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in A are last in «. A chordal graph G is a chordal path iff there is an A for which G is an
. {.chordal path. . .

4 4 A k-chordal graph is a chordal graph G for s:_o.r (G) = k + 1. Thus, in every
4 perfect elimination scheme of a k-chordal graph, the neighborhood of every vertex, when

difficult problems on graphs with this bounded decomposability property. The:  eliminated, induces K, a complete graph with i vertices, i = k. We notice that a w_._n..M
‘presented there solve NP-hard optimization problems (like vertex cover, chioiaig ' with more than k vertices is a k-chordal graph. Since the neighborhood of a simp .
o ‘ tyyTor pliFtial kotrees given With:a sajtable efitbes Howeve E . vertex u in a k-chordal graph is a completely connected set of at most k <nEM.u t
the presentation skirts two major problems: one is finding.an embedding, .a & E separate u from the rest of the graph, any k-chordal graph is w@ﬁﬂoﬁc_aw.hmm a
which the given graph is a subgraph; sisiother is. finding the minimal ' L graph G, we define k{(G) to be the minimum k such that G isa Bﬂa a% ! o zw
which is i ¢ al though linear in:the size of the input, are . k.(G) is defined to be the minimum k such that G is a partial k~chordal graph.

; BTl ot 3 o ; i for any graph G.
ponentiaf nential in k. For small values of k, recognition and emb ; surprisingly, we have the following lemma relating k(G) and k(G)
ol b . P LEMMA 2.1. For any graph G that is not a complete graph, k{(G) = k.(G).

problems for partial k-trees have been solved by reducing a given graph accordi
complete set of safe reduction rules, i.e., application of the reduction rules (in menm def] . Proof. From the definitions, we see that F.AS = k&@. To show that wmms mem_wwm
reduces a graph to the empty graph iff it is a partial k-tree (see Wald and Colbourn [t . we let G’ be a k.(G)-chordal mc%cu of G. Since G’ is k(G)-decomposa Md-o Mu lows
for ”.nuﬁn_,ha Arnborg and Proskurowski [3] for k = 3). In shis paper, we. . from Arnborg and Proskurowski 3, Thm. 2.7] that G is also a partial k.(G)-tree,

i i 3 ¥ e i .y . D i v
k o he decision ; PRRHA “problem s % pblockofa graph G is a maximal set of vertices with the same closed neighborhood.
approach to finding a k-tree nEc&AEm of thi . ‘Clearly, the blocks of G partition V. > E%w.%ﬁﬁ%ﬁ elimination scheme is one in
E which the vertices of each block are eliminated 8nnm=o_mm_<. o
® Yannakakis [17] introduced the notion of chain graph: a bipartite graph
,,QQ U B, E) is a chain graph if the neighbors of the nodes in 4 @.B a chain, ie., there -
Pexists a bijection 7 : 4 + {1,2, - -, |Al} such that (1) < (v} iff () 2 T\(v). Such a
Fermutation 7 is called a chain order. The neighbors of the nodes of B also form a chain,
Fand thus the definition is unambiguous. Given a bipartite graph G(4 U wd E) and an
tordering  of 4, a (G, 7)-chain graph is any bipartite graph G(4 U B, E'U E") for which
fr is a chain graph order. For a given bipartite graph G(4 U B, E), the graph QQN is
Hormed from G by adding edges to form complete subgraphs on 4 and B. The following

the k-tree, solutions to subproblems on the component partial k-trees may be combip,
to form a solution for the given partial k-tree. Using a succinct representation of a boung
number of optimal solutions to such subproblems (cf. Corneil and Keil 7D, Am
and Proskurowski (4] develop a general algorithm paradigm to solve efficiently map;

cemplete. We then follow a “brute-force”
given graph through examination of all its k-vertex separators. This yields a polyno:
time algorithm, assuming a fixed value of k. Not surprisingly, this new algori
inferior to the reduction rules algorithms for k = 2 and k = 3. j

