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BASICNESS OF SEMIALGEBRAIC SETS*

F. Acquistaprace, F. BroGLiatand M.P. ViLgz

Abstract. This paper is concerned with the problem of deciding whether a
semialgebraic set S of an algebraic variety X over R is basic. Furthermore, in
such a case, we decide what is the sharp number of inequalities defining S. For
that it suffices to desingularize X, as well as the boundary of S, and then ask
the same question for the trace of S on its boundary. In this way, after a finite
number of blowing-ups, we lower the dimension of the data and by induction
we get a finite decision procedure to solve this problem. Decidability of other
known criteria is also analyzed.

AM.S. Subject Classification: 14P10

Introduction

A classical problem in real algebraic geometry is to ask whether a semialgebraic set
S in a real algebraic variety X is basic, i.e., whether it is the set of solutions of a
system of polynomial inequalities.

Several answers to this problem are well known. First of all, Brocker (in [Brd), see
also [Sch]) characterizes basicness in the real spectrum of the function field £(X).
From this he gets that S is basic if and only if SNY is generically basic in any
irreducible algebraic subset ¥ C X. Note that this result holds over any real closed
tield. Working over the field R, Andradas and Ruiz improved Brécker’s result in the
sense that then it is enough to take as YV any irreducible surface (see [AnRz1]).

We need nothing more than Andradas-Ruiz’s result to be able to decide, over R,
by a finite procedure whether a set is basic or not, as we prove in Section 2.

Nevertheless, a different approach is possible when working over R. If we use
one of the above mentioned criteria to test basicness we have to look inside S. But
it 1s also possible to search relevant information about basicness of the set S on
its boundary. This is precisely our point of view. A nice result in this direction
was given by Andradas and Ruiz [AnRz2], who found a “universal obstruction” to
basicness: if S is not generically basic, then there exists a birational model of §
which is crossed by its Zariski boundary:.

In this article we fix instead a precise model (X', 3’), namely the one obtained by
solving the singularities of X and the singularities of the Zariski boundary 8,5 of
S, and we find geometric conditions (see 4.1) working on 9,5 which are equivalent
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to the basicness of the set S\ 8,5. Note that the assumptions on (X, 3) are not
enough to guarantee the existence of the “universal obstruction” of Andradas-Ruiz
if 5" is not basic. We get a similar condition to test whether a basic set S can be
described by exactly s inequalities (see 4.2).

Using these results and the fact that the resolution of singularities is algorithmic,
as proved in [BiMi] and [Vi], one can produce an algorithm to test basicness more in
the spirit of computational algebraic geometry. We shall deal with this in the last
section.

The decision procedure works over the field R, and Theorems 4.1 and 4.2 are
true only over archimedean real-closed fields, that is, subfields of R. This is because
there is no universal bound depending only on the complexity of the set S of the
degrees of the polynomials describing it as a basic set (see 2.3).

We wish to thank A. Prestel for several fruitful discussions and his kind help in
Section 2. We are also indebted with the referee who kindly suggested a clearer and
shorter argument for the main results of Section 4.

1 Recall on basicness

This section is devoted to a revision of some definitions and known results that we
shall use in the sequel. See [AnBréRz] for further reference.

Let X C R¥ be an irreducible real algebraic variety of dimension n. Denote by
R(X) the ring of regular functions on X. Let S C X be a semialgebraic set; it is
said to be basic open (resp. basic closed) if it has a description

S:{J:EX:fl(a:)>0,...,fr(:c)>0}
(resp.S:{xEX:fl(:c) >0,..., fu(z) >0}

for some fi,..., f, € R(X).
We shall say that S is s-basic open (resp. s-basic closed) if S is basic open (resp.
closed) and can be described with s regular functions.

A semialgebraic set S C X is generically basic (resp. generically s-basic) if there
exists a Zariski closed set C C X with dim(C) <n —1 such that S\ C is basic open
(resp. s-basic open).

Remember that for a s-basic open set we may assume s < dim(S), as proved by
Brocker and Scheiderer (see [Brd] and [Sch]).

