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1 Introduction

In 1988, Brocker and Scheiderer solved independently a question raised by the first
one. It gives information about the minimal number of inequalities needed to de-
scribe a basic open set of a real variety. T: turns out that this minimal number
depends only on the dimension of the real variety in question: in fact. these two
numbers are the same. We state the Theorem of Brocker and Scheiderer in terms of
real spectra (see [9]):

Theorem 1.1 Let A be any R-algebra of transcendence degree d > 0 over the real
closed field R, then any basic open set in the real spectrum of A can be written with
only d inequalities.

There are several proofs of this theorem, but they use much machinery. like theory
of fans. spaces of orderings or the Tsen-Lang-Theorem. The aim of this paper is
to give three constructions which give firstly a constructive proof of Theorem 1.1 in
some special cases and secondly some more information about the way the reduction
depends on the given description as a basic open set.

We give an algorithmic solution for the first interesting case of Theorem 1.1, na-
mely the description of convex planar polygons with the help of two inequalities.
Afterwards. under some assumptions, we generalize this tecknique to a construc-
tive solution of Theorem 1.1. Finally, a trickv proof shows that Theorem 1.1 can
be reduced to the case of finitely generated algebras and that the functions of the
reduction can be choosen in the algebra generated by the functions of the starting
desription. )

The complete proofs can be found in [1].

I want to thank to L. Mahé and E. Becker for their help during the realization of
this work.

2 Convex Interpolation

In this chapter, we will show a useful theorem which will give us some information
about the two-dimensional case of the Brocker-Scheiderer-Theorem. Since the Con-
vex Interpolation could be useful for other applications than Real Geometry, we give
the proof in the general case, although we only use a special case, namely n = 2.



Definition 2.1 Givern m points yio....ym € R7. we will say that they lic in a
convex position. if no point lics in the conver hull of the others.

Theorem 2.2 Given m points yy.....ym € IR" in conver position. there is ¢ non
constant polynomial p € Riry.....x;]} with the following properties:

o The sets {r € R" : plz) >0} and {x € R" : p(x) > 0} are conver.

o pim)=...=plym) = 0.
Remark 2.3 Iu [8]. a similar theorem is given in the one-dimensional case. Our
case is in some sense the multi-dimensional generalization of this theorem.

For the proof. we need the following lemma:

Lemma 2.4 For a given ¢ > 0. yj....,ym € IR™ in conver position and
e {l..... m} there is a polynomial p; € R[zy..... z,] with:

o pity;) =1
o iPz(yJ)!<(f0r.j¢i

o The function p, is conver on IR™.

Proof: Using the convex position of the points y1...., Ym. We find a linear function
g : R" — R such that g(y) >0 and g(y;) < 0 for j # ¢ With the help of a linear
transformation we can assume that g(y;) = 1 and —1 < g(y;) < 1forj#1 Fora
suitable exponent 2s. all the values g(y;)? for j # i are of absolute value < ¢ and
the function pi(z) := g(r)* is convex, so the Lemma is proven. U

Let ¢ > 0 be a real number that will be fixed later on. For each y; we choose a
polvnomial p; as in the Lemma. We write

p:l—(ZC,pl) (1)

=1

where the c; are positive real numbers which are to be found. The conditions
ply;)=0for j=1.....m vield to the system of equations:

m

Zcipi(yj) =1 (2)

r=1

With the help of matrices this can be written as

Cy 1
nly) - Pmly1)

L =] (3)
I)l(ym) pm(ym) :



If we write C for .1 for and [ for the matrix unity. the condition is
Cm 1
(I+A4)C =1 (4)

where A is a matrix of which the entries on the diagonal are zero and the others of
absolute value smaller than €. We consider in IR™ the maximum norm. that is

i a
! m
e = max | a; | (5)
1=
A
We also consider the associated matrix norm. Is A = (aj)i=1,...m;j=1,..m S0
m
m
| All= maxd | ay IS (m = e (8)
1=1

We cl}oose 0<e< —2(—7:-__—1), consequently we have || A ||< 1. Now, we consider the
equation

(I+A)C =1 (7)

For || A |I< % < 1, (I + A) is invertible, hence there is a unique vector C that fulfils
this equation. An elementary calculation shows that

e-1ge AL

STopaq <! ®

From the definition of the norm we conclude that | ¢; — 1 |< 1, hence that ¢; > 0 for
t=1.....m.

