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The Computation of Rational Homotopy Groups
Is #P-Hard

DAVID J. ANICK

Massachusetts Institute of Technology
Cambridge, Massachusetts

We give a measure of the computational complexity of homotopy groups.
Given a finite simply connected CW complex X, a common problem in al-
gebraic topology is to evaluate dim(nn(X) ¢ Q). This problem is shown
to belong to the class of #®-hard problems, which are believed to re-
quire more than polynomial time to compute deterministically. Computing
the Hilbert series of a graded algebra or the Poincaré series of a local
Artinian ring is also #®-hard.

Intended for topologists, the exposition is self-contained, assuming

no prior familiarity with theoretical computer science concepts.

1. HISTORICAL CONTEXT

Beginning with the earliest definitions of homotopy groups = () by
Cech [10] and Hurewicz [16], topologists have been interested in com-
puting or describing them. In [25] Serre recognized that the homotopy
groups of a finite 1-connected simplicial complex X would be finitely
generated abelian groups. By the known classification of such groups,

any n,(X) would have to have a simple description as

nn(X)=ZO~--oZ OZa @ - eZa i
— 1 m
r
Where a; | ag | --- | ap- This discovery meant that 7 (:) could be

be viewed as a function, with a finite description of X and an integer

n as inputs and with the finite list (r; 81, ag,..., ap) as output,
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( Find the Hilbert series of a 12-algebra
Find the Hilbert series of a finitely presented
connected graded ¢-algebra
Find the Poincaré series of a finite-dimensional
o] .
M basic local @-algebra
< & — < Determine dimg (H (§X;@)), where X is a simply-
& connected finite CW complex
. Evaluate dimQ(Trn(X)®Q) , where X is a simply-
g connected finite CW complex of dimension four
D Evaluate dimQ(TTn(X)QQ) , where X is a simply-
- \ connected finite CW complex
I
ViE 8
o §
= 2
%
v o
=R
g
8 o #P-complete problems
2 g__ * Compute the M-sequence of a vest
H
&3] 3
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0 0
a
4
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easier

Figure 1 Diagram showing a portion of the computational complexity
scale and the relative positions of three Turing equivalence classes.

The goal of this chapter is to locate the problem "compute rational ho-
motopy" and some related problems on this continuum.

Our results are summarized in Figure 1. WMore difficult problems
are placed higher on the scale, and Turing equivalent problems are
bracketed. Problems at a specific difficulty level are marked by filled
circles on the vertical axis. Classes of problems which encompass a

range along the continuum are exhibited as intervals.
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The purpose of Figure 1 is to give a visual overview of our results,
and some technical points were sacrificed for crispness. The figure may
be misleading in that the partial order iT is depicted as a linear order.
For instance, one might conclude from the figure that any problem un-
solvable in exponential time is #®-hard, but this has not been proved
(and is probably false). Nor have we proved that the three Turing
equivalence classes marked by filled circles must be actually distinct.

As to interpretation, bear in mind that the class #® -hard starts
near the bottom of Figure 1, even though this class is viewed by com-
puter scientists as being "very difficuit.” In other words, except for
"®," the section of the scale shown in Figure 1 actually starts far
above such familiar computer mainstays as "solve a linear system of
equations,”" "find the roots of a polynomial," or "factor the integer N."

There are no known algorithms which can evaluate a #®-hard prob-
lem in less than exponential time. Algorithms which require exponential
time are generally thought of as being beyond the scope of today's ma-
chinery to implement efficiently. Thus computing rational homotopy
groups and the other problems listed in Figure 1 may truly be described

as very complex problems.

3. THE CONNECTION WITH HILBERT SERIES

The computational complexity of rational homotopy groups can best be
discerned by studying certain closely related calculations which involve
graded algebras. In this section we shall explore this connection.
Finding the rational homotopy groups of a space is computationally
equivalent to evaluating something we will call "Tor-sequences." These
in turn contain as a subset the collection of "M-sequences." We close
with some interesting examples of M-sequences in order to illustrate how
complicated rational homotopy can be.

For the remainder of this chapter, a space will refer to a finite
simply connected CW complex whose 1-skeleton is trivial.

In studying the computational complexity of homotopy groups, a
certain technical sticking point arises immediately. As we have noted,
7.(+) may be viewed as a function whose inputs or arguments are an
integer n and a description of a space X. How, exactly, does one de-

scribe a space?
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One possible answer was adopted by Brown. He assumed that the
description of X would consist of a simplicial decomposition, i.e., a list
of the simplices for a simplicial complex X' having the same homotopy
type as X. Such a list, however, is extremely long for any space of
even moderate complexity. For example, several hundred simplices are

involved in the smallest such description of s? « s2,

Ideally, one
would like to describe a CW complex in such a way that the length of
the description is roughly comparable to the number of cells and/or the
complexity of the various attaching maps.

Fortunately, in the case of a rational homotopy, Quillen's Lie alge-
bra model (L X, dX) for a space X does provide such a description.
Any space X = * U(U?=1 emi) {assume my; > 2) can be specified up to ra-
tional homotopy type by giving a nondecreasing list (my,..., my) of
the degrees in which the cells occur followed by a description of the
differential dy. Since £X can be taken to be the free graded Lie Q-
algebra on generators {Xy,..., Xp}, where deg(x;) = my — 1, describ-
ing dy amounts to giving m homogeneous elements of £ X. The ith en-

try in this list should have degree m; — 2. Thus for rational homotopy

calculations the description of a space will consist of a list (my,..., my,)
of cell dimensions, followed by a list (dX(xl)’ RN dX(xh)) of bounda-

ries. For example, when S2 x S2 has its usual CW decomposition its

description could be
(2, 2, 4); (0, 0, [x4, X51) (2]

In Section 5 we specify a precise form for this description.

Three interrelated points need to be made. First, a valid descrip-
tion of a space is always obtainable from a simplicial decomposition, so
we are justified in assuming that the description is available as input.
Second, we shall want the input to be comparable in length to the
"size" or "complexity" of X, and for this the above notion of descrip-
tion works well. Third, one can easily N-encode a string of symbols
such as (2) into a natural number whose length (when written, say, in
decimal) is bounded by a constant multiple of the total number of sym-

bols in the original description.
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We will henceforth view the problem of computing rational homotopy
as the problem of using a valid Quillen model (equivalently, a valid de-

scription or N-encoded description) and an integer n to generate the

integer.
rp(X) = dim(rn L (X) e Q) (3]

The theorem which makes this feasible and which motivates the dimen-

sion shift in (3) is

Theorem 3.1 (Quillen)

If (£X, dX) is the Quillen model for a space X, then d)z( = 0 and

Hq(-CX, dg) = “q(QX) s Q
Equivalently,

nq+1(X) e Q = ker(d /im(d

X (@)™ g1y

enclosed subscripts denoting graded components, or

r (X) = dim(ker(dx)(n)) - dim(im(dx)(n+1)) [4]

We shall see that it is easier to work with the Betti sequence of QX
than with {rn(X)}. The Betti sequence of 0X is the sequence {b,(2X)},

where bn(QX) = dim(Hn(QX; Q)). By [22] these sequences are related
by the formuila

® L 2j-1, "2j-1
biZ1 = H Qﬂ__lr__ (5]
i=0 =1 1 - ZZ]) 2j

where b; = L;(0X) and r; = r.(X). The left-hand side of (5) is called
i i j j

the Poincaré series of 2X and will be denoted by Pox(2).

By formula (5), knowing either one of {bi}iin or {rj}jgn enables
us to compute the other. Furthermore, the computation involved is a
one which computer scientists would think of as being executable

"quickly.” "Fast" calculations are those which require only a polyno-

mial number of steps. Let us see why this computation qualifies.
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To obtain {bj}j.q when one has the list {r;};.,, one can view (5)

+1

as a congruence modulo zD To evaluate the right-hand side of (5)

requires that we multiply together the polynomials

r - r r . —r
4z L, Qealete o2 2 a4 S arate e a8

(6]

where "z'" is used loosely to denote "stop after z"." To multiply to-
gether two polynomials of degree n (modulo zn+1) takes at most 1 + 2 +
- + (n + 1) multiplications and 0 + 1 + --- + (n) additions, which we
summarize as (n + 1)2 operations. To raise anything to the power r
requires at most 2-logy(r) multiplications; to see this, write r in binary
and use the trick that x -+ x2 - x> oo s sz takes only m multipli-

cations. Thus at most
(n + 1)% (2) [log, (r)) + log, (r,) + =++ + log, (r,)]

operations are needed in order to evaluate the entries of the list (6),
and at most (n + 1)2(n — 1) further operations are involved in forming
their product (modulo 20ty

Finally, one sees easily for each space X that {rj(X)} grows at
most exponentially with j, that is, logz(rj) < Kj for some fixed K. [An
upper bound for K is logy (m) if X has m cells.] Evaluating the entire

right-hand side of (5) takes at most

2
m+ 12 =1+ (n+ 12 (2)K<%)

operations. Since this is a polynomial in n, it justifies the description
of this calculation as "fast."

Likewise, one can "quickly" obtain {r]-}]« <n from knowledge of
{bi}ign‘ The problem of computing {r]- }]- <n and the problem of com-
puting (b, }j., are viewed as being "equivalent" to one another. We
postpone the—precise definition of this equivalence until Section 5. For
the time being, we hope the reader is convinced that it suffices to

study the complexity of {b,(0X)} in order to understand the problem
of computing {rn(X)}.
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For the purposes of implementation, there are more effi-
to multiply two polynomials than the naive way analyzed

{24, chapters 4 and 36] for an excellent discussion of these

P ' ne {b;(aX)};.,, is the same as to determine the Poincaré
K modulo z™*1. This in turn is equivalent to evaluating the

ents of the Hilbert series of a certain graded algebra.

Q-algebra A. Such an object always has a presentation as
<x1,...,xg>/<a1,...,ar> (7]

N ,xg > is the free associative Q-algebra on SSTERE ,xg},
N-graded by assigning a positive integral degree [%; | to each
potation <ay,... »0p> designates the two-sided ideal of Q <Xy,

*

iitenerated by the finite set of homogeneous relations {aq,-.

<u.1,...,ar> is homogeneously generated, the gquotient alge-

rits a gradation from Q <xq,... ,xg> and we may write A =

?l‘he Hilbert sequence of A is the sequence {hj(A)}, where
'-dimQ(A]-), and the Hilbert series is Hp(z) = ;’:Oh]-(A)zJ.

-two _algebra (or 12-algebra) is a graded algebra A which has
tation (7) such that each |xi( = 1 and each

lo | = 2. A 123-
8 12-algebra which has global dimension three. A 12H-alge-
R, 12-algebra which is also a Hopf algebra. This is equivalent to

ﬁon that each o be a Q-linear combination of (xix]- + x]-xi)'s

Y8,  These were called Roos algebras in [3]. Lastly, a 123H-
il a 12H-algebra of global dimension three.

connection between graded algebras and arbitrary spaces is

2.[6). By Theorem 1 of {6] there exists for every space X a

bra A such that H,p(z) and Pox(z) are rationally related.

Means that there exist polynomials p;(z) € Z{z]}, 1 <i < 4, such
P4 # Pyp; and

_ Py(DH, (2) + Py(2)
P3(2)H, (2) + p,(2) (8]
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Conversely, for any 12-algebra A, there exists a space X of dimension
four for which (8) holds.

Formula (8) implies that the problem of computing ?:A sxv:Ms and
the problem of determining QJQC J.MS are equivalent, in the mmSmm.
that one could obtain either list from the other after only gq(n) addi-
tional operations for some fixed polynomial q. To see this, note that
in passing from H, to Poy the only possible trouble spot is the inver-
sion of vuANvm>ANv + HKANV. By the proof of Theorem 1 of {6], how-
ever, we can assume that bwﬁvmmﬁsv + UoANv = 1(mod z) and we may

write

py(2)H,(2) + py(z) = 1 = z-u(z),  u(2) € Z[z]

Then AH _ NCAvalH =1 + NCANV + NNCANVN + -+ and

n+l

(1 = zax)) "t = 6"(1) (mod 2")

where 6 is the endomorphism of Z[z] defined by 6(x) = 1 + zu(z)x.
Since evaluating 8(x) (mod Nd.;v takes up to (n + :w operations, we
have inverted Uuﬁsvm\wiv + G»ANV in only n(n + :N operations.