Given a semialgebraic set S we define its Zariski boundary 0,5 as the Zariski
closure of the set 9(S) = 5\ Int(S) and the associated regularly open set S* as the
set Int(Int(S) N RegX). Note that if S is basic open, then SN 9,5 = §.

The real spectrum Spec, A of a commutative ring A with unit is the set of all pairs
o = (ps,<,), where p, is a prime ideal of 4 and <, is an ordering in its residue field
k(ps,). Thus, given f € A, we write f(e) <0, =0 o0r > 0 to mean that f modp, is
< U, =0 or > 0 respectively in the ordered field (k(ps), <,). Given o,7 € Spec, A4,
we say that o specializes to 7 (or equivalently 7 is a generization of o) and write
o — 7 if f(r) > 0 implies f(o) > 0.

The sets of the form C = {o : fi(e) > 0,..., fi(o) > 0} generate the so-called
Harrison topology of Spec, A and they are called basic sets.
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We will now outline some general facts about fans in the real spectrum of a field.
Let K be a real field, then Spec, K is the space of orderings of K. We can see a given
o € Spec,(K) as a signature o : K* — {—1,+1} which maps f € K* to 4+1 or —1
according to whether f is positive or negative with respect to the ordering . So we
multiply orderings as signatures. A fan of K is a finite set F C Spec,(K) such that
for any three orderings oy, 0y, 05 € F, their product o4 = oy -0y - 03 18 a well-defined
ordering again belonging to F. Subsets consisting of one or two orderings are trivial
fans. In general, a fan has 2% elements for some k > 0.

One can see Spec,(K) as an abstract space of orderings, by identifying orders as
characters on the group K*/5 K?. In this setting the group G associated to the fan
Fis given by (K*/" K2)/FL | where FL — {7lge K ando(g9)=1Vo e F}.

Given a fan F we can find a valuation ring V of K such that
a) each o; € F is compatible with V (i.e., the maximal ideal my of V is o;-convex).
b) F induces at most two orderings of the residue field ky of V.

In this situation we say that F trivializes along V' (see [AnBroRz)).
Fans can be used to characterize basicness in Spec, (K) (see [AnBréRz)).

Theorem 1.1. a) A constructible set C C Spec,(K) is basic if and only if for every
4-clement fan F, #(C N F) +#£3.

b) There are s elements Jio-- o, fs € K such that C = {fi>0,...,f > 0} +f
and only if for every fan F such that #(F) =2" and #(F N C) =1 we have | < s.

The tilde operator sends a semialgebraic set S C X to the constructible set
5C Spec,(R(X)) defined by any formula which also defines S. This map gives a
bijection that preserves inclusions and topological operations (see [BoCoRy]). The
satne symbol is used to define the map § — §n Spec, (K(X)).

The tilde operators are used to reformulate many problems concerning X in
terms of Spec, (R(X)) or Spec,(K(X)). For instance, Theorem 1.1 characterizes
the generic basicness. When dealing with basic open or closed sets the following
geometric criterion holds (see [AnBréRz)):

Theorem 1.2. A4 semialgebraic S C X is s-basic open (resp. closed) if and only
f SN0S =0 (resp. S is closed) and for every irreducible subset Y C X the
intersection SNY is generically s-basic in Y .

In fact, over the reals, in Theorem 1.2 one can reduce Y to be an irreducible
surface. This was proved in [AnRz3] by using the so called algebroid fans.

A birational model of S is a semialgebraic set T' in a real variety Y such that
fhere is a birational map ¢ : ¥ — X and T = ¢7'(S). Andradas and Ruiz also
found the following characterization which involves all birational models of § (see

[AnRz2)):

Theorem 1.3. A semialgebraic set S C X is not generically basic if and only if
there is a birational model T of § such that T is crossed by its generic Zariski
boundary, that is, the intersection of the Zariski closure of (T-\T*)n Reg(Y) with
I has codimension 1.



Basicness of semialgebraic sets 4

Remarks 1.4. 1) Let A be a local regular ring of dimension d with residue field &
and quotient field K. Take a system of parameters z1,...,z4 for A. Then, there
is a (discrete) valuation ring V of K dominating A with residue field k and value
group Z*. Moreover, fixing 7 € Spec, (k) and € = (eq,...,e4) € {+1, —1}% there is
an ordering o of KX which is compatible with V| induces 7 in Spec,k, and such that
o(x;) = e, for all j.

