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- We u-ﬂo.: Ex_ Eﬁﬁs 5. a -oasmmn amgv_n an n_moaﬁi
k-tre &ﬁ

“-from k-trees. k-trees are a monnn»_ﬁ.rcu of 58.
am_the completely connected (complete “.“.Eo=w<naonuc< ¢
rof <o_.=oa. each om which is connected with k edges 8 k ooBb—aS_ @&E
tices.
minimum k for which a graph Gi B -a partial k-tree, EQV. i
algorithmic properties of G. In this paper we give some credibility to
displaying a design paradigm for: algorithms on graphs embedded. in- k-trees.
Algorithms in this family have time and space requirements linear in the number of
vertices of the graph but exponential or even superexponential in k. Wedo not claim
k(G) to be a universal measure of.graph complexity, since there are NP-complete
problems on graphs which are easy for families of graphs which do not have
bounded & (for example, CHROMATIC NUMBER restricted to nomnwvrm {8]) and there
-are also problems which are NP-complete on partial I-trees (i.e., forests), such as
BANDWIDTH.
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12 S. Arnborg, A. Proskurowski

The algorithms given here compute a number, such as the minimum number of
colors required to color vertices of a graph, or a yes/no answer. It is relatively
straightforward to modify the algorithms to also compute a solution {such as an op-
timal coloring), e.g., by _Sova trace information »gﬁ EnonBo&uﬁo stages a::um
the problem reduction process, as shown in [2,7], ;- & 7ix

We present the algorithms in a form we believe to be easy to no»n »bn understand.
Substantial improvements can be made by various types of .optimizations, but.the
exponential cost dependence in & cannot be circumvented easily, ¢ because this would
imply P =NP (since all EoEan considered below are Zm..rwa on arbitrary m_,mvrm
and a graph on w <o_.=oa is a partial k-tree).

N., Definitions u....—e:&aa of ha&nn paradigm
We use .#w:a»a w_.m_uw notation and terminology which, ann_on with a defini-

tion of the problems we solve, can be found in-[9]. We use G-adjacent :and G-
Ennbounoa for vertices n&nooa in G and vertex sets Enovannnbn 5 Q nnmuonzﬁ.

ly. A fuller on' paftial k-trees can be found in nx: e
A graph is ‘ e% if it satisfies cither of the Jollowing Sun_nea.
) Tt is the ,
(i) It has a’

wanbw o_uBE& b

The recursive non.EEon wro‘n nomunm a 8&:&5& process’ trees. It is #.o:
known that the -&:n.:oum E.o confluent, i.e., one can test a gra for being a k-tree
by repeatedly removing a vertex of degree k with completely connected neighbors
(a k-leaf) until 0 such vertex remains, then the graph is a k-tree if and only if what

RB&E is K :a.,.d_n.ﬁ_.:oa o__w_c_o for RBQB—& ow&_ step-are the k-leaves of

giving an orienta-
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d.a process can &mo eo unuon.c& in 8:3 of 839:5% 339.& vw&:&& of -

the k-tree. Let K’ N@C?V the removal of v: means: nsn%ro ‘branches -on
K’—{u}, ue K(v), are combineéd with v to a new branch on K|
semoval of vertex 6, the anwa are {1} and {2, mv on NA%%
: u.o__n__n 3 3 and {9} on 2-clique 3 3. wmo..imnmm wwowc

m&.u {before
6.7}, {45} on -

tion to the a.:oo in Eo following sense. ,:5 RBoéa <n_.=o& are said to succeed
certain sets of k vertices (this ordering relation is between vertices and k-sets of ver-
tices). First we define a k-clique to be a set of k pairwise adjacent vertices (and thus
it is not a clique in standard graph terminology, where it denotes 2 maximal com-
pletely connected subgraph). If X is a k-clique, v ¢ X is a descendant of K in a given
reduction sequence if and only if when v was being removed, each vertex to which
it was adjacent was either a member of X or a descendant of K.

The connected components of the subgraph induced by descendants of K are
branches on K, and K is the base of a branch on K. The k-clique remaining after
a completed reduction process is the roof of the oriented k-tree. In the following,
we will always consider a k-tree oriented by a given reduction process. For an
oriented k-tree with vertex v not in the root clique, let K(v) be the neighbors of v
when it becomes a k-leaf during the reduction process. A vertex v, together with
K(v), will form a (k + 1)~clique containing (k + 1) k-cliques. When v is removed, k
of these cliques disappear and only K(v) remains, see Fig. 1.

mono_.wcumnon of the oam_uw_ Eoc_nnc restricted to En.m:.cﬁ nd

tices of a k-clique and those removed vertices that are unnw_ﬁ& by the w.o__nsn from
all nonremoved vertices. The state information can .be an QE.an_ ‘value for the
class (e.g., the minimum number of edge covering <Qdoa ina mccmn»nv with a cer-
tain property, in the vertex cover problem), or some weighted sum (as in the network
reliability problem where the weights are the probabilities of certain link set states
and the sums are probabilities of classes of link set states) and is determined by three