2. Definitions. A graph G with vertex set ¥ and edge set E will be denotgd
G(V, E). The cardinality of the vertex set will be called the size of G. A partial graph'Qs
G contains all its vertices and a subset of its edges, whereas a subgraph of Ghasas
of both edges and vertices of G. A supergraph of G is any graph of which G is a
graph. For general graph theoretical concepts, the reader is advised to consult a

text, ¢.g, Bondy and Murty [5]. ‘ blemma relates chain graphs and chordal graphs. - .
A clique in a graph G(V, E) is a maximal complete subgraph of G. The ;. LEMMA 2.2 (Yannakakis [17, Lemma 2.11). A bipartite graph GAU B, E) is a
number «(G) is the size of a largest clique in G. For any vertex v € ¥, the (open) neig] kchain graph iff O(G) is chordal. O

In fact, we can strengthen this statement by a more detailed characterization of the

ichordal graph ((G). ) ) )
i QRO 2.3. A bipartite graph G(4 U B, E) is a chain graph iff ((G) is an
E A-chordal path. 0 . ]
If V is the vertex set of a graph G and r is a permutation of ¥, then we define the
flinear cut value of G w.t.t. 7 as

(@)= max |{(g,v)€E:r(U)Si<r(v)}.

13i<ivy

* LINEAR ARRANGEMENT problem (MCLA){s defined as fol-

,N.@.uﬁ&»ﬂo&@ﬁi@nﬂﬁ%&ggwu«aﬁgq

: ¢{G) < FAMCLA is NP-complete (see, for instance, Garey and Johnson

10)). ,F,Ea next section, we use this fact to show the NP-completeness 0m the ?:os.?

-ing PARTIAL K-TREE recognition problem: Given a graph G and an integer k, is
K? .

LFIVATMET LAY ¥ DTN Voo 4l ommdl e el cnn dlun Ao Amenbo

3. NP-compieieness of PARTIAL K-TREE. In this section we will use the OBCCpis
80f chain graph and chordal path to prove that the PARTIAL N.mem. E.oc_nn._ is .N: least
Fas difficult as the MCLA problem, in the standard sense of polynomial reducibility. )

Given an arbitrary graph G(V, E), we will construct a bipartite graph .QE.C B, E")
in the following way: Each vertex x € V is represented by A(G) + 1 vertices in 4 and

borhood of v is defined as the set of all vertices adjacent to 0, I'(v) = {u:(u, v) €
The closed neighborhood of v contains also the vertex v. The degree of v is the size
neighborhood, deg (v) = [T'(v)], and A(G) = max,.y deg (v). A vertex v is sim

the subgraph of G induced by I'(v) is complete. A graph G is k-decomposable ift
G has k + 1 or fewer vertices or there is a subgraph S of G with at most k vertices
that G — S'is disconnected, and each of the connected components of G — . augm
by S with completely connected vertices is k-decomposable. A graph is chordal (or trig
gulated) if every cycle of length greater than three has a chord. Clearly, k-trees are examp
of chordal graphs. An elimination scheme of a graph is an ordering = of its vertices. B
filled graph of G(V, E) w.r.t. « is the graph G(V, E U F~), where F* are the fill e
An edge (u, w) is a fill edge if there is a vertex v preceding u and w in « such that bo
u and w are adjacent to v via original or fill edges but not to each other. The compld
set of fill edges is easily obtained by examining vertices in order . A graph G hay
perfect elimination scheme, i.e., an elimination scheme with no fiil edges (cf. Rose [14X
if there exists an order of eliminating the vertices of G such that each vertex is simplicg
at the time of elimination. It is well known (Rose [14]) that a graph is chordai iff it I
a perfect elimination scheme, and that every edge-minimal chordal supergraph of a gra§
G is the filled graph of G w.r.t. some elimination scheme. Given A, a complete subgrag
of graph G, we say that G is an 4-chordal path if there exists a perfect elimination mowuz
# such that if ¥ immediately follows v in = then u and v are adjacent, and the vertg

