or D is a vertex
of ¢. On the other hand, if ¥* is a cell of N7, Yy €N, then either
tuiD! Y or {yu{D_ }}* or both are cells of N 7,.

As above, collapse all maximal cells {y U {D'}}*eNJ, where
WulD }}#¢NT, YyeN,,.. through the face y*. (Since M is acyclic,
7 is a face of N7,.) Similarly, collapse all maximal cells {yy U {D;}}*
eN . where {y U{D }}*¢NJ, weN,,,. through the face  *. Again
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these collapses come in antipodal pairs. Let J, be the join {{D)},
{D, }} # Ny These collapses reduce N7\, to N7, and N} to J /.

We now claim J7 is isomorphic to a refinement of N,,.. For each
¢ e N, there are three possibilities:

e If¢p<=T, then {$U{D }}” is acell of J7 of the same dimension
as ¢. The vertices of ¢ are {{D/,D,}:D}e¢} and its faces are
(Iyu{D,}}*:y<=¢}. Thus, the face lattice of {pu{D }}* is
isomorphic to the face lattice of ¢. Neither ¢* nor {¢u {D7}} 7 are cells
of J 7.

o Similarly, if < — T, then {¢u{D;}}* is a cell of J7 with face
lattice isomorphic to the face lattice of ¢. Again neither ¢* nor
1pu{D, }}7 are cells of J 7.

o For all other ¢, the sets ¢*, {¢ U {D_}} 7, and {pu{D;}}7” are
cells in J # whose union is {{{D}, {D, }} *¢} 7%, a PL ball of the same
dimension as ¢. Cutting a realization |¢| of ¢ by a hyperplane / separating
¢ T from ¢ n —T gives a refinement ¢ of ¢ which is isomorphic to
$UADFY, 4D }} = ¢} #. The original vertices of |¢| corresponding to D
or D, map to vertices {D, D, } or {D,, DS}, respectively, of {{{D},
{D, |} *¢}*. The new vertices of i N |¢| correspond to the intersection of
h and the realization of an edge (D, D, ) of ¢. These vertices map to

vertices { D, D, | of {{{D;}.{D, |} » 9} *.
Conversely, every cell of J # arises in exactly one of these cases. Thus J 7
is isomorphic to a refinement of N,,,.. |

The barycentric subdivision Bar(%') of a simplicial complex % is the sim-
plicial complex of all chains in the face lattice of #. Bar(Z') is a refinement
of #, with one vertex {a) for every simplex o of 4"

Proof of Lemma 1. Let M be an acyclic oriented matroid with nerve
N,. Let /7S"— N,, be a lower semi-continuous antipodal map from
points on §¢ to simplices of N,,. For each pe S’ choose a suitably small
convex ball, U,, around p so that:

L. fipys fip) for every p'ecl(U,),
2. U ,=-U,, and
3. any non-empty intersection (), ., U, is a ball.
Since S is compact, we can choose a finite subset #  of these

neighborhoods covering S with the additional condition that if U,e#"
then U_,e # . The closed sets {cl(U,): U,e#"} give a decomposition of

—p
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S? into regular cells. The barycentric subdivision of this cell decomposition
is a simplicial complex 2% For each face o € X, there is an antipodal face
—geX

For every face o of 29, let #'(6) = #" be the sets of ¥ containing o.
Define f': Bar(Z'“) - Bar(N,,) as

Ton=( U 1)

Upe 7 ()

For all p’ € g, we have

U Apysfip).

Upe (o)

For any face o' g, we have # (¢') < # (o), and so

U sime U fp.

Upe # (") Upe W ()

Thus 7 defines a simplicial map from Bar(X“) to Bar(N,,). Since it takes
{—0o) to —<{oy, it is antipodal as well.

Lemma 2 gives an antipodal simplicial map from an antipodal subdivi-
sion of N, to §™™* =1 This induces an antipodal simplicial map from an
antipodal subdivision Bar'(N,,) of Bar(N,,) to a triangulation X k() —1
of §™“"XM 1 Thus we have antipodal simplicial maps

Barr(zzl) N Bar'(NM) s Zrank(/\/l)f 1

where Bar'(2,) and Bar'(N ;) are suitably chosen antipodal subdivisions of
Bar(1',) and Bar(N,,), respectively.