Thus the general problem of computing ?.H.CC :M: is equivalent to
the problem of finding ﬁ:u.;'v:ms for a certain 123H-algebra A associ-
ated to X.

Remark. In practice, there are more efficient ways to take the

quotient of two power series. See, for example, Sections 4.6.1 and 4.7

of [18].

_im_ perform just one more reduction. Because gl.dim(A) = 3, its
Hilbert series can be expressed neatly in terms of another mmiwwm.
which we will call its "Tor-series." Specifically, note that HOdw (Q, Q)
is a graded Q-module because A is graded, and let cq © oDTPV =

EEAAO&? @+waﬁ‘ Q)). The Tor-sequence of A is ﬁonvnwo and the Tor-
A =37 S bal dimension
series of A is H>ANV = a=0 o&NQ. Because A has globa
three,
- -4 (9]
:.P:v 1. 1 —gz+rz’ — Z H.PANV

Here g and r count the numbers of generators and relations in a mim-

mal presentation (7) for A.
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On the basis of the previous remarks about multiplying and invert-
ing power series, we assert without further proof that computing
?.MCCVMM: is equivalent to computing the Tor-sequence ﬁnavnMslw of
a certain 123H-algebra A associated to X.

We have gotten rather far afield from rational homotopy groups, but
Tor-sequences are a good place to stop. Tor-sequences capture what
is intrinsically complicated about rational homotopy but express that in-
tricacy in more accessible algebraic or combinatorial terms. A further
advantage of Tor-sequences is that we may more readily construct bi-
zarre or amusing examples to illustrate their diversity. Lastly, the
class contains a special subset, to be called "M-sequences," which is
natural in the following sense. The general problem of "compute an M-
sequence” is #®-complete, an important computer science concept.

To summarize what we have shown so far, we have

Proposition 3.2

For every space X there exists an associated 123H-algebra A with the
following property. Given the first n terms of any one of the following
sequences, one can with t(n) additional operations compute the first n

terms of any other sequence, where 1(n) is a polynomial in n:

The rational homotopy ranks J.CC = &E?THCC e Q)
The Betti sequence UMA axX) = &_z:rgxw Q)
The Hilbert sequence :H.QC = Q::TJ.V

LN C B S

The Tor-sequence ¢j(A) = &SAHE.% wiﬁa‘ Q))

Conversely, given any 123-algebra A, there exists a space X with

dim(X) = 4 for which the same conclusion holds.

We will now jump right in with the definition of an M-sequence.
For motivation, the reader is welcome to glance ahead to Theorem 3.4.
Definition 3.3

A vector evaluated after a sequence of transformations, henceforth

vest, is a four-tuple (d, Voo T, S) as follows. The first entry d is
any positive integer, and Vg is any vector, called the initial vector,

in éa. The third entry T denotes a list %_ .....HB of dxd matrices
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over Q viewed as linear transformations on Da. and S is any hxd ma-
trix over Q. Given a vest (d, Vg, T, S) and a length n sequence of
indices o = Sp.....msv having 1 < J. <m = #(T) define vg*o to be the

vector

-_ v Q
40* o = .le H-m ‘H‘m AdOv € @
n 2 1
Let My, = {o = (g5 »ip) [ S(vg*0) = 0} and let e = #(My). The M-

sequence for (d, v, T, 8) is {eglns0 and its M-series is the formal

power series M(z) = Muo msmz. An arbitrary formal power series M(z)

is an M-series if and only if it equals the M-series of some vest.

Note that a vest can be specified by listing an integer d, d ration-
al numbers, an integer m, Bam more rational numbers, and the integer
h followed by hd rationals. Note that the M-sequence is not affected
if vg or S or any T; is multiplied by a nonzero scalar, so no harm is
done by clearing denominators and assuming that all entries are inte-
gers. A vest can therefore be thought of as being specified by a list
of integers, the length of the list being 1 +d + 1 + md? + 1 + hd.

The motivation for considering Definition 3.3 lies in the following

theorem, which translates Theorem 1.3 of [3] into the language of that

definition.

Theorem 3.4

Let (d, vg, T, S) be a vest and let M(z) be its M-series. Then there
exists a 123H-algebra A, with g = 2m + d + h + 3 generators and r =
(m+ 1)(m+d+h+2)+1 relations, whose Tor-sequence equals M(z).

In other words, every M-sequence is a Tor-sequence.

Since every M-sequence is a Tor-sequence, Tor-sequences must be
at least as difficult to compute, in general, as M-sequences. Since
Tor-sequences are comparable in computational complexity to rational
homotopy groups, rational homotopy is at least as hard to calculate as
M-sequences. We shall see in the next section that general M-sequences
are as hard as or harder to compute than any problem belonging to a
large class called #¢®. The remainder of this section is devoted to some

axamples of M-sequences which we hope will illustrate how wide a class
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of functions they encompass. It can be skipped by the reader without

loss of continuity.

Theorem 3.5

Fix positive integers m and h. Let @ denote the m-tuple ﬁmw a e
oo 8y

N i i
For 1 <i < h let mmg.nv be a Q-linear combination of expres-

sions of the form

cn Ta Al [10]

Srmdmom - {0 .
@ {0} and au € N. Let wf....w.: e N — {0,1} be arbi-

trary and put

h
1 = = m
n MDS (..., ) € N _mis.pvucmsgommu. Amw

for 1 <j < mj}
Then the li inaliti i
e list of cardinalities A*Zzinwo is an M-sequence.
The proof is postponed until after two motivating examples are
given.
Example 3.6. The sequence e = {(3/2)1], brackets denoting the
greatest integer function, is an M-sequence.

Proof. Consider the single equation

_ N
E(a,, a,) = 2 :J+:+mm|w=uo {111

and put By = 2, By = 3. Nonnegative integral solutions to (11) which

satisfy the bounds 0 < ap < 21 and 0 <ag < 3" are in one-to-one cor-

respondence with

fag e Nl2%a, + 1) < 3™

This set has cardinality en-
Example 3.7. The sequence {e,}, where e, equals the nth digit in
the decimal representation of v2 , is an M-sequence

Proof. Consider the system of h = 4 equations:
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- 2 — n o_
mH (n,@3) = :omH + mmv + as 2(100) " =0

+ 12 —a, = 200000" = 0

1]

mmAS,QV :owH + a 4

2

mwA:.Qv |mw+mmlwo+H:o

maﬁd.gvumm+mqlww+w 0

and seek simultaneous solutions subject to the bounds By = By = 100,
B, = By = Bg = Bg = By = 10.
Putting x = 10a; + a9, the first two equations say that

2 < 200" < (x + 1)?

so any solution has x = {10 v21. The third equation assures us that

0 < ag < 10, which forces ay to equal the last decimal digit of x; clear-
ly this digit is e. So far, there is a unique solution for (a;, a9, a3,
aq» wwv. The fourth equation permits the total number of simultaneous
solutions for @ to equal ag = €. Thus #(1,,) = ey, as desired.

Proof of Theorem 3.5. Given a system of expressions ﬁmu.:rnw )}

in which each mmﬁf @) is assumed to be a linear combination of terms

(10), we want to construct a vest (8, Vg, T, S) whose M-sequence

measures the number of suitably bounded solutions to "E(n, @) = 0."

We will do this by letting T consist of ByBg---Bp, linear transforma-

tions denoted T,, where A runs through the set of m-tuples

- - m
A= (A= CT:.;_:V e N |0 < J. < m_;

We set up a bijection § between the set Al of length n sequences o =

(A(1),...,x(n)) and the set of m-tuples

n

A (n) = (@ = (a,...,8) € za_ommu. < BY)

in the following manner. The (n — i)th digit, in base B:, of w_. will be

the jth entry of the m-tuple A(i). The m-tuple @ obtained in this way

from a sequence o € A" will be denoted G(a).
Let Ly(n, @),...,ly(n, Q) be a complete list of all the terms (10)
which appear in any of the Ei{(n,@)'s. For 1 < j <t we claim the ex-

istence of a vector space Vi and a v; € V;, together with an action of
J o+ o
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each T, on <u.. such that for any o = (A(1),...,A(n)) € A" the first

component of the vector v, * :
Granting this claim, bw: M\mW:m“m.ﬁ buawammnﬁo,wv .|
Then each E;(n, g (o)) equals a m:mmﬂ.pooh.:v_ .o ) M<T.....<L L
ination of certain compo-
nents of Vg *o. The matrix S may be chosen so that the inner product

of the ith row of S with Vg * 0 equals mmﬁrm (0)). Then
S(vy*0o) = E(n, G (o))

. h
in Q7. As o runs through AR, G (o) runs through & (n) exactly once.

Thus x:sv = #{o _ mA<o*ov = 0}, proving ;:s: to be the M-sequence
for the vest (dim(V), vgs T, S).

We will prove the claim by induction on d = dg +dy + - +d
. . » :u
where in keeping with (10) we write bu.ﬁ:.nv = o::QomHmH...m dm 1f
d=0thendy,=dy = - = = Ty
0 1 QS = 0 and fA:.Qv = ¢, s0 we may take

V. = i .=
i Q with vj 1 and take every T, to be multiplication by c.
Assuming the claim has been proved for exponent sums less than d
suppose that dg + td,=d>0. For )= :T...;Ev € Aand Q@ =

Af....,msv € « (n), let @ « A denote

Qx X = (B +
(Bya; + 4, Bya, + AgseresBra 424 )

The binomial formula applied to bHA: + 1,Q@ « 1) shows

d d

L(n + - L. m
(n+ 1,8 %)) (cBy B vr_.A:,Qv+m_X3_QV

)
where E} i i inati
mu (n,@®) is a linear combination of expressions of the form (10)
whose exponent sums are smaller than d. By our inductive hypothesis
there exist : ; i i ,
S a vector space <u. on which transformations %_y, act and an

initial vector <w for which

w_:fuf; = ﬂ?.m::

for some row vector S! J. = /o wi
oS Let f. V] f. with

I let 4,\.) be the matrix
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1]
0 %v,
4 dm i i hows that the first com-
where ¢y = cBy By An induction on n s M o e
is i . com
ponent of <H. * o is indeed HJA:. G (o)) for 0 € A is P
proof. )
Remark. For further interesting examples of M-sequences the rea

er is referred to Corollary 2.5 of [3].

4. COMPUTING M-SEQUENCES IS § ®-COMPLETE

Section 4 is the technical core of the chapter, and it contains two major
results. We first review the definitions of the terms @, #@, and #®-

i various
complete. These are classes of problems which are solvable by

sorts of Turing machines. The first major result, Theorem 4.5, asserts
that computing the M-sequence of a vest (see Definition 3.3) is x%lwoan
plete. We indicate precisely how a vest should be N-encoded for this

result to be true. The second major theorem, Theorem 4.8, proves a

wide class of functions to be M-sequences. Membership in this class is
contingent on computability by a K +(n)f-time algorithm, a criterion sat-
isfied by many familiar functions.

We begin by reviewing the concept of a Turing machine, for which

there are several equivalent formulations. We adopt a variation on the

description found in [26, p. vii], which is recalled next.

Let there be given a tape of infinite length [in both directions]
which is divided into squares and a finite list of symbols which may

be written on these squares. There is an additional mechanism, the

head, which may read the symbol on a square, replace it by anoth-
er or the same symbol and move to the adjoining square to the left
or right. This is accomplished as follows: At any given time the
head is in one of a finite number of internal states. When it reads
a square it prints a new symbol, goes into a new internal state and
moves to the right or left depending on the original internal state
and the symbol read. Thus a Turing machine is described by a
finite list of quintuplets such as 3,4,3,6,R which means: If the

machine is in the third internal state and reads the fourth symboi

Homotopy Group Computation Is #®-Hard 17

it prints the third symbol, goes into the sixth internal state and

moves to the right on the tape.