AR
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3 . . . and B
; E elimination order of F. But since F is chordal, its edges vMoMoMﬂ “5»:9.
jony perfect h by Lemma 2.2, and it is easy to see that F has a peri rienous
tform 2 chain grap! .Bu.w: vertices in A in reverse chain ordering, irwo.a is also con ams.u
.Y.E%MMM: \M_m “Without loss of generality we can assume that #" is such an ordering.
v,_— E“ v

A(G) — deg (x) + 1 verticesin B. We let A x (resp. B,) denote the set of vertices in 4 c.oau
B) which represents x. Each edge ¢ € E is represented by two vertices in B; this set g
vertices is denoted B,. Edges in E’ are of the following two types: (i) all vertices in A, arg) 5
adjacent to all vertices in B,; (ii) all vertices in A, are adjacent to both vertices in B,if 5 A h in A induced by «'. Assume without loss of generality
is an endpoint of e. As an example of this construction, see the graph in Fig. 1. We nota -+ .1 x be the ordering of blocks in 4 11 rder = and are identified by their numbers.
that the vertex sets 4,, B, and B, form the blocks of AG). 3 pat the vertices of G are :chon&_wE.o»moB of vertices in the first i — 1 blocks of

Before proving the main result of this section, we relate block-contiguous eliminationy onsider the w_.»uﬂ Rucwnwownﬂwuwnw .N_M djacent to: the other A(G) vertices in 4 the

£0(G). In this graph, eac X

schemes of a given graph G to chordal supergraphs of G. " By’ A v Ay the AG) + 1 — deggl{j) vertices in B; for
LEMMA 3.1. Let H be a minimal chordal supergraph of G. Then there exists a block3 A Qw + u Mﬁ““«ﬂ—oﬂh& mﬂ AME mon.“. - i); and the two vertices in B, for each edge

8::%5%5?&3:ei&.u.qﬁbngmagahtﬁ graph of G w.r.t. =. ; in {1, - i} (these are fill edges for e not incident to ).
Proof. As stated in § 2, H is the filled graph of G w.r.t. some elimination scheme3 £ incident to at least one vertex 1n {1, )
A vertex is simplicial iff all other vertices in its block are also simplicial. Since the elim3 ese adjacencies sum up to
ination of any vertex preserves this property, any chordal graph has a block-contiguoug]
perfect elimination scheme. Given such a scheme any ordering of the vertices in a block]
determines a block-contiguous perfect elimination scheme. If u and v belong to the samé
block of G, then the addition of fill edge (v, w) implies the addition of fill edge (u, w)
Thus the blocks of G form a refinement (possibly trivial) of the blocks of H. We now sef.
 to be a block-contiguous perfect elimination scheme for A which is also block-contiguoug
for G. ]
We now establish the relationship between the linear cut value of a graph G and!
values of k' such that (YG") is a partial k'-tree. %
LEMMA 3.2. Given a graph G and a positive integer k, G has a minimum linear cut}
value k w.rt. some permutation = iff the corresponding graph ((G) is a partial;
k'-tree for k' = (A(G) + 1YV + 1) + k- 1. o
Progf. Since a k'-tree is a k’-chordal graph, it follows from Lemma 3.1 that if ((G")]
is a partial k'-tree then there exists a block-contiguous elimination scheme x' such that}
no vertex has degree greater than &’ when it is eliminated. Let F be the filled graph of}
((G") w.r.t. this permutation x’. Fis also a supergraph of the filled graph of (G’ ) w.rt!