The function p constructed in this way is the function we sought in Theorem 2.2:
It vanishes on the y; by construction and it is a linear combination with negative
coefficients of convex functions. hence it is a concave function. Consequently, the
sets {z € R" : p(z) > 0} and {z € R": p(z) > 0} are convex. This finishes the
proof. O

Theorem 2.5 Given linear polynomials fi...., fn € R[z.y], then there are two
polynomials f, g € IR[z,y] such that

{(z.y) € R*: fi(z,y) > 0,.... falz.y) > 0}

={(z,y) € R?: f(z,y) > 0,g(z.y) > 0}



Constructive Proof: Let § = {(z.y) € R? : filz.y) > 0...., fulz.y) > 0}.
With the help of a projective change of coordinates. we can easily restrict to the
case that S is bounded and non-empty. Assume furthermore that everv of the
functions fi.....fn is necessaire for the description. S is a convex polygon and
according to 2.2 we find a function g such that the set {g > 0} is convex and has
the vertices of S on the border. Finally. we set f = [] f; and it is easy to show that

S={f>0.g>0}.0

3 Reductions with the help of symmetric means
Let s, denote the ith elementary symmetric polvnomial.

Proposition 3.1 Let R be a real closed field. Then

{{r1.....x) ER" 111 > 0.... . T, > 0}

= {(z1,.--.Tn) € R" :81(210. .. Tn) >0,....80(T10...,Tp) > 0} (9)
and

{tzy.. s ) ER" :2;20,.... r, >0}

= {(x1s---, rn)ER”:sl(rl.,...zn)ZO,....sn(zl,...,zn)ZO} (10)
Proof:

Consider the polynomial

n n

f(t) = H(t —I;)= Z(__l)f * *tn—i

1=1 =1

All the roots are real and not zero, so we can count the number of strictly positive
roots with the help of Descartes’ Rule, it is the number of variations of signs in the
sequence 1, —s1,52,. ...(—1)"s,,. If the s;’s are all positive, then this number is n.
The second part of the proposition can be proved in a similar way.

Theorem 3.2 Let V' be a bounded real affine variety over IR and let
fioooe fag1 € RV] withn > 1. We set

P={reV:filz)>0.. .., frsr(z) > 0} ‘ (11)
Assume. that the following condition holds:
o There are no points € V' such that all the functions fis- s fng1 vanish and

the number of points = € V' such that ezactly n among the functions f; vanish
is finite.



Then there is an equivalent system of only n functions gy.. ... gn € IR[V] i€
(reV:fi(z)>0,... frprlz) > 0}
:{J'E"’:gl(z)>0,....gn(r)>0} (12)
Every g, lies in the IR-algebra generated by fi,.--. fat1-

Proof (Sketch): We define the function ® : V — IRt by setting
®(z) = (filz),..., fap1(x)). We denote by W the image of V' under @ and by
@ the image of P. Consequently. we have @ = W N {t; > 0,...,tag1 > 0}. We

ciaim that we can find functions hy...., R, € Rit;... .y tns1) such that
{(f],...,tn+1) eW: hl(tl----utn«{—l) > 0,....hn(t1,....tn+1) > 0}
:{(11,...,tn+1)eW:t1>0....,tn+1>0} (13)

Then we have
P={zeV: hi(fi(2)s- .-, fas1(2)) > 0,....ha(f1(Z)s- .-, faga(2)) > 0} (14)

So let us prove the claim.