Let U denote the (finite) set of internal states. We specify an ini-
tial state u* € U and two possible "terminal states” u, and uy. Let U=
U - {ug,uy} consist of the nonterminal states.

The initial configuration of the tape is assumed to consist of a sin-
gle contiguous finite segment of nonblank squares with the head initial-
ly positioned immediately to the right of the rightmost nonblank symbol.
This contiguous segment is the input I, whose length, denoted #(1), is
the number of nonblank squares. Without loss of generality we identify
the set of tape symbols with [B] = {0,1,2,...,B — 1} for some integer
B > 4, with "zero" being viewed as the "blank." The next B, symbols
(2 < By < B — 2) are viewed as the digits 0 through By — 1 in some
base By, and among the remaining symbols we reserve one, called
"semicolon," to delimit various segments of the input.

As noted above, the Turing machine itself consists of a collection 1
of quintuplets,

rcu x [B} x [B] x U x {+1,-1}

where we are assuming that computation ceases if ever the machine at-
tains a terminal state. Thus T may be viewed as a relation between

the sets U x [B] and {B] x U x {#1}. In an ordinary deterministic

Turing machine, the relation T is a function, and each configuration in
U x [B] leads to exactly one successive configuration (as indicated by
an element of {B] x U x {#1}). Deterministic machines embody the usu-
al concept of predictable, reproducible, serial calculation. For a given
input there is just one possible flow path through the various configu-
rations.

On the other hand, a nondeterministic Turing machine is one for

which the set T need not be a function. We do assume, for each
(u,b) € 0 [B], that there is at least one (b'yu',2') € [B] ~ U «
{#1} such that (u,b,b',u',2') € r. For each input 1 there could be many
possible flow paths which a nondeterministic machine could follow, and
some paths may end in each of the two terminal states. Nondeterminis-

tic machines are different from but closely related to probabilistic ma-
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chines, which are computers that can incorporate the output of a ran-
3

dom number generator into their branching decisions.

Definition 4.1

A function f: Dom(f) » N, Dom(f) € N, is in the class & if and only
if there exists a deterministic Turing machine, together with a polyno-
mial 1(x), with the following property. Whenever the input is N €
Dom(f), the Turing machine will attain the terminal state ug after at
most t(2(N)) steps, and before attaining the state ug the output f(N)

will be printed on the tape. Without loss of generality we assume that

the machine terminates only after repositioning the head to the right of

the rightmost nonblank square.

Example. The problem of multiplying two numbers is in ®. Given

Ny and Ny, we may N-encode the pair AZH.Z% as

L= (Np 10y M) (10

where sz:ov denotes the base 10 representation of the number N.
(For convenience we have taken By = 10.) By way of illustration, no-

i = 5.4 = 20 individual
tice that to multiply Ny = 11374 by N, = 1288 takes

multiplication operations followed by a comparable number of additions.

The total number of steps needed is on the order of 2(N¢) - L(Ng) <

2
i:w.m:_mww. This example illustrates that, when an n-tuple of inputs
(Nys. - Np) is N-encoded as I = AZHVCOVZZMVQOVT Zzzvﬁov .»Tw:
a machine runs in t(2(I)) time for a polynomial (%) if and only if it
runs in i:ztf...izs: time for MoEm Uon:o::m_ of n <m:..~mEmm u.
What if an algorithm requires, say, 2H . iZwv steps? We wish to ex-
press the polynomial dependence on Ny (not :ZHC and izmv“ .%o Q.o
this, we can redefine the problem so that the input consists of ZH writ-

ten in unary, followed by a semicolon and Azmv:ov‘ By "unary" we
mean a string of Ny l's to represent the number Ny, which we denote

by (N{I(q1y- With this redefinition we would have

T NPy (N oy
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and consequently 2(I) = p:ZHv:vv +1+ n:ZN:HSu = ZH +1 + :va.
hence pACw bounds the run time of Zw 22mvw. Thus the problem "com-
pute QZTZNV from the input I = AZHXC“ Azmv:ov: belongs to ® , even
though the problem "compute »AZTZNV from the input I = AZHVCS“
Ava:ov: does not. The only thing that has changed is the N-encod-
ing used for the input. Because of this we will be very careful to spell

out the N-encodings used when setting up a problem.

Definition 4.2

A function f: Dom(f) > N, Dom(f) < N, belongs to the class #® if and
only if there exists a nondeterministic Turing machine, together with a
polynomial t(x), with the following property. Whenever the input is

N € Dom(f), each of the possible paths taken by the machine reaches a
terminal state within t(2(N)) steps. The number of possible paths
which lead to the terminal state u; (as opposed to uy) equals f(N).
Paths leading to the state u; are called accepting paths.

Remark. It is important that 1(x) be universal with respect to the
set of paths. That is, there is a single polynomial bound t(2(N)) such
that any possible path uses fewer than this many steps.

Example. The function d, where d(N) denotes the number of posi-
tive integral divisors of N, belongs to #®. To see this, consider the
mozos.Em three-stage "nondeterministic program." First, write down
any two numbers ZH and Zm of length <¢(N). To do this, the machine
writes the first decimal digit, then the second decimal digit, and so on.
Nondeterministic branching is involved at this point because, after
writing a digit and comparing the current length with ¢(N) and reposi-
tioning the head, it may enter any of By = 10 states to get ready for
the next digit. At the second stage multiply N; and Ny to obtain a re-
sult Ng. Lastly, compare N and Ng; if equal enter state uy, if unequal
enter state ug.

The ith stage of this program clearly takes at most 1;(2{N)) steps
for some polynomials 1j, so all paths terminate within T(L(N)) time if
T = 11 ¥t 19+ 14 Furthermore, paths are classified by the pair (N,
Ny) written during stage one, since the remainder of the program flows

deterministically. The number of paths leading to state Uy equals the
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= f ac-
number of pairs AZTZNV such that NyNgy = N. Thus the number o

cepting paths equals d(N), as needed in Defintion 4.2.

Note. In the above argument it is implicitly assumed that "pairs of

numbers written down during stage one" are in one-to-one correspond-
ence with pairs of numbers AZH.ZNV whose product Zw is a candidate
to equal N. This is correct except that leading zeros can create a
problem; for instance, when N = 30 the two pairs (6,5) and (06,05)
should not both be allowed. Stage one of the program must either for-
bid leading zeros or else require that Ny and Ny have length equal to

exactly 2(N). This issue recurs when we are modeling a Turing ma-

chine via a vest in the proof of Theorem 4.5. In that proof we adopt
the approach of insisting that the lead digit be nonzero.

Another example of a problem in # ® is the computation of the per-

manent of a square matrix whose entries lie in N [28]. The #@ problem

with greatest relevance to the computational complexity of rational ho-

motopy is described next.

Theorem 4.3

Computing the M-sequence of a vest is in #@. Specifically, let f ¢ N x

; 2
N be the function which takes as input the list of 1 +d + 1 + md® +
1 + hd integers (each written in decimal) describing a vest (d,v,,T,S)
followed by an integer n written in unary. The value of the function
Then f belongs to

is the nth entry in the M-sequence of Tfed.q..mu.
#0.
By the comments preceding Theorem 3.4, we know that a

Since these integers may

Remark.
vest may be specified by a list of integers.
be positive or negative or zero, however, it is useful to assume that a
minus sign is included in the symbol set [B] available to our Turing
machine.

Proof of Theorem 4.3. Consider the following program for a non-

By successively writing down its decimal

deterministic Turing machine.

digits choose any index i satisfying 1 < i < m. Then, (deterministical-
> T:vy.

ly) compute Tyvy and replace the vector vg by the new value T;vy

Then (deterministically) com-

Repeat these two steps exactly n times.
hooaf it s

pute Sv, and compare the result with the zero vector in Z

zern, enter state nys ntherwise, enter state ugy.
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The only nondeterministic part of the program concerns choosing
the various indices, which we call iy through _.:. Permissible flow paths
correspond to n-tuples ¢ = :H.Z.;dv. A path ends in state uy if and
only if it corresponds to a o satisfying S(vg*o) = 0. Thus the number
of accepting paths equals €, the nth entry of the M-sequence for (d,
vy, T,S).

It remains to find a polynomial 1 such that ©(2(I)) bounds the run
time regardless of the path taken. Let q denote the maximum absolute
value of the inputs which are encoded in decimal. By induction on s
the entries of the vector A.Eu. cee _H.szov are bounded in absolute value
by m_.-unu.. During the jth pass through the loop we choose and per-
haps copy one of m matrices, introducing bookkeeping on the order of
xi:ami: steps. We then multiply a d x d matrix, each of whose en-
tries is bounded by q, by a d x 1 vector, each of whose entries is
bounded by d"q™. This requires d2 multiplications and about d2 addi-
tions, each of which needs at most Kq log(d%q™) = wms log(dq) steps.
Each pass through the loop uses on the order of xHEQm:C + xw:aw
log(dq) steps, so the loop takes NHEQmsis + xw:maw log(dq) steps.
The final stage of the program, namely multiplication by S and compar-
ison with zero, requires another xawas log(dqg) steps, so everything is
certainly finished in wwaawsm:v + xm:aﬁza + h)log(dq) steps. But
notice that the numbers m, d, and h are all smaller than £(I1) because
the input contains, if nothing else, 2 + d + md? + dh semicolons or separa-
tors. The number n is smaller than ¢(I) because n is written in unary,
and log(q) < ¢(I) because q is written in decimal. Thus all paths ter-
minate in K - m:vw steps, as desired.

The function f described in Theorem 4.3 is actually a very special
kind of # ® problem. It is a "universal example" for the class # ® in the
sense that any g € #® can be factored through f, the other factor be-
longing to the class ® This property, called "#®-completeness,” pro-
vides a kind of lower bound on the computational complexity of f. A

precise definition follows.

Definition 4.4

Let f: Dom(f) » N, Dom(f) < N, be any function. The function fis 4@~

complete if f € ¥® and, for any g € # &, there exists a function emm,u
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® such that, whenever N € Dom(g), then emﬁzv € Dom(f) and
flog(N)) = g(N).

The function em occurring in Definition 4.4 is called a "polynomial
time many-one reduction," a phrase which happily we will use only once
again. One may think of it as a preprocessor which quickly transforms
or translates (in the sense of translating a language) the original input

N into an I = emﬁzv which is suitable for use by f. The point is that
any g € #@ can, modulo a "fast" translation, be viewed as a special

case of f. In other words, a #®-complete function f is so powerful that

it already encompasses, in thinly disguised form, every # @ problem.
On top of that, it is itself in #&! |
Remarkably, the class #® does contain universal examples of this i

type. The first example to be discovered was the problem of computing
the permanent of a matrix [28]. We claim next that the problem of com-

puting an M-sequence also satisfies Definition 4.4.

Theorem 4.5

Computing the M-sequence of a vest is #®-complete. Specifically, the

function f described in the statement of Theorem 4.3 is #®-complete.

Proof. Theorem 4.3 asserts that this f is in #®, so it remains only

to verify the universal property. Let g:Dom(g) > N belong to .

We must construct em € ® such that g = (fo emv_UoBAmv.
We really have very little to work with. The function g belongs to

#®. Therefore there exists a nondeterministic Turing machine which,

when given N Dom(g) as input, has all paths ﬁmEa:m.:m in 1(2(N))

steps, while the number of paths terminating in state uy equals g(N).