; ... : i Nm..“
>§+$§+_x:\_n::_>§+:x.ug.m%ﬁci_m_:, |E3

. in {1 ...ﬂmw.wﬂﬂmwﬁuﬂa&e
3 i is the set of edges with exactly one vertex in {1, i i degree of a
é%%p“ﬁ {1, -, ). Obviously, -1 dego() = AES + [P} % e FE0CC <
e e in 4, simplifies to (A(G) + 1|V| + 1) = 1 + IEHL. ) in this particlar ordering
vertex <o_,~m§mu¢ ..+, i} and verticesin {i +1, -+, |V1},in "This value also
._..wwnsaon . ize. £ E! over all i is the linear cut value of Gwrt. = the k'
f , the maximum $§ize OT.£1 O ique in C(G’). We have thus mrotum_p%» nnmo_-
. i t value k. Conversely,
2 . . . ) HSOmwggn%On—.ﬂén&ooﬁ " -
V,.&oam_&u_o_”ﬂ_m@“nﬁhanﬁuawmam x w.r.t. which G has a linear cut value k implies n—“_.uh uﬁ%.
ngﬁn oﬁw_mn:n in F, the filled graph of O(G') w.r.t =, has size wﬁ. ! ?_M
induced ordering =’ of its vertices.) This completes the proo. lete.
N FHEOREM 3.3. The PARTIAL K-TREE problem is 3 and the fact that C(G)
f. (Hardness for NP): This follows from Lemma w..n an For a suitable
ch eoﬂnaucon& from G in polynomial time. (Membership in ﬂw__ M_E& intoa
1 MMM:%BHB_.EE. ic) choice of vertex order, the elimination vnooam_m Y
b olynomial time verification that a graph is a partial k-tree. hich is also a chordal path.
1 pe vﬁg us define a k-chordal path to be a k-chordal graph w n?wm_m‘ nok+2 of which
A intersal graph s an ortal gt dere o We now v
mpty intersection (i.e., 1

a COROLLAR e 3.4, The following %m«é EPZM.M%%MWW&E

i) Given graph G and integer k, is G a partial %< 10
AM“W M”HM Maﬂ» G and integer k, is G a partial k-interval wquﬁa Corollary 2.3. A
. Proof. Statement (i) follows from ?%MM«B ﬂw@ﬂ“ﬁ_ﬂa me graph iff the cliques
- fFm: 11] says grap! (i<
st it 1) 7t P S )
 mpicsthat x € C;for all /such that /< < . So the class of interval oo, from which (i)
3 o M.n class of k-chordal graphs but contains the class of k-chordal paths,

t follows. O

4. Recognition of partial k-trees for a fixed value of F:mn the md&“ﬁﬂﬂmﬂoﬂw MM
, ! ition probiem is NP-complete if 15 pai

4 t the partial k-tree recognition probiem is NP-comp ar of
; whunﬂ“ﬁwﬁuoﬁ Since the proof of our Zm.oon..v_nnobamm _.omcw_ﬁ qﬂomwn:ﬂ w MM@Q e
©  on the value of k growing polynomially with the size of the graph, wwn ol e e
- com lexity of partial k-tree recognition for fixed k to grow quickly > :.5 P
i irom the value of k is fixed (i.., all instances of the problem refer to the sa

is considered
k. the complexity status of the problem changes, as any dependence on kisc

G C(G)

FIG. 1. Example of the bipartite graph construction.
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MMM M“N,_M MMM _.Ooo_o%aaon problems for partial 2- and 3-trees have been solved .
oote of safe red %om urn [16] and Arnborg and Proskurowski [3]) by anGEﬁ%“So ¢
on rules, reducing to the empty graph precisely those wBuEBEe:

in

relevant class.

Al
s w:%%ﬁmﬁﬂmnwgr proves mzooa?_ mo_” general, fixed values of k. This new ap 4
e i of m-ﬂM_.MB“BEm R.m_::n:o E‘o<m_=»m=m feasibility of proposed E,:. ,
e g oo phs of the given graph in a k-tree. Although there might vn. nand
P %M.c Mwﬁ_om »w&w_o@c_o B.mumam_ separators in all embeddings —Bwug
ograc Aosranant y %o yno: in the size of the graph (the number of vertice dul
e aents suc separators have size k. Our algorithm considers the ®) dug
one  into which k-element vertex sets separate the graph and decid o””:._..
Ac&mwiEor ty in the order of their increasing sizes. Thus, successful embed ing attom it
assume completely connected minimal separators) can be mcgon“”m uR:M-M. ;

y

embed a union of such connected components

ALGORITHM 4.1 for the recognition of partial k-trees

INPUT: A graph G, with n vertices.
QUTPUT: YES or NO.