By the assumptions of the theorem, there are only finitely many intersections
{ry,...,zm}of W with the coordinate lines. Firstly, we produce a reduction which
works in a neighbourhood of these points and afterwards we use a sort of partition
of unity in order to find a global reduction. We set ho := $3,...,hn 1= Spy1 and we
want to find the last function hy. With W := {ti + ...+ tap1 > 0} and h := s2 it
follows from Proposition 3.1 that

QAW = {h>0,hy>0,....h, >0} W (15)
Next we take two functions py,p2 € R[ty, .. .y tns1] such that

a) pp >0on W.
b) pi(z;) > 1fori=1,....,m
d{m21}CW
d) p, >0on W.
e) pa(z;)=0fori=1,...,m.

f) {p <1} C{pm > 1}



The existence is easv to prove using the Stone-Weierstrass-Theorem.

Now we consider the closed sets

Myi= (W —{pp<1}) n Q (16)

My = (W - {[)2 < 1}) n {83 >0..... Snt1 > 0} - O_ (17)

A, and M, are disjoint closed bounded sets and again by the Stone-Weierstrass-
Theorem we find a polynomial hy € IR[t;.....tn41] such that Ay > 1 on M, and
hy < —1on M.

We set
hy = p‘i”*h-{-pé”*hg (18)

where M is a sufficiently large natural number. Now it is very technical, but not
difficult to show that (if we choose M large enough)

Q:{(tl ..... tn+1)e‘1rlh1(t1....,fn+1)>0,
ho(tye. ... the1) > 0... .. Rp(ty, ... tngr) > 0} (19)

This finishes the proof of Theorem 3.2.

4 Polynomial Reductions

Theorem 4.1 Let R be a real closed field. Let A be a R-algebra of finite transcen-
dence degree d. Then every basic open set P of Spec A can be written with at most
d inequalities. Moreover, given any description of P as a basic open set, we can
achieve that the functions of the reduced description lie in the R-algebra generated
by the function of this description.

Proof: It is sufficient to show this theorem for a basit open set described with
d + 1 inequalities. So let P = {a € Spec,A: a;(a) > 0,....a44:1(a) > 0}. Since the
transcendence degree of A is d. we find a non constant polynomial p € Rlt1,.. .. tas1)
such that p(@....,a441) = 0. We set

B:=R[t,....tap1}/(p) (20)
Consider the application

¢:B— A (21)



defined by 7; — a,. It is clear that & is well defined. It induces a map

o : Spec,A — Spec, B (22)
Set

Q:{36Spec,B:tl(ﬂ)>0,...,td+1(ﬁ)>0} (23)
Then P = o=~ 1(Q):

acP={a;>0,....,a441 >0} &> Vi —a;fa <= Vi - ¢(t;) ¢ a

e Vi ~t; ¢ ¢$"(a) <= ¢"(a)€Q ={l >0,....t441 > 0} (24)
Since p is a non-zero polynomial, the transcendence degree of B is at most d. By the
Theorem of Brocker-Scheiderer we can write ) with only d functions g, ....94 € B
such that

Q = {B € Spec,B : 7i(8) > 0,...,5a(B) > 0} (25)
We choose for each §; a representant g; € R[t,.... tas1) We claim that

P = {a € Spec,A : g1(a1,---,ad41) > 0,.. . galay,.--.aip1) > 0)} (26)

For the proof, let a € P. Then

Vi giar, ... aap1) ¢ @ <= Vi(Gi(t1,. .-, lan1)) § @

= YiGilt1y..- tas1) ¢ ¢ (@) (27)
Consequently,

a€EP & ¢(a)eQ « ¢ (a)€{gr>0.....,7> 0}

— a€{qar...,aa41) > 0,...,9d(a1,..-,8441) > 0} (28)

This shows the claim and Theorem 4.1. O
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