Let U, [B], T denote respectively the set of states, the symbol set,

and the coliection of transition quintuples for this Turing machine.
Here's the key idea. We will model the Turing machine (U, B}, I)

y a vest. The list of successive states experienced by the Turing ma-

b . F 4}
y a v

chine will correspond to a sequence o of linear transformations for the

vest. A sequence o which either (i) corresponds to a flow path which

i i i th (i.e.
terminates in state uy or (i) corresponds to an invalid flow pa ( ,

some transitions not in ') will result in mA<:*av being nonzero. On

2]

H e o o P which utilize
the other hand, a sequence o which ends in state uy and which utiliz
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only valid transitions to get there will lead to m?o* o) being zero.
Thus the M-sequence entry e, will be counting the number of valid
paths ending in Uy, a number which equals g(N).

The input I to the function f consists of a vest description along
with a unary integer n. This N-encoded I is to be the output of the
preprocessor em. As it turns out, we may always take d = 16, and Vo
has fixed components except for two entries which equal N and N2, So
far, computing and writing down this much of the input takes xH +
Kg - pAva time. The remainder of the vest description depends solely
on g, so the algorithm for em may "memorize" it and write it down in a
constant number K3 of steps. Lastly, the argument n may be taken to
be any integer greater than T(2(N)) « (t(2(N)) + 2(N) +1). To com-
pute this number and to write it down in unary also takes a polynomial
in ¢(N) steps. Thus em runs in polynomial time.

We will now describe explicitly how a vest can model the nondeter-
ministic Turing machine (U,[B],r) with input N, so that the M-sequence
entry e, equals g(N) when n >> 0. As noted above, the dimension d
of the vector space involved in the vest will always be d = 16. The
number m of transformations will be #(T) = #(r) + 1 + 4B. And h will
equal 1.

To describe the m transformations it is useful to borrow from com-
puter science the concept of "registers." A register is a dedicated,
easily accessed, named computer memory location with enough space to
store a single integer. FEach of the 16 coordinates of the vector v, be-
fore and after applying the various transformations, will be thought of
as a register. A list of these registers and their purposes is given in
Figure 2; we elaborate on this outline in the text as well. For the time
being the reader should ignore the rows and columns of Figure 2 which
are marked with a superscript "a."

The first two registers are called "1" and PD (for path detector).
The register denoted "1" always contains the numerical value 1, and
each linear transformation is to leave this component of vy unchanged.

The initial value of PD is zero. At any given moment, the path detec-
tor measures whether or not the sequence of transformations applied so
far represents a valid flow path according to the Turing machine's tran-

sition quintuples ©
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REGISTER
NAME

INITIAL VALUES:
COMPONENTS OF

(a) o,o

DESCRIPTION OR PURPOSE

1

Always contains the numerical value 1

PD

Path Detector: remains zero as long as a sequence of trans-
formations models a valid flow through the Turing machine,

otherwise becomes positive

Describes tape contents to the right of the head, viewed as

a base B integer written in reverse

Awuv = vam

[

4

<

Describes tape contents to the left of the head, viewed as

a base B integer

w?d) = w?

Describes the tape symbol directly under the head

w = w?

Lo B 1= == [
[¥]

(S {o T (o 1

LU (e I (o (=)

Contains the code for the current state of the Turing machine

(note: v(u*) = 2)

Ao}

vl = ?

Used to help control the flow of the program. Codes are as
follows:

-1l: first digit of SI

0: subsequent digits of SI, or like 1

1: ready for Ty or a Ty
-2 {(+2): first digit of M, head moving left (right)

-3 (+3): subsequent digits of M, head moving left (right)

() = w2

A work space in which the integer part of (R)/B or of (L)/B

is constructed non-deterministically

) =

MR

(MR) = (M) - (R)

ML

(ML) = (M)-(L)

{a)

51

o |Oo |Jo Jo

Simulated Input: stores an arbitrary number constructed non-

deterministically before the modeling of the Turing machine

begins

(a)

NS

Figure 2

Number of Steps: every matrix increments (NS) by one each

S

time it acts . . e e

List of the 16 (resp. 18) registers, along with their initial
values in v (resp. «cv and their interpretations.

8This information is relevant to Theorem 4.8 only.

g
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In a vest any sequence A.: Hmz of matrices must be allowed, but
only certain transitions are permitted in the Turing machine. To get
around this problem we permit the use of any matrix at any stage, but
record in the register PD whether or not the selected transformation
represents a valid continuation of the path. If so, PD is unchanged;
if not, it is increased. At the end, a positive value in PD signifies an
invalid path. The h x d matrix S of the vest measures PD. A neces-
sary condition for m?oa o) to be zero will be that the PD-component of
Vg * o vanish.

The remaining 14 registers come in pairs, denoted m.m,mww.zwwm.mmw
h.rmmz.gww>_>mm§w.2b. The names are indeed suggestive: within
each pair except the last, one register's contents will always be the
square of the other's contents, and each transformation will act so as
to preserve this relationship. The last two registers always contain the
products of the contents of M and of R, and of M and of L, respective-
ly. To express this in symbols, let (X) denote the contents of the reg-
ister X. We are saying that the relations (F2) = (F)2, (MR) = (M)- (R),
etc. always hold.

Let v:U > N be any injection which assigns distinct integers to the
internal states U. For convenience assume X:ov =0, ﬁcﬂv =1,

v(u*) = 2. The contents of Aﬂ.—umv will always be ?A:Yﬁ:vmv when
the Turing machine being modeled is in the state u € U. In particular,
the initial values (in terms of components of vg) for ﬁm..mwv are (v(u*),
w(u*)?) = (2,4).

The next three register pairs tell us what is on the tape, thus com-
pleting the description of the machine's configuration. Since the tape
is infinite in both directions, with only finitely many squares nonblank,
we can summarize its contents as three finite integers written in base
B. The single symbol directly under the head gives the contents of H.
The base B number found by reading that portion of the tape to the
left of the head (its units digit is in the square immediately to the left
he head) gives the contents of L. Likewise, that portion of the
tape to the right of the head can be interpreted as a base B number
written in reverse (units digit immediately to the right of the head),
and this number gives the contents of R. Because of our convention

that the head starts out on the first blank square to the right of the
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input, our initial values for Q.:bwv are AZ,ZNV. (This is why em had

to compute and write down N and Zw.v The registers m.mm.w.ww all

have initial values of zero, indicating blank regions of the tape.

We describe next the m = #(r) + 1 + 4B matrices in the set T, and
The |

in the process we illuminate the roles of the remaining registers.
h of these linear transformations is summarized in Figure 3.
), and to each
d

action of eac
Fach y € T is of course a quintuple, y = :p.xwlw.xalm
y € I we associate one matrix %4 whose precise effect on Q is de-

Basically, when a vector v has components which

then a<< will de-

scribed in Figure 3.

describe the configuration of our Turing machine,
(If y represents a tran-

then the

scribe the configuration after the transition y.

sition from a configuration other than that described by v,

path detector will be incremented.)

We also stipulate an extra transitionlike matrix Tg, which has the

effect of leaving all registers intact except PD, which is incre
Including T\ simulates the idea of

mented

unless the machine's state is uj.

making uy an absorbing rather than a terminal state: if the Turing ma- :

it keeps returning to uy forever. With this change, the

chine enters uj,
hs which |

f accepting paths becomes recast as the number of pat
Thus e, which for the M-se- N

number o
survive for more than t(&(N)) steps.
guence counts the number of valid matrix products of length n, equals
precisely the number of accepting paths once n is large enough.

hat we have everything we need already, but a problem
If a

It seems t

arises which motivates the inclusion of the remaining 4B matrices.

transition y did not move the head, there would be no difficulty repre-

senting the effect on the register vector v by a linear transformation.

Now suppose the head is moved by y, say one square to the right, a

move signaled by Yy < +1. The new contents of L become B- (L) + (H),

which is a linear change. But the new contents of H become the unit's

digit (base B) of the old (R), and the new contents of R are the old

(R) with its units digit truncated. Both of these are highly nonlinear!

T'hus no single linear transformation will achieve all of the desired ef-

fects on the register vector v. The transition y cannot be simulated

by a single matrix T, .

A specific instance may help to clarify this. Suppose the tape reads

12163514, with the head positioned over the six  Our registers will con-
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T = g er -
v Y7000 01 Y)EL D%, £=*1, 0<j<B-1
3 AR
P (PD)+(A%) - (A)+ (FD) M= B{M+j(1)
_av(y 2 2
20(ry) (211 8%) -2, W — B2 ) a2m 500 452 (1)
vt el B = B +§1°
o) = (BD)+(A) LM =11+ [() -, R T BIMR}T(R)
o 2 {a) = [B(M) + §)¢R)
+[(F) vy )] ML <= B(ML) + j(L)
F o= vy (D fal B+ N
) —
R A ARSE nTrw
W o— o AT — 9(1)
IR (b) N5« (NS} + (1)
e o If j = 0 we also have
MR 0 PD <= (PD) + (A2) - 6£(A) + 9(1)
DU (a) <= (PD) + [(A) - 36]2
2 5 If j > 0 we also have
AT+ 4(1)
o D PO (PD) + (%) - seqa) + 6(1)
b Y o o e {a) (PD) + [{A) - 2¢][{A) - 3¢]
L m?fQuSv €
2 2 Cyr £t J <B-
L™+ B Fmruw;:;ﬁwa: J i st
ta) — B+ 3 v am
2 2
If <m = ~1 we also have DI
M =0
R m:ctJAC 2
2 2 2 2 Mo
R B (R TmmJ::tJAS MR < O
{a) — ::3+<un ML 0
A < (1)
2
T, . A%~ (1)
_ > bl NS < (NS) + (1)
PD (PD) + (F7) - 2(F) + ;Nv If € = +1 we also have
-2(n) + 2(1) R+ (M)
MM.. — (PD) + [(F) - :N + [(n) - SN wm — ENV
(ns) + (1) PD < (PD) + (3%) - 5(A) + B2 (u°)
) E., 0S§<B -1 ¢ 28500 - 2R+ (K7)
a2 T=9
. 2
_ - =23(R) + (37 + 6) (1)
rm mmASNL. (3 + 1)) (a} < {PD) + [(A) - 2]10(A) - 3]
L” «— B (L") + 2B(5 + 1) (L) + (3 + CNE +[ B(M) + 3§ - ;:N
{a) <~ [B(L) + (§ + 102 If £ = -1 we also have
>~ — 0 L = (M)
AT 0 rm - ENV
ST+ By (ST) + (1) 2 2
o PD «— (BD) + {a%) + 5(a) + B> (1°)
If j = 0 we also have +2Bj0M) - 2B{ML) 4 :.NV
PD +~ (PD) + (A2) j 32
. -23(L) + (37 + 6) (1)
If 3 vWim also 3mmm. {a} “- (PD) + [(A) + 21 ((A} + 3]
PD < (PD) + (AD) + (A) + B+ - (WP

.l:uE,,:E\..:::

m_QC—m 3 mxmurﬁ descer ption of the action of each ransformation on
)

Rules .cﬁ the form X « (X) are omitted. If a register is not altered by

w_ubmeo:_m:. transformation, this information is omitted v
enotes a nonlinear equival i 3 .

i q ent expression (see the proof of Lemma 4.6,

bRelevant to Theorem 4.8 only.
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tain (L,H,R) = (127,6,4153). If the head moves to the right without
altering any symbols the new values of (L,H,R) should be (1276,3,415).
This describes a nonlinear function of the three variables.

In order to get around this problem we introduce 4B additional ma-
trices, calling them Uu.+._uu‘-‘0u.+.ou.-. 0<j<B = 1. Mnemonically, D
stands for "add another digit" and C stands for "compare with the de-
sired result,” with the + or — signaling head motion right or left.
Here's the plan. Rather than try to obtain (R)'s last digit directly, we
use a nondeterministic approach. We detour to construct a new arbi-
trary number (M), one base B digit at a time, and then simply compare
the result with (R). We can keep track of (M)'s units digit and the
integer part of (M)/B as we construct it. In the likely event that (M) #
(R) we simply augment the path detector to jettison this sequence. But
if (M) = (R), we now have (R)'s units digit and the characteristic of
(R)/B in our hands!