Indeed, if d = 1, A is a rank 1 discrete valuation ring and by the Baer-Krull
Theorem, (see [BoCoRy]) we are done. If d > 1, we consider the rank 1 discrete
valuation ring A(,,) whose residue field is the quotient field of the (d—1)-dimensional
regular local ring A/(z;), and by induction we are done.

2) With the previous notations, fix an ordering 7 of k and let F. be the fan of all
orderings of K compatible with V inducing 7 in Spec,k. Then, by the Baer-Krull
Theorem the elements of F. are completely determined by the signs that they assign
to the parameters z,. .., zy.

Each element o € F, will be called a generization of © to V (or to A) and F,
will be called the lifting of T to V.

2 Decidability of basicness

In this section we show that from a model theoretical point of view the basicness
problem is decidable. We give a “general recursive” algorithm based on the surface
criterium quoted after Theorem 1.2. References for the background needed for this
section may be found in [Ho] or [P1].

Since we are concerned now with algorithms, we assume throughout this section
that X, as well as S, are defined over the field of real algebraic numbers Ry. It is
clear from Tarski’s Transfer Principle (see [BoCoRy]) that all the semialgebraic sets
constructed in the sequel (like the irreducible components of the Zariski boundary
of §) can be defined over Ry as well.

We now state the main result of this section.

Theorem 2.1. The basicness of semialgebraic sets on an affine variety defined over

the field Ry is decidable.

Proof: Decidability of basicness in dimension 7 is proved by recursively listing, on
one hand, all pairs (X, S) where X is an Ro-variety of dimension n and S is a basic
open semialgebraic subset of X, and, on the other hand, those couples where S is
opent but not basic in X.

Thus, given a particular variety X, and an open semialgebraic subset Sy of X,
the decision about its basicness is reached by scrolling in turn both lists. The side
in which (Xo, Sp) appears will tell us whether So is basic in X, or not.

On the one hand, it is clear that we can recursively enumerate all the couples
(X,9), where X is an affine variety over Ry and S C X is a basic open semialgebraic
set over Rg. Omne way to do this is to delete from the list of all (n + 2)-tuples
(X, S5, p1,...,pn), where X is an affine variety, S is an open semialgebraic set and
P1s- -, Pn are polynomials over Ry, the ones such that {p1>0,...,p, >0} £85.
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Therefore it is enough to prove that the second list is also recursively enumer-
able. This second list is obtained from the list of all triples (X,5,Y), where Y C X
15 an irreducible surface and either S N 8,5 # 0 or SNY is not generically basic.
The first property is decidable by Tarski-Seidenberg principle, the second one can
be decided by applying the results in [AcBrVe] or [Ve] and using the fact that the
resolution of singularities is algorithmic (see [BiMi] or [Vi]). O

Remark. Note that here, in order to get countable lists, we use in a essential way
the fact that both the number of unions and the number of inequalities needed to
describe an open semialgebraic set S are bounded by a recursive function depending
only on the dimension (see [Bro)] and [Sch]).

Remark 2.2. We can use Theorem 1.3, instead of the surface criterium to prove
decidability since the birational models of X can also be recursively listed, as it is

done in [AcAnBr].

The following example is well known (see [AnBroRz] example VI 7.10) . Tt shows
that, despite we can decide basicness, there exists no uniform bound on the degrees
of the polynomials describing basic sets of a given complexity.

Example 2.3. Consider the family S of basic open sets in R? shown in Figure 1.
All boundaries of the sets in the family have the same complexity. For each n there
are polynomials fl("),fzn) such that S = {fl(") > O,fz(") > 0}. Nevertheless, the
degree of the polynomials fl("), fz(") goes to infinity when n goes to infinity.