The composition of these maps gives an antipodal map from Bar’(X ) to
21 This map defines a continuous antipodal map from S¢ to
'. By the classical Borsuk—Ulam theorem, d is less than or equal
to rank(M )— 1. This proves the first part of our lemma.

If f YT)=¢, then consider the map f* taking peS? to
{flpi} 7 €N, Define ', 29 and f7: X - Bar(N %) as above. Lemma 2
gives an antipodal simplicial map from an antipodal subdivision Bar'(N 7))
ol Bar(N ) to its subcomplex S™"™*)~ 2 Thus we have maps

Sr;mkt -

Barr(zzl)_) Bar/(Nf/l)_)Erank(AM) —2.

The same argument as before then gives d <rank(M)—2. |

The proof of Theorem 4 now follows the same lines as the proof of
Theorem 3 in [6].
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Proof of Theorem 4. Let o/ ={a,,a,, .., a,} be a finite family of com-
pact connected sets in R”. If .« has a hyperplane transversal z, then choose
a point p,; from each intersection a, 1, «,€.o/. These points span some
oriented affine subspace of dimension k. The set of orientations of the
points p, in that affine subspace generate an acyclic oriented matroid of
rank k+1 on the points {p,} and a corresponding oriented matroid on
«/={a,}. This proves the necessary condition.

Assume there is an acyclic oriented matroid M of rank &+ 1 such that
every k + 2 of the sets have a k-transversal meeting them consistently with
that oriented matroid. Represent this oriented matroid by an arrangement
of oriented pseudospheres on S*, each dividing S* into open hemispheres
D! and D, . For each direction ve S? "', let H*(v) be the unique hyper-
plane with normal v such that every a € .o/ meets the negative closed half-
space bounded by H and some « € .«7 is contained in the positive one. Let
H (v)equal H "(—v). Let H(v) be the hyperplane perpendicular to v lying
halfway between H *(v) and H ~(v). The family .« has a hyperplane trans-
versal with normal v if and only if H(v) is a hyperplane transversal of .«
Note that H(v) and H(—v) represent the same unoriented hyperplane.

Let 4 *(v) be the set of elements of &/ contained in the positive open
half-space bounded by H(v), and let 4 (v) be the set of elements of .o/
contained in the negative open half-space bounded by H(v). Note that
A (vy=¢ if and only if 47 (v)=(J and if and only if H(v) is a hyper-
plane transversal to ..

Define a map f which takes ve S/~ ' to

f)={DyacA*(v)} u{D, :be A (v)}.

Since 4'(v)# & if and only if 4~ (v)# &, we have f Y(T)= ¢, and
Jlv)y= 7 if and only if H(v) is a hyperplane transversal to .o/. Assume that
J{vy#£ J for all v. We will then show that f is a lower semi-continuous,
antipodal map from SY~' to N,, and derive a contradiction using
[.emma 1.

If f(v) is not in N,,, then

( N D;,*‘>m< N D;>=@~
ac AT (v} he A~ (v)

This implies (cf. 3.7.2 in [1]) that for some minimal 4, = 4 *(v) and
Ay S A7 (v), |4, ] + |4, <k +2, the intersection of the pseudohemispheres
ID Y aed,} u{D; aeA,} is also empty. Thus 4," 4, is a signed cir-
cuit of M.

By the hypothesis of Theorem 4, A4, U 4, has a k-transversal ' which
meets 1t consistently with M. Thus there is a set of points P, from
17" na:ae A} and a set of points P, from {7'na:aeA,} such that
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P/ P, form a signed circuit of M, i.e., conv(P,) nconv(P,) # &%. However,
H(r) strictly separates P, from P,, a contradiction. We conclude that
Jvye Ny, for all ¢

The map f'is clearly antipodal. Its semi-continuity follows from the com-
pactness of the sets in ./ and H(v). Thus f is a lower-semi-continuous
antipodal map from S~ ' to N,, where / ~'(T)= @. By Lemma I, d— 1 <
rank(M)—2=k—1<d—2, a contradiction. Thus f(v)= for some v
and H(v) is a transversal of .o/, This proves the sufficient condition. |
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