The use of (M) to denote the new arbitrary integer was no accident:
it will indeed be built in the register M. The register pair ﬁ>.>mv will

serve to control the flow of the program among the .H«.m. Uu.w.m‘ and

k2

€

s.
We can now describe the h x d matrix S of the vest: it is the 1 x 16
row vector which computes (PD) + Am‘mV - 2(F) + T»Nv - 2(A) + 2(1).
Because of the relations :umV = Am,vm and Qrmv = :Cm. this formula co-
incides with the nonlinear formula (PD) + [(F) — :m + [(A) — :w.
Since we always have (PD) > 0, the formula vanishes only under the
simultaneous conditions (PD) = 0 and (F) = 1 and (A) = 1. The condi-
tion (PD) = 0 reflects a valid flow path; (F) =1 = v(uy) indicates an
accepting path; and (A) = 1 is the code for having successfully com-
pleted any last movements of the Turing machine head.

This completes an overview of the vest which models the Turing ma-
chine (U,[B},!) with input N. We now explore In detaii the sequences
o of matrices which lead to S(vy+*o) being zero.

Suppose we have a path of length q < 1(2(N)) through the Turing

machine. By this we mean a list § = {§;} . q s I' of transition gquin-
tuples, together with a list of quadruples A::v, ry, :_.. :XTITlD < U «~
N = [B] x N, with the following coherencies. We have 6 = A:C-:.

(R, e (8) ) ach i1 < § - &Y. = i
.:T_f;_\un:f:v, _uc\ for each i, | <1 < q It (800 +1 we require
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r = w:-_ + Aamvw and ri1 = wﬁ + f. If th = —1 we expect ry =
wu.m..u + Aﬁvw and r-H = Bl + h;. Briefly, Uiy denotes the ith state of
the machine for the path & (with Up) being u*) and AJ.E,:V describes
the tape immediately after the ith transition. It should be clear that §

and :.o.:o._ov uniquely determine A:Qv‘ﬁ.:m.rv for 1 <i < g. Let N
(resp. >va consist of all paths § for the input (0,0,N) (resp. all such
paths having Uy = uq).

Given § = 22, let .:C denote the matrix sequence

Jd.. =D.t € ... € 3
D. " D. D, "C, [12]

where ¢ is the symbol + (resp. —) if th = +1 (resp. —1) and _.ﬁ...u.c
is the base B representation of r; (resp. rv. It is assumed that it >0
if t > 0. Let I denote the set of all sequences of matrices in T. De-

fine e.">2¢ z by

egav =T J T J
s 7 Ts, ) ﬁp,_:: 3]

if the path § has length q. The function &' is obviously injective. We
have been building up to

Lemma 4.6

A matrix sequence o satisfies S(vg*0) = 0 if an only if S has the form

of ¢'(8) followed by a string of eo_mu for some § g >2m.

Proof. We first verify four easy claims. For any o € ¢, we as-

sert

1. The value of the A-component of Vg* o is always 0, *1, 22, or
3.

. m st . 2. "

2. The relations (F¢) = :.vm« (MR) = (M) - (R), etc. hold for the
components of Vg * 0.

$. Acting via any of the transformations on Vg #* 0 cannot decrease
(PD).

4. The value of (PD) in Vg * 0 is nonnegative,

Claim 1 is trivial, 2 is by induction on the length of o, 3 relies on 1

and 2, and 4 follows by induction using 3.



30 ANICK

The reader is now referred to Figure 4, which gives a "flowchart"
for the vest. We are only interested in sequences o of matrices which
Figure 4 indicates that certain matrices may suc-

lead to m?o* o) = 0.
These conditions

ceed others only when certain requirements are met.
are "enforced" by the fact that PD is rendered positive if they are dis-

obeyed. The reader is welcome to check this using the explicit actions

given in Figure 3.
Now suppose a matrix sequence o € I does have the form specified

in the statement of Lemma 4.6. By induction on j, one verifies that the

components (registers) of
voxT_ Jd T, d e T J,,
0 3 (1) am (2) au. (i)
1,0,0). Once

are determined by (F,R,H,L,A,M,PD) = ??C.VV,J_:T:.

j reaches q = length (§), we have (F) = (A) = 1 and (PD) = 0; hence
Thus m?o* 0) =

repeated applications of eo will not alter these values.
0.
Conversely, suppose mﬁ<o*ov = 0. We know that (PD) = 0 and

(F) = (A) =1 at the end of this sequence of transformations. Since
(A) starts out at one and (PD) ends up at zero we must begin ¢ with

a q,< having :vu = u*. Since Ho can be applied only when (F) = (A)

1 and no quintuple y has Q: = uy, any occurrence of Ty in o can be

followed only by another Ty. Because (A) = (F) = 1 at the end, o

must end with A,o or a Obw. Thus ¢ has the form

= bt = s

o =T T, d T Jd T
8,7 (1) 78, (2) n,a ()70

where s > 0 and m:v is a product of cu.w_m and Ou.w.m. Furthermore,

Figure 4 quickly shows that each mﬁv must have the form

uz =D, . D fc, where ¢ = (&),
i

The remainder of the argument involves induction on i. Suppose

that, for some i > 1, we know that {845,181} € &y and also that

< i. One can determine that the components (regis-
._C-: accurately reflect the configuration of the

Turing machine after the transitions & T,;yT_. Then 3 must be a

.:xv = .HSC for k

ters) of Vg* %3
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valid continuation of the path, and MAC must equal qu or else (PD)

would become positive. Eventually we see that & = {§,... .mnv € by-
. a

But we also know that <Ac?:v =1, so in fact § € 2y .

Lemma 4.7

Let n > 1(&(N)) - (t(2(N)) + ¢(N) + 1). Sequences ¢ € I of matrices
in T which have length n and which satisfy wﬁ<o* c) = 0 are in one-
to-one correspondence with accepting paths on (U,[B],r) for the input
N.

Proof of Lemma 4.7. We observe first that any o € im(¢') has

length <n. Since o = $'(8) we have by (12) and (13) that s = length

(o) < q(1l + p), where q is the path length of é and p is the maximum
length of any ,HC.V. Recall that the length of .HC.V equals the number
of digits in the base B representation of either rj or —”_. Note that the
initial 1g has 2(N) digits and that rg = 0. Since the Turing machine
head can move just one square per step and it finishes in g steps,
neither r; nor 1; can ever exceed %£(N) + q digits. Thus p < ¢«(N) + q

) ]
and

s <q(l+qg+ ¢(N)) < t(e(N))-(t(2(N)) + 2(N) + 1) <n

Now let Md+ consist of length n sequences o for which mﬁ<o*av = 0.
Consider the function ¢: >Zm ~+ ¢ given by, if 3'(8) has length s, then
¢(8) consists of ¢'(8) followed by (n — s) Ho.m. By the previous para-
graph this is well defined. Using Lemma 4.6, im(¢) = M:+. Since ¢
is injective, it offers the desired one-to-one correspondence.

It should now be clear that e, = # {accepting paths for (U,[B],T)
with input N} = g(N). This completes the proof of Theorem 4.5.

We cannot resist proving one more theorem which uses the above
construction.  Thenrem 4.8 opens up a vast array of sequences which

can be shown to be M-sequences.

Theorem 4.8

Let g: N » N be any function whose domain is all of N Suppose that

58 #@®. More generally, suppose that there exists a nondeterministic

174

. . PN | 1 RS 1 N
Turing machine, logether with constaits K O and « 3, with the fol
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lowing property. When the input is N (given in base wov. then the
number of accepting paths equals g(N) and all paths terminate within
K N steps. Then there is an M-sequence ﬁmsv and an integer n,

such that m: = g(n) for n > ng.

Remark. The restriction that the domain be all of N is not a seri-
ous constraint in practice. For reasonable N-encodings one can gener-
ally decide deterministically in polynomial time (resp. in K-N€ time)
whether or not a given N belongs to Dom(g). If one extends such a
g : Dom(g) » N over all of N by putting g _Uosﬁmv = g and w_z-cozzmvm
0, then g still belongs to #® (resp. satisfies the more general hypoth-
esis of Theorem 4.8). The Turing machine for g is simply the machine
for g together with a deterministic preprocessor which inspects the in-

put and enters state ug if it lies in N — Dom(g).

Proof of Theorem 4.8. Our task is to construct a vest Am.«o&mﬁwv.
We want valid sequences o of length N ("valid" meaning WA«O* g) = 0)
to be in one-to-one correspondence with accepting paths on a Turing
machine (U,[B],I) whose input is N.

We need to modify the vest developed for Theorem 4.5. For one
thing, we need here a specific vest depending only on g. No depend-
ence on an input is allowed, not even in the initial vector mo. For an-
other, we can no longer control the length. Sequences o of arbitrary
length must be allowed to occur.

Essentially, our new vest models a Turing machine which is (U,[B],
I') preceded by a nondeterministic preprocessor. This preprocessor
writes down a random base By integer N, called the "simulated input,"
whose lead digit is nonzero. It does this by writing any digit and then
moving to the right over the tape, repeating this step as often as it
feels like it. After each such step it is also free to flip into state u*.
When it does eventually enter state u*®, it proceeds to view N as its in-
put and to compute g(N) ("compute" in the nondeterministic sense of
path counting).

In order to model this new machine, we keep the 16 registers from
before and we introduce two new ones, bringing the total vector space
dimension up to d=d+ 2 = 18. The new registers are called Sl for

"simulated input" and NS for "number of steps.”  We also extend the
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set of matrices T to a larger set T by introducing B new matrices i
called E;, 0 <j < By — 1. Lastly, we extend Sfroma 1l x dtoa?2 x d
matrix w. the second component evaluating (NS) — (SI). Unless both
components of m?o* o) are zero, the matrix sequence o is rejected as
invalid.

The NS register counts the number of matrices which have acted on
«o. Its initial value is zero, and every transfromation in ,m. including

the mu..m, will increase (NS) by 1. Thus the NS component of «o*a will

equal s if o has length s. . .

The SI register is not affected by any of the Ty's, Du».m. Ou.q_mv or
Tg- The initial value of (SI) in mo is zero. The effect of the mu._w is
to build an arbitrary number N in the register L but simultaneously to
store that number in the register SI. Once state u* is entered, (L)
will start to change but (SI) is not touched. The SI register maintains
a permanent record of the simulated input.

[Recall that a number in base B, uses tape symbois 1 through B,
not 0 through By — 1. This explains why (j + 1) and not j gets in-
volved when building the simulated input N in register L; see the action
of mu in Figure 3.]

The initial values for «o are listed in the third column of Figure 2.
The fact that (R) = (L) = (H) = 0 simulates an initially blank tape.
Having (A) = —1 forces a valid o to begin with an E;, j > 0.

Valid sequences ¢ are those for which (PD) = 0 and (A) = (F) =1
and (SI) = (NS) = length(o) at the end. The full Figure 4 illustrates
the possibilities. As noted just above, any valid ¢ must start out with
an E; where j > 0, otherwise PD is immediately ruined. Using Figure 4

3
and Lemma 4.6, we see that a valid ¢ must have the form

o= (E, - E, )¢ ()T, --T,, u.avo [14]
] 3 0 0
t 0
for some accepting path ¢ ¢ ..x,:m“ where T‘C:we =3 o
Conversely, any sequence of the form (14) will result in the first
component of wfwo* g) vanishing. We therefore ask, which o of the
form (14) cause the second component of Wﬁoo* a) to vanish as well?

Let ny be large enough so that

N - K (N K- (N + «(N) + 1] + «(N)
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whenever N > ng Aso exists because ¢ < }). Suppose that the simulated
input n, which equals the base WO number u.ﬁ...u.c of (14), is greater
than ng. By the reasoning of Lemma 4.7, the sequence

m_.”.: m_.o,,_av
has length bounded by 2(n) + K- (n)¢[K: (n)¢ + £(n) + 1], which in
turn is smaller than n when n > ng. Thus when n > n; there are ex-
actly g(n) sequences of the form (14) which have length n and which
have Jirotdg = Asvwo. These are precisely the valid sequences o, for
which (SI) must equal (NS) in «o*a. We have shown that m: = #{o|
WA«o*ov =0} = g(n) when n > ng, as desired.

