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3 ; ivalent to the example
introduce the class of k-decomposable graphs, which is then shown identical to the ; y 2. General _?nn.aom. .-..vo following “Mo Eo%..m__no-wnﬂwown“““”:oa of star -,oBo<W s
class of partial graphs of k-trees. In § 3 we exhibit a set of reduction operations such 3 | stated in Rose [11] implying that, for a k-tree d that any star removal can start this
that a graph is reduced to the empty graph by the rules iff it is a partial 3-tree. The 3 E leading to a complete graph with k vertices, an y -
rules are confluent (or, equivalently, have the Church-Rosser property), which means 3 - sequence. X . * .
that the reductions can be applied in any order. 3 : THEOREM 2.1. G is a k-tree iff GRLK,

THEOREM 2.2. G is a k-tree iff either G is K, or every H .3&. that Q-.nrm is a k-tree.
: The latter gives the basis for an obvious k-tree recognition algorithm AOM.. Rose
. [11]): given a graph G, iteratively remove vertices dm degree k 2._9 ooB_u_onm_« a ._uoo:_”
neighbors until no further removal is voum?_nvn is a k-tree iff the _.a,B.»,_,mim,. nz.v
® SW@NM. a couple of technical lemmas, we will present a E,on..as mw»mnm that a m..»v.w
E is a partial k-tree if and only if there is a mo.e..nvuoo of 3&:&5& Sk 2—:0.# _owam toa
ion to the em aph (with no vertices)..~. .ol nosieadd

; H&:WMM_:W 2.3, m.ew"WeMWﬂeavFa subgraph S of i vertices in.a .x.“zwn G (i<k), &5.«
exists a complete subgraph K of k vertices in G of simn.a Sisan Smﬁ..n& subgraph. .
;- . Proof. G can be reduced by a series of applications of operation Ri so m&%ﬂm r“
' the resulting k-tree H, no vertex of S is removed and at least one vertex v of:S"

We will consider simple, loopless, undirected combinatorial graphs. Two vertices ]
u and v of a graph G are called adjacent if there is an edge (u, v) of G; the edge 7}
(%, v) is said to be incident with its end-vertices u and v. The set of all vertices adjacent }
to a given vertex v is called the (open) neighborhood of v in G,T'c(v) or I'(v) when 3
G is clear from context. The order of I'(v) is called v’s degree, and its elements are 3
called v's neighbors. For a given graph G with the vertex set V and the edge set E, ¢
we define a subgraph induced by 4 subset U of vertices to be a graph with the vertex 3
set U and the edge set D of all edges of G with both end-vertices in U, A clique is‘a- §

induced subgraph of G. LT e ,
" 'We will'investigate classes of graphs which can be defined by ‘the foll wing
operators on graphs (see also Rose, Tarjan ; id Lueker [13]): SR
Star substitution, 5;(G, v)=H, where v is’ ‘a vertex of G of degree K ‘the vertex
set of H is V—{v} and its edge set is' E-={(iv)lue M(v)}U {(», w)lu, weT(v)} (A
star'centered in o is “substituted” by a completé graph defined by its neighbors.) This
is the vertex elimination operation of Rose {11).- " D
"~ Isolated Vertex removal, I(G, v) = H, Where v'is an isolated vertex (with no maommwumw

K contains all vertices of 5. 'O

T o 1 N B T gw.:dw.., o
LemMA 2.4, Any.graph with not more 51: wen:.ammu.‘a nv&: 4 . i g
g\u&o_maiv_!oww%rh*gg %ﬁ& v««a&u«.;.nooomm

dges to the original graph. "0

edges); H has the same edge set as'G and'its Vertex set is V—{v}. - E EWEF.:R Qmmwv ining G 25 2 sabmih)
Star removal, R,(G, v)= H, where v is a vertex of G and the subgraph of.& uction on the order of a k-tr taining C as 3. SUDEIAPIL,)

R

such 2 graph G can bechosen

induced by I'(v) is a complete graph with k Vertices; then H = 5,(G, ). . empty graph. Let s assum

i Star hook-up Hy(G, K) = H, where K is a dlique induced by k vertices of G

has the vertex set VU{w}, we V, and the edge set E U {(u, w)|u is a vertex of NMM :
Extended -operators, S} and R}, are defined as the unions of I.and S, and }
respoctively, forall i beween 1aad k. . s
-+ We define the corresponding relations S, Ry, H,, Si, and R} to hold between
two graphs G and H iff there exists an element of G (a vertex or a clique) so that
is the result of applying the corresponding operator to G and its eleme

' of G, then G'=S}(G, v) is a subgraph of H—{v}; oﬁmwtmmo Gis w subgraph of
E H —{v} = Ry(H, v). It follows from the inductive assumption that GS{*@.