DAT. . i
A STRUCTURE: Family of k-element vertex sets which are separators of G

For each such set S, there is a set of / connected components of G

into which G is separated by removal i
7 . of S. Denof ;
denote by Cl, 1 5 j S I the subgraphs of G, cach %%M%whw%
&m NM-M.S» of the Q.Eﬁvcn&um connected component, with the ad-
Each such C} w_.an an »h%ia—. %nowcﬁuwwwﬁﬂ:oo@ E‘ .m.ooco&uav_oﬁ.
in a k-tree or not) determined duri Smputat .: . e
METHOD: {find the graphs C; and C}} e the computaion.
for each set S of k vertices in G do

if ,Mr _m a separator of G
en insert C; = i i
e S and the corresponding graphs C} into the data
end-do e

Moz all graphs C/ by increasing size
examine graphs Cj from small i
ok 2 mm ] est to largest and determine whether
M...m.“w” Mwowmmnu%.» + 1 is a partial k-tree: set its answer to YES \
ph C} an increasing ord i )
 each graph ﬁw_ﬁ m g order of size k do
examine all k-vertex separators C,, contai i
n . . . contained in C; U {v};
moﬂﬁw_m_nnn all C., in (C} — C) U C,, which are partial w.mnowm
:.oz, :EM.HE over all I’s and all n’s, contains C} — C; )
Q: N A 1 t
s set the answer for CJ to YES and exit-do.

if no answer was set for C}
. M.M: set the answer for C} to NO.
i as a separator Cy, such that ail C}
. . " ” hs b
. then G is a partial k-tree: return Aavm_uﬁ s have answer YES
if each separator C,, of G has a Cl, with answer NO

then G is not a partial k-tree:
end-do pa tree: return (NO).

{end of the algorithm}

p. .~ THEO
it cyitably chosen data structures is
.- Prodf. The algorithm examines
fthose, and
Ethe subgraphs
Fime proportion:

- the necessity 1s proved:
Fnition of k-trees:
J an embedding foreach Ci. O
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In the algorithm above weuse C J to denote both a graph and its vertex set, depending

omial in n, the size
ormed efficiently and

it takes O(n) time 10 C
C’ in the increasing

...,,on context. This slightly inaccurate usage will continue i
case time complexity of the algorithm is fairly straightforwardly bounded by a

n the verification below. The

of G, since all the operations (searches and checks) can be

there is a limited (polynomially b
REM 4.2. The execution time of the partial k-lree recognition algorithm using
of order O("* 3,

i nstant

ounded) number of them.

at most all k-clement vertex sets; there are ou®) of

components for each separator, and

heck if one is a separator of G. To be able to access

order of their sizes, they should be bucket-sorted, in -
al to the numer of them, at most O(#*"). The exit conditions for the
time per examined subgraph, by incrementally
of incorrectly

1s for the whole graph. There are less than n vertices in a subgraph C’,

d the accesst0 @ ‘related’ separator C,(inthe innermost loop) can be made in constant

for G since S U {v} (the
. the embedding of Gy)

o 70

The second lemma

¢’ — ¢~ {v}. This pro
k-tree T embedding C1

shs with k + 2 vertices

_ Checking the union of the relevant partial k-tree components is again of order of
¢ size of C}, and thus, the overall time complexity is oy 0O
To prove the correctness of our algorithm we state and prove two lem

e reflects the fact that partial k-trees are k-decomposable (cf. Arnborg and

13, Thm. 2.7)).
. LEMMA. 43. A given graph G
kthere exists a k-vertex separator C; such that all subgraphs C’(as defined in the algorithm)
Lare partial k-trees.
£ Proof. (By induction 0B the size n of G). Obviously true for n=k

mas. The first
Proskurowski

of size at least K + 2 is a partial k-tree ifand only if

only Ki+2isnota partial k-tree. Assuming the hypothesis true
or all smaller graphs, Suuann»ﬁ»vwma.auoaw k+3. If G is a partial k-tree, then