Remark. It is trivial that @ < #®. More generally, if an algo-
rithm for g(n) runs deterministically in t(n) steps, then at most w(n) +
£(g(n)) + 1 < 2t(n) steps are needed to "compute" g(n) in the nonde-
terministic sense. Once g(n) has been written down on the tape, with
the head positioned over its rightmost digit, just one nondeterministic
pass through the number g(n) is needed in order to get the number of
accepting paths to equal g(n). Thus Theorem 4.8 also applies to any
g which can be computed deterministically in K - (n)® time.

Example. Let g denote the characteristic function for the set of
primes. That is, g(n) = 1 if n is prime but g(n) = 0 for composite n.
In view of [2] or [21], g(n) can be computed deterministically in
K+ (n)® steps, where ¢ < 0.15. Assuming the extended Riemann hy-
pothesis, one even has g € @ ! By Theorem 4.8 we deduce the exist-
ence of a vest whose M-sequence has e, = g(n) for all sufficiently
large n.

Observation. Although the fast primality-testing algorithms have a
certain appeal, in truth the naive algorithm of "look for factors by di-
viding n by every number smaller that /n" will also work in the pre-
vious example. This algorithm takes xp - (V1) Emo_ (n) time, so it ap-
pears to violate the hypotheses of Theorem 4.8. However, in the proof
it suffices that every accepting path § correspond under ¢' to a matrix
sequence o of length <n. Referring to the proof of Lemma 4.7, the
length of ¢'(8) is actually bounded by the product of ¢, the maximum
time needed, and p, the maximum space needed. Since the naive algo-

rithm needs only polynomial space, this product is Ko + (vn) :v.m‘om::.
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which grows more slowly than n. Theorem 4.8 actually applies to any
nondeterministically computable g(n) for which the product of the maxi-

mum run time t(n) and the maximum space needed p(n) grows more

slowly than n.

Corollary 4.9

Let g satisfy the hypotheses of Theorem 4.8 or the more general hy-
potheses suggested by the previous sentence. There exists a 123H-al-
gebra A (resp. a finite simply connected CW complex X) whose Hilbert

series mb.ANv (resp. msxﬁiv is rationally related to the series
MNHO mﬁ%—vNﬂ.

Proof. By Theorem 4.8 we have

Y g2 = M(2) + p(2)
n=0

for some M-series M(z) and some polynomial p(z) of degree <ng. Con-
sequently, M(z) is rationally related to Mﬂuo mA:vN:. As noted in

Section 3, we can arrange for m>ANv and mmxﬂsv to be rationally related

to M(z).
Example. Let g again denote the characteristic function of the set

of primes. There is a 123H-algebra A whose Hilbert series m>:v is

rationally related to

p prime

Remark. Because some computations can be done more quickly on

a multitape Turing machine than on a one-tape machine, we remark that
multitape machines can also be modeled by vests. Now we think of the
head as fixed, with any one of the tapes moving one square left or
right during each transition. For euch new tape we create three new
register pairs to record its (R), (H), and (L). We also permit the con-

trol register A to assume two more pairs of values per tape, and one

introduces more ¢ty and DY's accordingly.  Thus the machines referred
to in Theorem 4.8 and Corollary 4.9 can be taken to be multitape ma-
chines.
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5. SOME #®-HARD PROBLEMS

In Section 5 we offer rigorous definitions for Turing reducibility (in poly-
nomial time), Turing equivalence, and #®-hardness. We demonstrate
that 12 natural problems concerning Hilbert and Poincaré sequences are
all equivalent to one another and that all are #®-hard. Certain conven-
tions are adopted in the course of N-encoding these problems, and we
engage in considerable discussion of the rationale behind these conven-
tions.

The concept of Turing reducibility was originally formulated in or-
der to describe a hierarchy of functions (or of sets) in recursion the-
ory. Consider two functions, f:Dom(f) > N and g : Dom(g) > N. The
output g(N) may be difficult or impossible to compute directly, but g
and f might be related in such a way that g(N) can be computed quick-
ly provided that QZHV.... .»Ava are available. Here it is assumed that
the arguments Zm can be computed quickly from N and from EZZf .
QZTHV. Thus the problem g has been "reduced" to the problem of de-
termining certain f-values.

In practice, a computer programmer might write a subroutine to
evaluate f( ) and call it during the routine which computes g( ). The
theoretical computer science analog is called an oracle. An oracle is a
special state of a hypothetical Turing machine which is entered after an
argument N; is N-encoded onto a section of the tape. Once in the ora-
cle state, the machine replaces N; by 222 on the tape, a process which
is presumed to require only :Zt steps. The machine then enters an
ordinary state and resumes its calculations.

In practice, this requires a user-transparent computation. In the
world of theory, the Turing machine is permitted to look up mﬁzmv in a
hypothetical table of f-values and to copy the answer in just LNy
steps.  Since f might even be a nonrecursive function, presuming the
availability of such a table is akin to expecting magic or divine inter-

vention, hence the term "oracle."

Definition 5.1

Let £:Dom(f) - N and g:Dom(g) ~ N be two functions. We say that g

is Turing reducible to f {in polynumial time], written g {, il and only

T
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if there exists a deterministic Turing machine with the following proper-
ty. It has an oracle which looks up f-values, and it computes g(I) in
polynomial time. [As before, "polynomial time" means that the number

of steps is bounded by a fixed polynomial in 2(I).}

Remark. The relation is readily seen to be reflexive and transi-

<

T

tive. We may interpret "g < f" as "g is no harder than f* for the fol-
Yy g g

T
lowing reason. If g is Turing reducible to f, then f being computable

in polynomial time would make g computable in polynomial time. Ease of
computing f immediately translates into ease of computing g. On the
other hand, g might be strictly easier to obtain than f, since there
could be other algorithms for g which do not even use the oracle. Con-
trapositively, if g cannot be computed in polynomial time, then neither

can f; in this sense f is "at least as hard as g."

Definition 5.2

Let f:Dom(f) » N and g:Dom(g) > N be two functions. We say that f

and g are Turing equivalent [in polynomial time], denoted f m, g, if and

only if both f < g and g < f.
T T

Terminology. In this chapter we will always say "Turing reducible
(resp. equivalent)" when we mean "Turing reducible (resp. equivalent)
in polynomial time."

It should be clear that Turing equivalence is an equivalence relation
on functions from subsets of N to N. As a nontrivial example, note
that any #®-problem is Turing reducible to any #® -complete problem.
Consequently, all #®-complete problems lie in the same Turing equiva-

lence class.

Definition 5.3
A function f:Dom(f) -~ N is §®@-hard if and only if g < t for every

T
g € #0.

This definition says roughly that a #®-hard problem is as hard as
or harder than anything in #¢®. Note that all #@-complete problems are

#®-hard, but not conversely.
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Lemma 5.4

(i) If mo < mH and mo wm#%looagm»mow*%-:mﬁd,gms mH iu%-:mwa.

T
(ii) If mH‘w fy and fy is #®-hard, then f, is #®-hard.

Proof. This is a trivial exercise in using the definitions.

We next present a list of nine problems which will all be shown to

be Turing equivalent to one another and #@-hard.

(A) Find the nth term of the Tor-sequence of a 123H-algebra A.

(B) Find the nth term of the Hilbert sequence of a 123H-algebra A.

(C) Find the nth term of the Hilbert sequence of a 12H-algebra A.

(D) Find the nth term of the Hilbert sequence of a 12-algebra A.

(E) Find the nth term of the Hilbert sequence of a degree-one-
generated finitely presented connected graded Q-algebra A.

(F) Find the nth entry of the Poincaré sequence of a commutative
local Q-algebra (R,JM) for which anw = 0.

(G) Find the nth entry in the Poincaré-Betti sequence of a finite-
dimensional basic local Q-algebra R.

(H) Evaluate &E@Am:ﬁsxw@:. where X is a simply connected
finite CW complex having cells (other than the base point) in
dimensions two and four only.

(D) Determine &E@Aﬁziﬁc ¢ Q), where X is as described in (H)

above.

Let us specify how the input is to be N-encoded for each of these
probiems. Problems (A) through (D) call for an integer n and a de-

scription of a 12-algebra. In the presentation

A = anH,....xmv?pTI;pwv

we have
g g
QW = M M od.wxwx_. [15]
i=1  j=1

for certain constants Cijk € Q. We can assume,by clearing denomina-
tors if necessary, that Cijk € Z. To specify a general 12-algebra A
we will therefore give g and r in decimal, followed by the m,m% decimal

integers »c:.x,w, The input n then follows i unary.
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Objections. This N-encoding is appropriate for very complicated or
"generic" presentations, but it seems very wasteful for relatively simple

algebras, which tend to occur in practice. Consider the presentation
A = anH.....xHoicﬂwxm + mxwx».xmxm,qum.xmxuov [16]

Our N-encoding will require over 400 entries, nearly all of them being
zero, whereas (16) presents the same information in just one line. How-
ever, if concise inputs like (16) were sometimes allowed, this could skew
the computational complexity of the overall problem and throw off the
upcoming theorem on Turing equivalence.

The situation is analogous to that of scientific or other space-saving
notations. Borrowing from FORTRAN the notation xEy for 10¥x, note
that the answer to the addition problem "2E1000 + 3E25" would have to

be written as
20000- - - {974 zeros]---0003E25

The size of this output is not a polynomial in the input length, which
suggests that addition does not belong to®. To avoid this false or at
best misleading conclusion we require that the input always be written
out in full decimal notation, no matter how inefficient this seems for a
given problem. Likewise, we always insist that the presentation for a
12-algebra be N-encoded as described above.

A second possible objection to our proposed N-encoding is that it
is redundant for 12H-algebras. When A is a 12H-algebra the constants
*odwv satisfy Cijk = Gk so nearly half of them are superfluous. The
response to this objection is that it doesn't matter, since cutting the
input size by a factor of two has no effect on the computational com-
plexity. To make this precise, consider a problem (C"y, which seeks
the same output as problem (C) but whose input omits the double en-
tries. In polynomial time an N-encoded input for {C'j can be converted
to the corresponding input for (C), and also vice versa, so (C") and
(C) are Turing equivalent. In general, when one has several choices
of N-encoding for the input to a problem, its Turing equivalence class
is independent of the choice as long as the various inputs can be ob-

tained from one another in polynomial time.
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Returning to our list of problems, the input for problem (E) is
handled similarly. Now the algebra A is allowed to have a presentation

of the form

>uDQH...:xmiAmT..:mwv [17]

where each |x;| = 1 but the relations' degrees t; = | | may be arbi-
trary positive integers. To describe the B's let A, denote the set of
length s sequences whose entries come from {1,2,...,g}, and for X =
QT...LmV € Ag let Xy denote the monomial X{, "°X; . A typical rela-

. 1 Ig
tion gy has the form

e 2 G Gk € Q
v,m>ﬁ
k
where again we may clear denominators and assume that ¢k € Z. In

order to specify a degree-one-generated algebra A we write

AmvCSw AECSN :ZCST.; Qwvﬁe

followed by the {eyx} in decimal. The input n is in unary.