S(n) S

Figure 1 Figure 2

Indeed, without loss of generality we may assume that the coefficients of (™ f2(")

have all absolute value < 1. Assume deg(fi(")) < d for each ¢,n and consider the
sequence of 2V(d)-tuples

C={@)y:i=1,2j= 1""’N(d)}neN’

where N(d) is the number of monomials of degree < d in two variables and {a,(’r;-)}

are the coefficients of fi("). Take a limit point ¢ of the sequence C'. We can identify
¢ with a couple (fy, f2) of polynomials of degree at most d. Then it is easy to prove
that the basic closed set {f1 >0, £, >0} is generically equal to the set § = |JS)
which is not generically basic (see Figure 2). Contradiction.
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3 Basicness and generic basicness

From ([AuBréRz), V 4) one gets the following proposition which relates basicness
and generic basicness. Let X be a compact irreducible real algebraic variety and
5 C X a semialgebraic set with dim(X) = dim(8) = n.

Proposition 3.1. 1) § s generically basic if and only if § \ (8,5 U Sing(X)) is

basic open.

2) S us generically s-basic if and only if S\ (8,5 U Sing(X)) is s-basic open.

Remark 3.2. We can not avoid to remove Sing(X) in the statement of Proposition
3.1. Indeed, consider an irreducible real algebraic set X of dimension d with a, “tail”
Y of lower dimension. Let be S =5ULS,, where SiCX \Y, S, is basic open and
S5 €Y is open but not generically basic. Then, § is generically basic, but \ 3,5
1s not basic open.

Corollary 3.3, Let X be g compact, irreducible real algebraic variety and let S C X
be a semialgebraic set with dim(S) = dim(X).

L) IfSN3,8 =0, then S is s-basic open if and only if S is generically s-basic
and S N Sing(X) is s-basic open.

2) If S is closed, then S is s-basic closed if and only if S s generically s-basic
and SN (8,5 U Sing(X)) is s-basic closed.

Proof : 1t follows from Proposition 3.1, Theorem 1.3 and the fact that basicness in

a reducible algebraic set X is equivalent to basicness in all irreducible component
of X. O

Example 3.4. This example shows that Corollary 3.3.2 can not be improved in
the sense that the hypothesis on S N 9,5 is not superfluous. Consider the closed
semialgebraic set S C R? given by

S:{xzO,yzO,zZO}U{—yZEO,ZSO}.

This set is not basic closed, since SN {y = 0} is not generically basic. But it is
generically basic.

4 A geometric criterion for basicness

Let X C R be an irreducible compact non-singular real algebraic variety of dimen-
sion n. Consider a semialgebraic set S € X with dim(S) = n. In the following an
irreducible component of the algebraic set 9,5* will be called a wall of S if it has
dimension n — 1. We assume in this section that all the walls are non-singular and
that their intersection is normal crossings (algebraically, we mean by this that the
regular functions f;;, g; describing S are all normal crossings).

In the previous situation we claim the following:
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Theorem 4.1. Assume that SN8,8 =0. Then S is not basic open if and only if
there is a wall W of S such that either

(i) dim (S*NW) = pn — 1,
or

(i) SOW is not generically basic in W.

Theorem 4.2. Let § be 4 generically basic semialgebraic set in X which is not
generically equal to X and such that SN8,5 =10. Then S is s-basic open if and
only for each wall W of S the set SNW s generically (s — 1)-basic in W.

birational model, obtained from S after we desingularize X and 9,5, is crossed by
1ts generic Zariski boundary. This is true for 2-dimensional semialgebraic sets (see
[AcBrVe]) and for many examples. But the following picture shows that this is not
always true.

The proof of Theorems 4.1, 4.2 is an easy consequence of the following Propo-
sition 4.4 which was kindly suggested by the referee. Firstly let us introduce some
notations.

Let F C Spec, K(X) be afan and Z C X be its center, that is Z is the zero set of
the ideal (mNR(X)) where m is the maximal ideal of the biggest valuation ring V of
K(X) such that F trivializes along V. So one has two orderings o, 8 € Spec, K (Z)
(possibly o = 3), such that every o € F' specializes either to o or to G.