F graphs with at least k vertices. Let us assume that n.:. graphs W&E n or fewer <o-.n&“

¥ which can be reduced to the empty graph by a series of S} 39-%:05 are parti

. k-trees. Consider a graph G with n+1 vertices and m:n—.- that GS*QD. rﬁ.a be n.rn

b vertex of G which is removed in the first of these reductions. Thus, by nmn Ea:o“n_o

- assumption, Si(G, v) is a subgraph of some k-tree H. By H\oB.B» 2.3, the neighborh >

b of v is contained in a k-complete subgraph of K and H. Applying n_.:m rwow.:@ omﬂ.wcou

£ to H and K results in a k-tree containing as a subgraph a graph is isomorphic to G,

 the new vertex w corresponding to v in G. 0 . o

t+  Partial k-trees can be embedded in k-trees without adding any new vertices:

! THEOREM 2.6. Any partial k-tree with at least k vertices can be completed to a k-tree

- Wi e number of vertices. . . )

S N”MMM -mé Fac&oﬁ on the number of vertices of G). ..;o Eoo_.nB. is ocSo_..—m_w

' true for G with k vertices. Assume that it is true for all partial k-trees with n vertices
and consider a partial k-tree G with n+1 vertices. Let v be a vertex of G of %m.nnn

E not greater than k such that the graph G'=Si(G, v) in a partial k-tree. There is a

| k-tree H with n vertices, with G’ as a partial graph, and such that a k-complete

E subgraph K of H contains all vertices of I'(v) (see Lemma 2.3). The k-tree Hy(H, K)
has n+1 vertices and contains G as its partial graph. 0

define the class of k-trees, J;, (cf. Beineke and Pippert {4] and Rose [11], [12])
the family of graphs for which the (reflexive) transitive closure of the relation H, Hf
holds with K, the complete graph with k vertices. A k-leaf is a vertex of degree k in
a k-tree (and in a 3-tree we similarly have 3-leaves). It follows straightforwardly from
the definition that a k-tree has at least two k-leaves, and that k-leaves are nonadjace
in a k-tree with more than k+1 vertices. The class of partial k-trees, PF,, is define
to consist of all subgraphs of k-trees (cf. Wald and Colbourn [14], for the case of k =2)

It might be interesting to view the reductions S; as simplifying rewrite rules (this
viewpoint has been taken by Liu and Geldmacher [9] who considered the implications
of series-parallel reductions). In that context, we would be looking for a set of reduction
rules confluent under a congruence relation for which the class of partial k-trees is an
equivalence class. Here, the set of reduction rules is confluent if for any two graphs

application of different reduction rules (the so-called “diamond lemma,” see f
instance Huet and Oppen [8]).

by.induction-on-the order of G) By Lemma 2.4, we need to consider only
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An alternative definition of partial k-trees can be given using the notion of (i) (i A, ' E;
k-decomposability: a graph G is k-decomposable iff either G has k +1 or fewer vertices ‘ N
or there is a subgraph S of G with at most k vertices such that G— 8 is disconnected, :
and each of the connected components of G- $ augmented by S with completely :
connected vertices is k-decomposable. ’ - 5

THeOREM 2.7. The class of k-decomposable graphs is exactly PJ,. 3
~- Proof. Since all minimal separators in a k-tree have order k (Beineke and Pippert
[4]), k-trees are k-decomposable, together with all their partial graphs. Ifa k-decompos-
able graph with more than k+1 vertices can be embedded-in a union of two k-trees
with at most k completely connected: vertices in common, then—by Lemma 2.3-—the
common part can be extended to a k-complete graph, the embedding graph can be
extended to a k-tree, and the theorem follows by induction on the ofder of the graph.. O %

Unfortunately, this characterization of partial k-trees does not give us an efficient
algorithm for recognition of this class of graphs since the separator property is lost in
subgraphs. Namely, in:a partial k-tree we may be able to find a “small” separator
which cannot be extended to a complete subgraph of a k-treein an embedding of the n¢ R DT/ I
partial k-tree. - . oo TR seRgn to S5(G, v). Otherwise, Sy(G', v) is a partial 3-tree by Eo.iacgowu%__aaﬂﬂ.%“
P Fneighbors in G', x and y, are adjacent) and it is isomorphic to 55(5x(G, v), u). (i