Fit hasa vertex v which in some k-tree embedding hasa completely connected neighborhood
ES. The graph G1 = G- {v}V S'is also a partial k-tree with a postulated separator C; (by
F the inductive assumption). If this C; is identical with S, then it fulfills the requirements

new C’ containing v) is a partial k-tree. Otherwise, the C’ (of

tains S can be extended byvioa partial k-tree. Hence,
“The-sufficiency follows immediately from the constructive defi-

G can be constructed using C; as a base, and independently attaching

addresses the operation of the algorithm when computing the

partial answers. Note that Clhasa
. LEMMA 4.4, A graph C’, as defined in the algorithm, is @ partial
exists a vertex v in Clandaset F of k-vertex separators Cm + C; contained in C;U {v}
E - such that graphs ClL, — Cn (for alll such that Ctn < Ciis @ partial k-tree) partition
L - G- {v}:
Proof. We recall that
L itsbase, If ¢’ is a partial k-tree,

C, by first adding a vertex, U

the remainder of T as k-trees T

g The k-trees T!, overlap only on
necessity. If such a family F of separators exists, then a

ves the
can be con:

a k-tree can be constructed with
then any k-tree T embedding it
adjacent to all vertices of C;, and then constructing

complete subgraph induced by Ci.

k-tree iff there

any k-complete subgraph as
can be constructed from

based on some k-complete subgraphs of C; U {v}.
C, U {v}, and thus i eir subgraphs C!, partition

structed from C; by first adding v adjacent t0 all the

b vertices of C; and then building up the remainder of T as the union of

the partial k-trees C !, each constructed with Crn a8 its base. Qa

embeddings of

THEOREM 4.5. The algorithm correctly determines whether a given graph G is a

£ partial k-tree.

)
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Proof. The termination criteria of the algorithm’s main 1
4 oop correspond t i
of partial \.?:.oom as »..aooo.:ﬁommc_n graphs. By Lemma 4.4, every mcdmwmvr M.uvwn g
at Bo& h is correctly classified. If G is a partial k-tree then the final decision Qm” >
YES) is reached irﬂ.- the size of the subgraph C7 increases to at most (1 + k), w:d 3
corresponds 8. G having only k-path embeddings). O 2@
] The algorithm Emﬂ:mm&. above answers the embeddability decision problem, by g
oes not produce an embedding when one exists. It is obvious that this can be sow_% "

by storing an embeddi 43 : -
nw_ ».n,o_ww ding for every C} if and when it has been classified as a p

DISTRIBUTION OF THE MINIMUM CHANNEL WIDTH
IN VLSI WIRING*

D. COPPERSMITH{, 1. GOPALY AND C. K. WONGt
£ Abstract. Suppose we have N terminals on one side of 2 wiring channel, and N on the other side, and we

1 to achieve a given interconnection specified by a rand ly ch per ion function. We show that
e minimum aumber of horizontal channels necessary is close to N/2 most of the time.

Noteadded inproof. Inarecent paper(Graph minors XIII: The disjoint path proble . E Key words. VLSI, wiring channel width, random walk

Ewa:.ﬁ.mvr September Gm&. Robertson and Seymour show—nonconstructivel :
existence of an O (n?) algorithm for recognizing partial k-trees. Such an EmolﬁBM«lo 5
MBER the knowledge of the set of all minimal forbidden minors for the class of

E \MS(MOS) subject classifications. 60715, 68405

1. Introduction. The problem of channel wiring has become increasingly important
B VLSI design. Specifically, the problem is one of interconnecting two sets of terminals,
E e set on each side of a wiring channel, and to accomplish this interconnection while
. timizing some objective function. Typically this objective function is the channel width
=r the number of horizontal tracks necessary in the channel.

Several previous efforts have been directed towards obtaining minimum Or near-
- inimum width solutions for some given problem instance {1}, [2]. However, it is often
bf great use to the designer to obtain some idea of the minimum width without a complete
secification of the problem. Specifically, estimates of the distribution of the minimum

F idth can be of value in making layout and global routing decisions.
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