Let W1,. ., W, be the walls of S which contain Z. Since they are normal cross-
ings, they correspond to regular paramethers Z1,...,%, of the regular local ring
R(X)z(z). Choose parameters z,y,..., xq, with d = dim X — dim Z, in order to

get a full system. If o # [ take a further element Y € R(X) such that its class in
K(Z) separates o and . Denote again by V be the valuation ring of K(Z), with
value group Z<¢, which dominates R(X)Z(Z). The lexicographic order of 74 depends
of course on the ordering of the parameters, but the following does not.
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Let F' be the pull back of the trivia] fan {a, 8} with respect to V and denote
by T” the set

T' = {o € Spec, K | o specializes either to « or to G}
Moreover for ¢; = +1 and ; = L,...,d + 1 we define
T'(zy, ... 1Eav1) = {o € T' | o(z)) =e;i=1,... ,dand o(y) = €dt1}

If « = 3 we omit the last condition and we forget y and £44;. Then one has the
following proposition.

Proposition 4.4. There s 4 subfan F” C F' and o natural number | such that for
any sequence €y,... €4.1 one has

#(FNT(e,... y€dv1)) = #(F” N T'(eq,. .. v€dy1)) - 2!

Proof: Let G be the group of F' that is G = (K(X)* /S K(X)?)/F™. So that ¢
Is an exponent two group generated by the classes ~1,77, . .. ' Td, §.

Let U be the subgroup of G giving the sign 1 to each element i F and let
F" = UL e the corresponding subfan of F’. So we have F#(F?) = %IG/UI By
definition each ¢ € G/U, g # +1, separates F' and consequently it separates F.
Therefore #(F) > #(F”), which means #(F)=2". #(F”) for a suitable [.

Now we prove, by induction on #(F”), that F” and [ are the subfan and the
lnteger we are looking for.

If we suppose #(F”) = 1, then G/U = {+1,-1}. Hence for every o € F we
have o(¢g) = F” (g) for all g € G. Moreover, assume

FﬂT/(EI,...,Ed.f_l) ?é @

Therefore, F” F T'(e1,...,e441) which implies the thesis.

Now assume that #(F”) > 1 and take 9 € G/U,g # +1. The fan F splits as
F=FUF, according to the sign of g, and correspondly F” splits as F” = FYUEy.
Then both Fy, F,” and Fy, By verify the hypothesis, hence the thesis by the induc-
tion hypothesis. So the thesis holds also for F, F”. a

Proof of Theorem 4.1
Proof : Assume that S is not basic open and let F' be a 4-element fan in Spec, K(X)
such that #(F N §) = 3. Take a,8,21,...,24,y as above. Then both « and
4 are specializations of some elements in S. Moreover, since you cannot leave S
without crossing some wall among Wiy,... W, if §nN T'(e1, ... eq11) # 0 we get
Tz, ... Edt1) C SNT

Choose F” as in Proposition 4.4 above. Thus, F has almost 4 elements and it is
compatible with some discrete valuation ring R(M)(,,), for some i = IL...,r. We
niay assume ; = 1.
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Let F™ be the induced fan i K(W;). Then we have two possibilities:
(i) Each ~ € F” generizes twice in F” | in which case dim(S*NW;) =n —1.

—————

(i) Each y € F” generizes once in F7, in which case #F° N5 N W, = 3.
Conversely, (i) implies that $* crosses its Zariski boundary, hence S is not basic
open. On the other hand, if (#4) holds, take a 4-elements fan Fy C Spec, K(W),

such that #£F, N (SN W) =3 and let F be its pull back with respect to the discrete
valuation ring R(M)I(W). Then, an easy computation shows that ' NS is not a
fan, hence S is not basic open. O

Proof of Theorem 4.2

Proof: We assume that there is a fan F C Spec, K(X) such that #(FNS)> o2
Then we choose F” as in Proposition 4.4, and the parameter z,, the valuation ring
Vo= (M)(s,) and the residue fan F” as in the proof of 4.1. Since S is basic open
any y € F” generizes uniquely to F”. Thus

——

#F NSAW) > 2.