Now consider problems (F) and (G). A finite-dimensional basic lo-
cal Q-algebra is an associative ring R with unity such that R/&(R) * Q
and &3@23 < «», where ® (R) denotes the Jacobson radical of R. View-

ing Q as an R-module, we may form the Poincaré-Betti sequence {ppts

where
p. = dim.(Tor wﬁa Q))
n Q n ’

The Poincaré sequence of a commutative Artinian Q-algebra (R,J) hav-
ing uumw = 0 is a very special case. The rings discussed in problem (F)

are always isomorphic to polynomial ring quotients of the form
Qlyys. .oy, 1/

Here J denotes an ideal satisfying mw > d > mu when @ denotes the
ideal sy .
(yq vg)
A general finite-dimensional basic local Q-algebra R may be written

as ¢ e R(R). If AGT....U
2

mw is a Q-basis for ® (R), the multiplication

on R determines s~ constlants n:r via
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S
- 18]
bibj wMWE:.w?x [

Conversely, the constants E:._L c Q determine R.
We may convert all the Es.xv to whole numbers by choosing a least
common denominator & and by using :V_Z instead of ﬁci for our basis,

where Uw = &by, This converts (18) to the expression

<
=3
u

S
] ]
iP5 2 (dyp )0
=1

where Qr.w = aadw € 7. Our N-encoding for problems (F) and (G) will
consists of s and the mw integers ﬁaw_.wf all written in decimal, together
with n written in unary.

As to problems (H) and (1), the space X is determined up to ho-
motopy type by the collection of r homotopy classes [fy ] € 13(W),
where W = fmnumm. Since it is a free abelian group on }g(g + 1) gen-
erators, zu;: is easy to understand. When Userolg denote the nat-
ural generators of mg(W) * 78, then T3(W) is generated by the g com-
positions 101 (n denotes the Hopf map) and by the 3;g(g — 1) White-
head products [1j, J._ for i < j. The homotopy class :W_ may be

written

g
:,Wu = MU nﬁwﬁﬁo:_ + MU odW—J._..m_
i=1 i<j
for some integers ﬁc:.wv. In order to specify X it suffices to list the

<i<j<g,l <k <r}. Our N-encod-

wlmN + g) coefficients {ej5 |1

ing will give r and g and the Ao:.rv in decimal, followed by n in unary.

Proposition 5.5
Problem (A) is #0-hard.

Proof. By Lemma 5.4(i) and Theorem 4.5, we need only show that

the problem "compute the nth entry in the M-sequence of a vest" is
Turing reducible to problem (A). This reduction is implicit in Theorem
3.4, as long as the 123H-algebra corresponding to a given vesl can be

N-encoded in polynomial time.
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The proof in [4] of Theorem 3.4 indicates how this can be done.
From the vest a,<o;e1.wv we get a 123H-algebra A having g = 2m +
d + h + 3 generators and r = (m + 1)(m+ d + h + 2) + 1 relations.
Some of the constants ﬁoa.wv in A's presentations are 0 or *1 according
to a straightforward pattern, and the remainder may simply be copied
from the entries of the {T;} or S.

Remark. The reduction described in the above proof is actually of
the special "polynomial time many-one" type mentioned in Section 4. 1f
it were also true that problem (A) belonged to #@®, then it would be
§®-complete. However, the author doubts that (A) € §@.

Theorem 5.6

Problems (A) through (I) are all Turing equivalent to one another, and

all are #@®-hard.

Proof. In view of Lemma 5.4(ii) and Proposition 5.5, it suffices to
demonstrate the Turing equivalence of the nine problems.

The calculations in Section 3 indicate the equivalences of (A) with
(B) and of (H) with (I). For instance, if the answer to (I) were avail-
able through an oracle, one could make a list on the tape of the ration-
al homotopy ranks ?uﬁxi for 1 < j < n and then apply the indicated
procedures to determine Eiﬁmsgxwavv. Notice how critical it is here
that n be given in unary. Both the listing of T.u.nx: and the subse-
quent computation require a length of time whose dependence on n is a
polynomial in n. Because n is in unary, a polynomial in n is bounded
by a polynomial in the input length.

Likewise, one easily obtains the equivalences on‘m (H) and (see [6])
(c) m, (F). In the Turing reduction, the coefficients Tua.xv need only
be copied and rearranged in preparation for the oracle. For instance,
to show that {(C) ~ (H), we first convert the input I describing a 12H-
algebra A into m:ﬁ:@:» I' describing the associated four-dimensional CW
complex X. We then invoke the oracle n times in order to list on our
tape the first n terms of the Betti sequence of ¢X. Lastly, we calcu-
late, as described in Section 3, the nth term of the Hilbert sequence for

A. FEach of these steps requires only a polynomial in 2(I) time.
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u4
It is trivial that (F) < (G) and that (B) < (C) < (D). That
T T T
(D) < (B) is a consequence of [17, theorem 1.1]. Jacobsson's con-

m:.ﬂnﬁo: of a 123H-algebra whose Hilbert series is rationally related to

that of an arbitrary 12-algebra takes only polynomial time.

We demonstrate next that (D) m, (E). The reduction (D) M.H, (E) is

trivial. To show that (E) < (D), use "link (c)-(d)" of [6]. In that

‘H. .
article a construction is given which obtains from an arbitrary degree-
one-generated A a 12-algebra A' such that Hp(2) and :>.ANV are ration-

ally related. When A has the presentation (17), then A' will have

gh=1+3g+ wmm + o0+ Awmvﬁ-w

generators, where t = max {| mH_ ey _ma [}. The coefficients Cijk in-
volved in the presentation of A' are 0 or *1 or are obtained by copying

the c,y's. Using the facts that g > 2 (since the case g = 1 is trivial)

and
mﬂ = ﬁfv = #{c, b < (D)

when k' denotes an index such that _mw__ = t, we obtain
g < @t < gt s @H < an?

Therefore the input I' describing the 12-algebra A' can be written down

from the I which describes A, in an amount of time which is a polyno-

mial in 2(I). It follows that (E) < (D).

The above arguments show Emﬁ eight of the nine problems, all ex-
cept (G), are Turing equivalent. It remains only to show that (G) is
reducible to one of the others; we will see that (G) < (D). Applying
the cobar construction to a finite-dimensional basic :wmm_ Q-algebra R
yields a tree finitely generated differential graded algebra (B,d) for

which

H*(B.d) = Tor®,(Q,Q)

as graded vector spaces. By Gulliksen's construction (see corollary 2
of [6]) there is a 12-algebra A whose Hilbert series is rationally related

to the "homology series" of (B,d), which coincides with the Poincare-
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Betti series for R. Obtaining A's presentation from R's takes only pol-
ynomial time; again, it is mostly a reshuffling of the coefficients. This
completes the proof of Theorem 5.6.

Remark. Notably absent from the list (A) through (I) is the prob-
lem of finding the Poincaré series of an arbitrary commutative Noetheri-
an (not necessarily Artinian) local Q-algebra. There are two known re-
ductions from such rings to problems in the list, namely Levin's reduc-
tion to Artinian rings {19] and "link (e)-(f)" of [6] to 12-algebras.
However, neither reduction is certifiably accomplished in polynomial time.
For instance, Levin's reduction requires us to choose a "sufficiently
large" integer q so that mwﬁﬁ and m.w:ubnv@v will be rationally related.
The proof is nonconstructive and relies on the Artin-Rees lemma. If R
is described via a presentation, e.g., as the quotient of a polynomial
ring, the integer q need not be bounded by a polynomial in the size of
the presentation. That even the length of g might grow faster than a
polynomial in the presentation size is suggested by the results of [8},
where some similar problems are studied.

We consider next three problems which are natural generalizations
of problems (E), (H), and (I). We show that they too are Turing
equivalent to the problems of Theorem 5.6, but we must make an unex-

pected assumption about their N-encodings.

(J) Find the nth term of the Hilbert sequence of a finitely pre-
sented connected graded Q-algebra A.

(K) Evaluate amaaﬁm:moxw@: for a finite simply connected CW
complex X.

(I.) Determine &E@T_sicc ¢ Q), where X is a finite simply con-

nected CW complex.

Again we must be careful to specify how the input is to be N-en-

coded. As to problem (J), a presentation for the algebra A looks like

.p.uéfv\_,,..“% l{u_,...vu\v_ (19}

P

g

where y; has degree m; > 1 and g, has some homogeneous degree t .

Fur o sequence i = CT...LCV of indices, 1 - J. =g, let i) denote

E: ok ::m and let y, denote the monomial v\:.,.f; in the frec
associative algebra b = £A<T..;<m7 It 2, denotes the set of se-
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quences A for which || = s, then {y, | € wmv is a Q-basis for the
sth homogeneous piece Fg of F. Since each relation gy is homogeneous

of degree t,, we can write (after clearing denominators)

Bg © MM ey k€ %
rE R,
k

Thus the algebra A is specified by the "presentation degree vector"

ﬁm::a‘. .. .Emﬁ.w;,.. Jf.v

and by the collection {e,y} of coefficients. Let 1 denote max(ty,..-,t ).

To be consistent with problem (E} our input should provide

EVGSZEZSS?..:smv:S:ECSZIVSSW.....SLSS [20]

followed by the {e,;} in decimal and n in unary. However, with this
N-encoding we run into difficulties. Let us denote by (J') the problem
which seeks &Bﬁr:v from the input just described. It is trivial that
(E) < (J"); what happens if we try to prove that (J") wIH, (E)?

&,m must relate an arbitrary Hilbert series to that of a degree-one-
generated algebra. One efficient way to do this is as follows. Starting

with A given as in (19), let

P OSS,....%NV > @Axo,xw...;xmv
be the graded algebra homomorphism in which _xu._ =1 and ¥(y;) =
xonwa. Then ¢ induces a monomorphism _HZ A~ A, where

A= @Axouva....va\AéﬁmHvu...uéﬁmﬁ.vv

is degree-one generated. By {5, theorems 3.1 and 2.4] one has the
rational relationship

m m

-1 -1 . 1 LB
H.(z) = H,(z) —(g+ Lz + (2 + o bz )
A A
The presentation for \w. which has as relations m: = eﬁfvf.imv =
v(gp), can be obtained easily from knowledge of By oesBpe If
mr = Mz m;ﬁv\,
A€ >p
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then

By = MUa mywxe:v [21]
A€ >ﬁ
k

where (:Ag > Ag is the injection such that y(y,) = xaC,v. [t appears
that ww can quickly be obtained from g, . But in keeping with our

previous N-encoding conventions, (21) should really be written out in

full as
mw = M oowxa 122}
g e >~
k
where
. ) €k if o = J(r) for some ym>~w
k1o it oen, - im(§)

k

Now we see the problem which arises in passing from an input I'
describing A to an input I for A. Because ﬁfwv may grow much
faster than ffwv, the number of coefficients which are in zero in (22)
cannot be bounded by any fixed polynomial in ¢(1'). The reduction
from (J') to (E) fails to take polynomial time, simply because there may
be more than polynomially many zeros to write down! We must do one
of three things: revise our N-encoding scheme for problem (E) so that
it omits copious zeros; alter our N-encoding for problem (d"; or find
another reduction, which does take polynomial time, from (J') to (E).
The first course of action would again leave us open to the various ob-
jections discussed earlier, and I have not succeeded at the third, so we
will adopt the second option.

tn problem (d), the input i will consist of expressiovn (205, tho
Am;w in decimal, Amﬁv:f and A:v:v. The insertion of Amﬁ:f guar-
antees that t(I) will always exceed gl. The number of new zeros to be
listed while describing the mw_m is smaller than

B )RR ) ) Crgt o oun?
1 2 r
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so now the reduction from (J) to (E) does take polynomial time. Thus
(J) < (E). Conversely, the input to (E) describing a degree-one-gen-
mdm»..m.a algebra already lists at least m.m coefficients, so its length ex-
ceeds mﬂ and only polynomial time is needed in order to insert Am:A:
into the input. Hence (E) < (J) as well.

T
With the above N-encoding convention, we have shown

Lemma 5.7
Problems (E) and (J) are Turing equivalent.

Finally, let us turn our attention to problems (K) and (L). We will
at last justify our title assertion that problem (L) is #®-hard.