FIG. 2. Casés in the proof of Theorem 3.1. N
- LTI I REERE S RS AN

., vna i ive assumpti . ’s neighbors in G’, y and z,
a al 3-tree by the inductive assumption (two \Q. w's ue.m,v ; ¥ an

adjacent) and it is isomorphic to Si(S;(G, w), u). (ii) u is one om..nwo, u..m_..»ow_n.z
hieighbors of v. If u is also adjacent to the third neighbor of o] then'G’ is isomorphic

3. Partial 3-trées. Wald and Colbourn [14] restate Duffin’s [5] characterization hoors ety ; : , v) is isomorphic to'a
of series-parallel graphs by ‘completely characterizing the class of partial 2-trees as 15 not ‘adjacent to the oSoW_.nﬂo.‘hM__m”wMM %ﬂ.n_wo ”ﬂ.n .Mwmmsnwﬂcum.—.r_m MM.VBE_Q&
graphs with no subgraphs homeomorphic to K,. This characterization doés not carry ; tial graph of 53(G, u), < ,,_m:.W P A e P
into higher values of k. Figure 1(a) shows a planar graph (which ‘annot have a . he proof of nﬁ. inductive step. cial role in the eventual reductior 6f verte
homeomorph of K) which is not a partial 3-tree. SR : The operation S, plays a crucial wmcvwz_“.: operation applied to' Vertides with

A natural generalization of the recognition algorithmi for seriés”parallel graphs he graph, even mgm_mﬂ” the star a“.oqoum their degree. Foifd , Wedre ible

.[5], [10] would be to perform applicable reductions in S} in any scquencé. Since the 7 .amw:@om",?oﬁu&.w cent) no“wﬁ . W:mr‘ ‘indepéndent - neighborhoods of veftices of
operations 7 and S, do ot introduce ‘any new edges, they result’in partial 3-trees ‘isolate configurations ié,,w“w ction DOSSiBIE: © 7 4 B ol eimsi (5. e
whenever applied to a partial 3-trec:'However, the other reductionOperations in S, ] cc 3 that make the degree .heﬁ eawwnm& a\.&nm..ma 0, 1, or 2, and with no vertex
may not be “safe,” i.e., a partial 3-tree may be reduced to’a graph which is not a TuEOREM 3.2. A graph G with hbors is a partial 3-tree mac. if there are subgraphs
partial 3-tree. An example is given in Fig. 1(b), where a partial 3-tree can be reduced f &uw..,«m 3 :S.u has two a&.nnnam”,«..w Fi sw .&.Mwn vertices u, v and w have degree 3 in
to the graph in Fig. 1(a) by application of S, to vertex o. We can recognize a simple § f G isomorphic to either C" or C” in Fig..3, wher
case of safe application of the reduction S} v . v 3

t . v,

, and vertex x of C' has degree ws.ma,Q.
@ W I

FIG. 1. (a) The 6-vertex, 4-regular plane graph G, and (b) a partial 3-tree H such that G=8,(H,v). u

U 1}

C C .

F1G. 3. The necessary subgraphs in a partial 3-tree.

THEOREM 3.1. For any partial 3-tree G, Sy(G, w) is a partial 3-tree and S,(G, v)
is a partial 3-tree if at least two neighbors of v are adjacent. See Fig. 2. 4

Proof (by induction on the number of vertices in G). The theorem is obviously 3
true if G has not more than 3 vertices. Assume that in any partial 3-tree with less than ]
n>3 vertices such reductions lead to partial 3-trees. Consider a partial 3-tree G with
n vertices and a reduction G4(G, u) resulting in a partial 3-tree, G'. If u=w, u=y,
or u is not any of the neighbors of v or w, then the theorem follows directly from the
assumption. If degree of u is less than 3, the cases of its adjacencies are trivial. 3
Otherwise, there are three cases to consider: (i) u is a neighbor of w. Then, S:(G, w)