Conversely, assume there is a wall W such that $N W is not generically s — ]

hasic and let F be a 2*-element fan in K(W) such that #(FNSn W) =1.
Consider the discrete valuation ring V = ’R(M)I(W) and the 2°t1_element fan F
of K(X) obtaining by lifting F to V.
Let o be the unique element in FnSy. Then, only one of its generizations may
belong to S, since S is basic open. So S is not s-basic. o

Remark 4.5. If we drop the hypothesis on 9,5 in Theorems 4.1 and 4.2, only one
implication is true. Namely:

1) Let X C RN be q compact real algebraic set and let S C X be a semialgebraic
set. If S is generically basic (resp. (s)-basic), then
(1) dim(S* N 0,5%) <n—1.
(1) For any wall W of S such that W Z Sing(X) the set SNW is generically
basic (resp. (s — 1)-basic) in W.

This is because, in the proof of the only if part of Theorems 4.1 and 4.2, we only
use the fact that the local ring of W is regular of dimension 1.

2) In the case of I-basic sets (the so called principal sets), the statement of
Theorem 4.2 becomes:

Let X T RN be o compact non-singular real algebraic set and jet SCXbea
semialgebraic set such that S N 0,8 =0. If S is generically basic, then S is

L-basic if and only if for any wall W of S the set SN W is generically equal
to W.

This is because S is I-basic open if and only if § and X \ S are generically basic.
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5 An algorithmic procedure

tained in Sections 3 and 4. The answer to the question whether S is bagic or not can
be given recursively, each time splitting the original problem into a finite number of
similar ones in one dimensjon less.

When X is non-singular and 0,5 is normal crossings, Theorems 4.1 and 4.9
reduce the problem to the same question for the sets § N W for each wall W of §.
For X and § arbitrary, we use Corollary 3.3 and the fact (proved by [BiMi] and
[Vi]) that the resolution of singularities is algorithmic.

Let X C RV bea compact irreducible real algebraic variety and S a semialgebraic

subset. The algorithm to test whether S is basic open (resp. closed) or not works
as follows:

I. Algorithm for generic basicness:
1. Desingularize X and put 0,5 in normal-crossings.
2. Replace X and § by their strict transforms.

3. Check whether § is generically basic as follows.

Build up a tree whose nodes are couples (Y,T) where V is a non-singular
compact variety and T is a closed semialgebraic set in ¥ with 9,T at normal-
crossings. The tree is constructed recursively in this way:

= Start with the node (X,9).

~ Givenanode (Y, T) with T #Y if dim(T*N§,T*) = dim(9,T*), then the
branch stops: otherwise, for each wall W of T add an edge from (Y,T)
to (W, TNW).

The length of each branch is less than or equal to n = dim(.5).

The algorithm runs over each branch of the tree in turn, Each branch stops
either when ¥ = T, in which case the algorithm goes to the next branch, or
when it arrives to a node (Y,T) with dim(7™* N 9,T) = dim(9,T™) (1e., a
universal obstruction for T'), in which case the algorithm stops and returns “S
Is not generically basic”.

The set S is generically basic if and only if no universal obstruction appears in
the trec. In this case, S is generically s-basic if and only if the longest branch
has exactly s + 1 nodes.

II. Algorithm for basicness:
1. Start with the couple (X,9).
2. For a given couple (Y, T) proceed as follows:

2.1. Verify, using I, whether T is generically basic,
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2.2, If so, verify if TN 0,T =0 (vesp. if T is closed).

2.3. If so, list the irreducible components Z of Sing(Y) (resp. of Sing(Y') U
0,T).

3. Repeat step 2 for all the new couples (Z,TN Z).

Since for each loop from 3 to 2 the dimension decreases and for dimension 1 the
problem has a trivial answer, the algorithm stops.

More precisely, the algorithm stops either when for a couple (Y, T) there is a
negative answer for either step 1 or step 2, or it has tested all couples (Y, T) till
dimension 1. Therefore, S is basic open (resp. basic closed) if and only if only
the last case occurs. In thig situation, we can compute the number of Inequalities
defining S as the maximum s such that T is generically s-basic in Y for any (Y, T)
appearing i the procedure.

In order to have a true algorithm we need to compute the following objects:

~ dimension of semialgebraic sets,

— Interiors and closures of semialgebraic sets,
~ Zariski boundary of semialgebraic sets,

— 1rreducible components of algebraic sets.

All of them are known to be computable, see for instance [He], [BoCoRy], [BeNe]
and [Ne].
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