The input for (K) and for (L) is an N-encoded finite description of
a finite simply connected CW complex Y. We mentioned in Section 3 that
we would rely upon the Quillen model of X for this description. The
Quillen model is a free differential graded Lie algebra (£X,dy) whose :
generators correspond with, but lie in one degree lower than, a basis. ﬁ
for m*ﬁxwav. Calling this basis {a;,...,ap} and letting mq,...,my de-

note their degrees in H,(X;Q), we must specify their boundaries

axﬂmwv S Ahxvawlw = ﬁb@AmH.....m:varlw

Here h@Amv denotes the free Lie Q-algebra on a graded set S and (L)g

denotes the degree s component of a graded group L.
For Xy,... »Xg € L£X let [x{5... ux@_ denote the repeated bracket

_:.:xfxmrxwr::x@_

Let >_m consist of all sequences X = QH....LQV for which ABJ -1+
+ TEQ — 1) = s, and for each such X let Hm;_ denote _m:,...,mwn_.

Any element y of Ahxvm may be written (not uniquely) as

y - M< eflal, e €Q
>m>m

In particular, Abx.axv is specified by h and the degree list (my,...,

my), together with a list of coefficients {e,) [1 <k <h, v € Rsf-i :

for which
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dy(ay) = M_ &l ]
AER
m-2

We may always assume the {e,x} to be whole numbers after replacing
the ﬁmwv by suitable multiples of themselves.
Let m denote max {my,...,my}. The input I for problems (K) and

(L) will consist of the expression

AE:S:EZ:ST..:E:VCS

followed by .@6 {e;x} in decimal, followed by A:BX: and A:X:. By
including ASE:C in the input we guarantee that ¢(I1) > SE, which is
useful to us in much the same way that including ANJA: in the input

for problem (J) was useful.

Theorem 5.8

The 12 problems (A) through (L) are all Turing equivalent to one an-
other, and all are #®-hard.

Proof. In view of Theorem 5.6 and Lemma 5.7, it suffices to show

532.3 W va,:ﬁﬁaxvmav,msaﬁrmﬁﬁs ,m, Arv..ﬁrm_mmﬁom
. T
these claims follows from the remarks of Section 3 and the fact that n

is given in unary.

That (H) W (K) is virtually trivial. We need to know that, in pol-
ynomial time, a description I of a space X of dimension four can be con-

verted into a description I of the same X as a general space. The co-
efficients Cijk for i < j (resp. i = j) in the input to (H) can simply be
copied (resp. halved) to obtain suitable myw_m. The only major differ-
ence between I and 1 is therefore the insertion of A:SXS into I. But

here we have m < 4. hence

4 4 4

v{h = < = a
{(h), h h (g+r)y - o

so only polynomial time is needed in order to build 1 from !.

For the Turing reduction (K) < (J), use the Adams-Hilton maodel

N . : ’ T
together with "link (a)-(b)" of [6]. By {7] the Adams-Hilton model

ter X omay be tuken to bo the CrUsdal cuveloping algebra of tLndy .
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which may be written out in full in polynomial time. In the subsequent
reduction to a finitely presented graded algebra, a space X whose re-
duced rational homology had a basis in dimensions (my,... .Evv is asso-

ciated to an algebra A having g = h + 3 generators in degrees

(1,1,2,m, — 1,m, — 1,. -1

1 V) eofly

The relations for A occur in degrees no greater than m + 1 and they
may be written down in a straightforward manner from knowledge of the
Adams-Hilton model. The N-encoded description for A has length Sﬁnos
is a polynomial in (h + wVMiw this is bounded by a polynomial in h™,
as needed. The proof is now complete.

Remark. The reader who is still concerned about the inclusion of
ﬁmﬂv:v (resp. Adrl_v:vv in our input is reminded that this can only de-
crease the computational complexity. In other words, if (J") (resp.
(K'y or (L')) is the problem which seeks the same output as (J) (resp.
(K) or (L)) but without the redundant unary in the input, then (J) .w.

(I'Y (resp. (K) < (K", (L) < (L"). In view of Lemma 5.4 (i) and

T T
Theorem 5.8, we know that (J') (and (K') and (L')) are #®-hard.

Thus we may assert without equivocation that "the computation of ra-

tional homotopy groups is #®-hard."”

6. COMPUTABILITY IN EXPONENTIAL TIME

We will define "exponential time" and prove that problems (A) through
(L) of the previous section can be computed in exponential time. This
will complete our proof of the information summarized in Figure 1. We

close with some philosophical remarks about computational complexity.

Definition 6.1

A function f: Dom(f) -~ N, Dom(f) ¢ N, is computable in exponentual

time if and only if there exists a deterministic Turing machine, together

with a polynomial u(x), having the following property. When the input
is N € Dom(f), the output is f(N), and the total number of steps need-

«d is bounded above by gu(L{NY)

T 2
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Lemma 6.2

Iff < and g i i i i i
= g g is computable in exponential time, then f is computabie

in exponential time.

Proof. If f m, g, then f can be computed deterministically in t(2(N))
steps, t(x) being a polynomial, provided we have access to an oracle

for g. In particular, the oracle can be invoked at most T(2(N)) times
’
and the arguments zm for which we request mﬁzmv all have length
bounded by 1(2(N)).
Modify the machine for f by replacing the special oracle state with
a "subroutine call" to the machine which computes g in 2"(*(Ni)) {ime

The new machine still computes f and it runs in fewer than

W(e(N)) + (1(2(N))) - (2H(FENDD)y {231
steps. Putting p'(x) = u(t(x)) + 1(x), we have expression (23) being
majorized by Nz_:Az:. as needed.

Lemma 6.3
If g € #®, then g can be computed in exponential time.

Proof. In view of Lemma 6.2, it suffices to prove this for a single

#®-complete problem. Let g denote the problem of Theorems 4.3 and
4.5. The function g can be computed deterministically by serially con-
sidering each length n sequence o = ?T‘.Jo:v and evaluating Vg*o.
Each evaluation takes t(2(I)) steps, 1(x) being a polynomial, and there
are m" < QC:iC sequences to consider. The entire deterministic

process is completed in
R TUR IR O,

steps.

Theorem 6.4

Problem (D) of Section 5 can be computed in exponential time.
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Proof. Let

A = @Axﬁ...,xmv?pw....,psv

be a 12-algebra. Let F denote the free algebra F = @Cﬁf...xmv and

let J denote the two-sided ideal in F generated by the relations aj,...,
o . so that A = F/J. We view J as a graded vector subspace of F =

H.u

® i =@ . ﬁrmsﬁ.m:»:mmzcmimmpﬁ_m:nm
® -0 F,, and write J eaumu_s H:ms %

for A is

dim(A ) = dim(F) — dim(J;)) = g" - dim(J )

so we need only show that &EESV can be computed in exponential time.
Let I denote the input to problem (D) so that I N-encodes the algebra
A and the integer n.

As a vector space, dJ, is spanned by the finite set TEW,L as k
runs from 1 to r and as (u,v) runs through all pairs of monomials in
the {x;} for which fu] + {v| = n — 2. This finite set has cardinality

2
2 v (D) (24]

< ambHea

s=(n— Drg"

From the expressions (15) we obtain s expressions of the form

g g 28]
CQ.W< = M MU OJ.WCXmXH./\
=1 j=1

Using (25), we may construct an s x m: matrix C. Its rows are In-

dexed by triples (u,k,v), its columns are indexed by the set of length
n monomials w in F, and its entries are either Cijk (if w = :fxu.i or
zero (if not). The row space of C is easily identified with u:. We
need only compute the rank of C.

Since C is an s » g% matrix and both s and g™ are bounded by

a::mv we can write dawn O in exponential time. To find the rank of

. . .,,;:H_.w
0,:mmchwmww:m:_i:m:c:. e:_mwmc:;mm?zﬁ.LE:C ﬁg Vx
wwi:m operations. Our computation therefore requires only exponen-
tial time.

Combining this result with Lemma 6.2 and Theorem 5.8, we have at

unce

e p——e— e

[ —
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Corollary 6.5

Each of the 12 problems (A) through (L) described in Section 5 is com-

putable in exponential time.

Combining this corollary with Lemma 6.3, we have these problems
nicely bracketed between "#®-hard" and "computable in exponential
time."

Philosophical Remarks. What does it all mean? Rational homotopy

groups can be computed in exponential time. But exponential time is
generally considered too slow for practical implementation.

It is virtually certain that rational homotopy cannot be computed in
polynomial time. If it could, then ® would equal #®, contradicting a
widely believed conjecture. I believe further that problems (A) through
(L) are strictly harder than anything in #®. That is to say, problem
(L) is (I believe) not Turing reducible to anything in #®. Even if @
were to equal #@, rational homotopy might still be uncomputable in pol-
ynomial time.

Experience tells us that integral homotopy groups are considerably
less accessible than rational homotopy groups, so integral homotopy
could require exponential time or more. One runs into difficulty just
trying to set up the problem of computing integral homotopy. We are
thrown back upon the issue of how one N-encodes, with even moderate
efficiency, an arbitrary simply connected finite CW complex. One typ-
ically needs more information than is available in the Quillen model. [A
notable exception occurs for the subclass of spaces having cells in di-
mensions two and four only. These spaces are determined up to homo-
topy type by the input to problem (H).] Nevertheless, it is safe for
Uﬁwo:mmw purposes to declare that the problem of computing the whole
1R (X) is #@-hard.

Interestingly, if one considers a fixed simply connected Y and asks
for »,(Y) as a function of n only, Curtis [11,12] showed that 1,(Y) can

Y whose lower central

tained using a semisimplicial group model for
series has been truncated at depth 2". This suggests that for each Y,
the function 8(n) = w,(Y) might be computable in O(c") time. Expres-
sion (24) for s and the subsequent discussion show that the rational

homotopy of a fixed Y can definitely be obtained in O(¢™) time.
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We have developed other positive results as well. In the "no news

is good news" category, our methods give no lower bound at all on the

complexity of the (integral) homotopy groups of spheres, so hope re-
mains for that problem. More affirmatively, our careful consideration of
N-encodings suggests that we may have discovered the relative importance
of the various inputs. For instance, doubling n has approximately the
same effect on the computational difficulty of = (X) * Q as does squar-
ing the coefficients used in constructing X, since either operation po-
tentially doubles ¢(I). Lastly, Theorems 3.5 and 4.8 greatly expand
our repertoire of series known to be rationally related to Hilbert or to
Poincaré series.

In summary, computing homotopy groups of arbitrary simply con-
nected spaces is a genuinely computationaily difficult problem. We can-
not expect that rapid algorithms for it will ever be discovered. Some-
what anticlimactically, we close with Ed Brown's observation to this ef-

fect, prophetically written more than 30 years ago [9, p. 1]:

While the procedures developed for [computing homotopy groups}

are finite, they are much too long to be considered practical.
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Geometry of the Hopf Mapping and
Pinkall’s Tori of Given Conformal Type

THOMAS F. BANCHOFF

Brown University
Providence, Rhode Island

One of the most fertile geometrical examples in mathematics is the Hopf

mapping from the 3-sphere s3 to the 2-sphere mm. On the occasion of

the Conference on Computers in Geometry and Topology at the Univer-
sity of Illinois at Chicago, we considered three aspects of this mapping
which are particularly well suited to investigation by computer graphics.
The study of Hamiltonian dynamical systems can be motivated and

illustrated by a linear system which leads to the Hopf fibers as circular
orbits lying on a constant energy 3-sphere. This aspect has been re-
ported at length elsewhere in the article of Hiiseyin Kogak, Fred Bis-
shopp, David Laidlaw, and the author [1j.

Regular polytopes in 4-space can be decomposed into rings of poly-
hedra which correspond to solid tori which are preimages of cells on

the 2-sphere under the Hopf mapping. This aspect has appeared in

the author's article in the proceedings of the conference Shaping Space
[21.

The third topic considered was an elementary presentation of a re-

markable construction by Ulrich Pinkall which determines the conformaij
structures of tori obtained by lifting a closed curve on $2 under the
Hopf mapping. This short note is an exposition of Pinkall's result

which is well-suited to interactive computer graphics investigation.
In [3], Pinkall showed that the inverse image under the Hopf wap-
ping of a simple closed curve on mN is a flat torus on ww which is con-

formally equivalent to a paralielogram in the plane with basis vectors