: Proof. Consider a partial 3-tree G such that its minimum vertex amnnoo is3 w.:..._
L no two neighbors of a degree 3 vertex are adjacent. Let I. be one of G’s embedding
3-trees. H' is the induced subgraph of H obtained by deleting all 3-leaves .._.oB. H (at
Teast two exist). G’ is the graph obtained from G by removing the 3-leaves i::.:_.o
3 reduction. G’ is a partial graph of H'. Let x be any 3-leaf of H’ (or any vertex if
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=K,), and let L, be the nonempty set of 3-leaves of H adjacent to x. Every member .
of L, has degree 3 in H and thus degree 3 or less in G which is a partial graph of H, |
But G has also minimum degree 3, so each member of L, has degree 3 in G. Since
no two neighbors of a degree 3 vertex are adjacent in G, no two neighbors of a vertex 3
in L, are adjacent in G, so L, and x have disjoint neighborhoods in G. The degree 3

of x in G’ is not greater than 3 and x’s neighborhood in G’ consists of two disjoint
sets, '6(x)— L, (the o:wEw_ =o_ww¢o..mv and I'g(L,)— ?& (the neighbors E:.oa:ona
by S, transformations), i.e.:

Pa(x)- Eiﬁ&hb ~{x}l=[Fe(x)|=3.

The possible mo__:_onu to this inequality are severely constrained by the degree wmm.::v- ;

tion on G and the fact that for both set differences the second operand is a subset of
the first. Since G has minimum vertex degree 3, the second term in the left-hand side
is at least 2, so the first term can only be 0.or 1, and _hx_ is at _ow% two. We split cases
by the second term, which can be 2 or 3:
(i) [Fe(Ly)}=3.-All, <nn_8w in L, have Eo mwao =o_m_~co_.m and since Enw E,o
at _owa two, 8=mn§on C" must be present.
(ii) |Cg(Ly)|=4. This. Smmmaa_a Tg(x)=L,,:
every vertex in L, is Q.w&»oouﬁ to x and two other vertices among the three in

To(L:)—{x}. This _Bv_uﬁ configuration C* if _NLNA and C’ or C"if |L.}=3. Since ;

I'o(x) = L., whenever only configuration C' i is present, one. of its occurrences must
have degree 3 in G for its vertex x. O | .

Now that we wuoi on En _.oaomm.Q of mccw_.wvrm EF <oBoom of degree 3 5<o~<oa
in triangles or squares; io%wﬁ to establish safe reductions thereof. For example, in
the graph G (see Fig. 4). which has the graph C’ ﬁuu a subgraph, 3&_&05
Sy(G, x) leads to a w..»vv ‘which is not a vE.:w_ 3-tree n<on Eozwv the original graph
G is one. T S, v L It s

$0. _F_ E=m~ be at least 3, gn
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E 10 C', s=x. Applying the operation S, to 4, v, w and x, in n__mm.o_do_.. _.oncmwm MMMW%
L Gtoa graph G,, where the three remaining vertices induce a triangle Moﬂ n”.m @)-
j-Since the graph S3(G,s) is a vﬁ.:w_ 3-tree, so is its subgraph G, in i_a , e om m__ s
E (4, v), (v, w), and (u, w) are missing. But G; is reducible to G, by umv SMA %w.. M.r the
ovo_.w:o: S, (which is safe by Theorem 3. 1) to u, v, and w (sce Fig

9 uAQ u) is a partial 3-tree.

(@)

(b)

v. -

Fi16.5. gﬂ.ea e\n?:.& u.:nn G, case ss ) o

K ..&EEE C 5= < (by mv.BBonQ a similar E,m:BoE holds

FIG. 4. A partial 3-tree G with an unsafe reduction 5,(G, x).

THEOREM 3.3. For any partial 3-tree G with a subgraph isomorphic to either graph
C' or C” in Fig. 3, the graphs S5(G, u), S;(G, v), and 85(G, w) are all partial 3-trees if
vertices u, v, and w have all degree 3 in G.

Proof (by induction on the number of vertices of G). By inspection, the thesis is
true for graphs with no more than 6 vertices. Assume it is true for graphs with fewer
than n>6 vertices and consider a partial 3-tree G with n vertices. By Theorem 2.5,
there is a vertex s such that S5(G, 5) is a partial 3-tree. If s is one of the vertices u, v
or w, or is not adjacent to any of them, then the thesis follows by the inductive
assumption. Otherwise, we have to consider three cases:

(i) In a subgraph isomorphic

r s=z and s=t). Applying the operation S, to vertices u, v, and w in this order

bgraph the graph G, (see Fig. 6(a)). On the
duces G to a graph containing as a subgrap L G in i the edge

d, since S3(G,y)isa partial 3-tree, so is its sub
X MM.H Mw “w“_mm_nm (g _Mmunmr:a neighbor of y). But G, is reducibleto a mnw—wr Mo“ﬂnwm__m
10 G, (in which u is isomorphic to y in G,) by a sequence of safe uum QW 0! e
peration S, to v and w (see Fig. 6(b) and .—.roo_.oB 3. 5 Thus, S3(G, u) is a p:
ndm.mc In a mcgnwvr isomorphic to C% s=x (by symmetry, a mEE»M ﬁmﬂapﬂ_m“
fapplies to the cases s=y or = z). Applying the operation S; to %, v, and x 1 b
Forder reduces G to a graph G, where the remaining verticés indice a SE.W—J °
Fig. 7(a)). The graph G,=S:(G, s)— —{(v, q)} (where g is the third =a_mgm—. of x n__.w :
Uw_.:»_ 3-tree and is reducible to G, by application of the safe instances bf the operat
1 E S to v and u in this order (see Fig. 7(b)). Thus G, is 8 partial 3-tree. [}
,. It should be obvious that the reduction S} is confluent in a system recognizing
€ partial 3-trees, since S5(S3(G, u),v)= S4(S4(G, v), u), for any graph G and _M gm
‘vertices u and v. By inspection of cases when two adjacent vertices can be reduce
uoooaiw to any two safe reduction rules, we can easily show that the set of instances

f S} investigated in Theorems 3. 1 and 3.3 are confluent.
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()
(a) (b) aov .
1
* 3 X
v W e V, w D
u
z Z
q q

G,

" F16.7. Reduction of a partial 3-tree G, case (.

1 ﬁ:ou pairs if they w»<_o...ooaao=;..5mmwco_&%rwa %ﬁuﬂﬂm& ”M mﬂwnﬂomwhwmo%o.
 Bach pair can be processed in constant ime. 1n€ L0t} LrS s ime ¢ the
3 Wﬂ”—omg.oao_. or deciding that no such o:.mnm ogawm»&mmm@ o( ﬂm VM:H«WMHM“
[ pointed out that this.can be considerably —Bn_.oﬁa Jw” WO, modifications: The. frs
f consists in having all wmmw__gaoﬂa ow%«.ﬂcw% ertices i(wt
‘aumbered in an arbitrary order and each nci Godigrepresented as an Orderx
.ﬂ.__._mov as keys in a structure supporting insert, search and, elete BunB»M Mnmwowo n) 5«“
an AVL tree). This _mnwom it unnecessary to oquMM all; Hw_nnamn _.M“@ «anmoam»wﬁ._#m&

it " The second -improvement consists in having 3 iist, OF TXETY. °5 _{(ths

3 MM_MM__ Mo conditions for safe reduction). Each Mnaaonou,uj.ﬂuwm ﬁﬁw M _”Nwﬁmw.%“

1 ; ertices and removal of at most-# vertices from y s

. o.._uw..mo H;gn of additions and ‘deletions in the ready list is -
QA.L.VV. With these improvements worst-case véﬁﬁ .Ebom of m_:: _Omﬁowawwul

 possible. N

4. Conclusion and further research. We have found a set of oon._ncowa _,“W_u%m.ﬂw
f on graphs such that any graph can be reduced to Eo. nnmva‘ m—.wE." E_M._ wm. ! —.co on:Ewm
1§ partial 3-tree. This set of reductions yields a polynomial &Bo p_mo—,w. o
¥ partial 3-trees and embedding them in full 3-trees. This mnnm—.uc_som d Tﬂ )

known recognition algorithm for v..waw_. 2-trees “m“““— J-MM&MMWMH“ ”p on—o.am sed
: Already for the case of k=4, oa.a no eas o O have
in recognition of partial 3-trees. A solution to this v.—.cc—oB for arbitrary uld have
 signi i lications, since graph algorithms based on .aoooBuom:_on
MMM%MM“ MHM—MMWMJMQ&: only rncmmmo. decomposition m»_.,,nnn.m_ou are w“o“_cww ﬁm
 cost of such a decomposition algorithm is often owvouo.—nw_ in the or M £ ol
E articulation sets used. Thus, the minimax solution given by a k-tree embedding

i ini is clearly highly relevant. B

the ﬂ.:wah—ﬂNHWM%‘.%«%EBEW ow this research we describe families Mm_ mM.M_ :cuﬂ
not necessarily complete) reductions for general partial k-trees mu.. .“.—M:m. X ..on._a_..sﬁa
have programmed these reduction rules and tested them on partial k-trees g

Fi. 6. Reduction of a partial 3-tree G, case (i,

P

ERE N 1 cahidl ®e . : S S
THEOREM 3.4, Thefollowing reduction rules are confluent under a congruence 3§,
under which all partial 3-trees are equivalent to the empty graph: isolated vertex removal,
reduction of a vertex of degree 1, reduction of a vertex of degree 2, and star-triangle’
substitution when (i) two of the neighbors of a vertex of degree 3 are adjacent ( Theorem 1
3.1), (ii) all the neighbors of a vertex of degreé 3 are also neighbors of one other vertex. §
of degree 3, or (iii) the neighbors of a vertex of degree 3 are shared with those of two '
————other vertices of degree 3 that also share a fourth vertex { Theorem 3.3). 5
The theorem above has a generalization which concerns a complete set of reduction
rules. A set of reduction rules will be called complete if they are sufficient to reduce
all and only graphs from a given class to a given canonical form. In this context, a 3
reduction rule is safe if it cannot take a member of the class outside the class. L
THeOREM 3.5. Each of the reductions from a complete set of confluent rules is safe.
Proof. Let us assume, to the contrary, that a graph x in a class C has a successor
(reduct) y not in C. Since the reduction rules are complete, x can be reduced to the
canonical form z, while y can not. However, confluence implies that all reducts of x 3
have a common successor. [ 3
The results of this section yield an O(n®) algorithm for finding an embedding 3
3-tree of a graph with n vertices or deciding that no such embedding exists. The time 3
required for performing the S} reductions once the vertex order has been decided is, 3
with suitable data structures (see Wald and Colbourn [14]) O(#n). In order to find the 3
next vertex to reduce, first in time O(n) select a vertex of degree =2 or a vertex of
degree 3 with either (i) two adjacent neighbors (in which case the selected vertex is :
reduced) or (ii) three neighbors of degree 3 with overlapping neighborhoods so that 1
the selected vertex is x in a subgraph isomorphic to C’ of Fig. 3 (in this case the §
neighbors of x are reduced). If no such vertex exists, check for all O(n®) degree 3 3

eniesented-as ah Grdered




314

© 1986 Society for Industrial and Applied Mathematics
- SIAM J. ALG. DISC. METH.

015
STEFAN ARNBORG AND ANDRZEJ PROSKUROWSKI . 7, No. 2, Apil 1986

by Monte-Carlo techniques. For small values of k (up to 7), almost all of the graphs
were correctly recognized, but the failure rate grew with increasing k. The existing, 3
incomplete set of safe reduction rules could thus be used as another heuristic decompo- §
sition method. It differs from most such methods in its “bottom-up™ (rather than ‘} .
“top-down”) approach. This method has the worst case complexity of order O(n*), % o . - { to find optimal configurations
which compares favorably with the O(n**?) complexity of the only known complete Abstract. In desigaing and evaluai _ae_a:h ma. _n.M tasks. In the currcnt paper the singular
recognition algorithm for partial k-trees [3]. If complete sets of safe reductions are 3 3 mt en.iaﬁhuo.o H-vw:&sﬂa Jacobian of robot kinematics; the condition
found for arbitrary k and if the improvements suggested by the referee (see § 4) carry 4 ; d &ﬂ” a of the “neamness” to degeneracy. Then qualitative
over to this case, one could even expect an algorithm for recognizing partial k-trees

ALUE DECOMPOSITION TO
APPLICATION OF THE SINGULAR V ]
Eé-wﬂgw—ra AND SENSITIVITY OF INDUSTRIAL ROBOTS

MASAKI TOGAIY

3 called ki i .ﬂ....—_mQ..ﬂﬂn:g.mﬂ..iQsldﬂ P LMOM-O.! .-‘..On.hﬁdﬂnmg—u
in time O(f(k)n log n). Here f(k) is probably exponential since the general recognition sicasures arc investigated and the relation bet these measurcs are dis S e B
problem for partial k-trecs (with the value of k given in the problem instance) is § es of industrial robots are obtained.
NP-complete {3]. - : Loty
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Introd signing and evaluating industrial robots, it is important to
-find “Wnagnoonwm‘@”cﬂa.m“ Mow::om. and ermn ovmmE_B points in -M_Mr iou._.owm_.mwﬁo-
for the anticipated tasks. This becomes muﬁ,owm_nm_v. _Bvou..ﬁbn%”_ou ownv_w ecsion
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