¥ considerations: The number of classes must be bounded be a function of £, in-

dependently of the size of the problem graph; the information.required for K(v)
E:& be computable from the information computed for the removed branches of
~{u}, ueK’, and from the problem data given for the subgraph induced by X’;
»ua the answer to the problem must be deducible from the information computed -
for the root k-clique when all branches have been removed. A correctness proof is
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(iii) value of state component in relation to oo:gvcua:_w class;
(iv) initial value of state;

: (v) update Eoo&E.o mo_. the state of K irou a vertex v such that NAS N is
§O<nn i e y PR

ASV ooEvcﬁcon 0». n.Ew_ answer mnoE mEE state om Bo root. *

straightforward by structural induction on the branch structure. For the problems
we have attacked, it is not very difficult to find the relevant information, but finding
a suitable formulation of the required computation is:often nontrivial.

Let G= 2\ mv be the mn»ur of the E.oc_oB. and let T=(V;E o be its nBc&aEn
k-tree, with ECE’.-The solution to the general:problem of finding an embedding
when only the problem graph is given is Emo:mwon in Section 5. The root of En
oriented ﬂa a w.o_E:o ‘R°A reduction moaco:o« a.mio: i—nu En nB@o&Em F

4 m._d_-_o:- 1 QSS«SES S&wﬁ«a&mﬁ u& size G QHNS ;o
For a given B.wvw Q :(V; E) we want to find the' Eagmﬁn om its E%ugnobﬂ
1 Eo setof v.:cmoa rof K _- QS» 1O two Q.w&wngﬁ

A UE.E._ mo_ccoa om &»wm Aﬂ.a v isa Q.Emouonnnnp
i with K is % The state componen ,

e . . Aty % Ty ;
B(K) is, »n »: cBa. Eww set of <o:_onm in g«%&. mgw
Soww.omnﬁo Kof T,

D with K= -K(v)
Q.Bunob forKi

»BE\ of classes of mo__—no.a 10 QmMmoEoB on'the subgraph * §
oomomhgago,\ 3 nﬂ.m; ved branches on K.

m,En:S :5 answer is.

nax @Aﬂ.wv.f _n_v )
ﬂmQN-

, —v._.ev_n.u 2 (Minimum %&S&S« set size [9, O.HN_

“"For a given graph G=(V,E) we want to ooB.u:S thé ‘minimum size o», its
dominating sets. A set DcCV is dominating in G'if every vertex in ¥ is either in'D
or G-adjacent to a vertex in D. The state index set for K is the set of pairs of vertex
sets (1, ) of K, the “in”" and “‘dominated’’ vertices, respectively, such that the set
"~ of ““‘dominated” vertices contains the G-neighbors in X of :E: vertices, and the
: .:E: and “‘dominated’’ sets are disjoint:

of N in the mmBo manner (e.g:s En:ﬁEm into an &mn.oo<2.m=m set exactly the same
vertices of K. ) The value of the component 59 index ¢, .An K), is the optimum
value of solutions represented by c. The m:& solution to Eo problem on G will be
obtained by an iterative combination of these vn_.c»_ mc_caon.u in a state update pro-
cedure. This procedure is invoked when a vertex v is removed, and updates the
values of all state components for the clique K= NAS with respect to the branch bas-
ed on K that includes v. The update is based on the state components’ values for ]
all X (ueK’) and—in general—reflects the ways in which the values of vmn._w_\ 3
solutions on K* influence the value of an optimal partial solution on K, subject to
constraints expressed by the index ¢ (for a particular state component). :

Thus, the description of each algorithm consists of six parts: .U. The class of partial solutions for (7, , X) is the family of subsets S of B(X) such
E' that every member of B(K)U w is G-adjacent to a member of SU . The value of
- the state component s(z, @, K) is the minimum size of such a subset S from the cor-

responding family. Initially, s(1,w,K) is 0 or oo, depending on whether S=9

CK)={(r,w) _.«Deu&. tUwCK,
{vi, 02} €EA{v, 0,3 CK— (V€T €091}

(i) index set of state components for k-clique X;
(i) corresponding family of classes of partial solutions (not explicitly present

below);
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satisfies the requirement for membership in the class for (1, S.N ) stated wco<o AS
indicating the infeasibility of a solution.)

When vertex v is removed, the values of state components for N are :vnnﬁon A
new solution is obtained from the solutions for B(K"), ue X', such that the' classes
?:S.:N “) coincide on K and resolve the.status.of v. by classifying it as either

in™ or “‘dominated”’ i.e., in the set t'=UJ, ¢ x T, OF in the set &’= =Uye The
union o the corresponding subsets S ».o..B a mo_ccon for wﬁn V and C a. .w.. i
Ewomm 'the equivalence class (7’ i?v @'= ?3 of K. The componen for
(A Sv is. EE obtiined by minimizing the m_un ‘of 90 3:.9%2.&.& partial ww—wnou.

h?niﬁ BEA p mﬁ: ?u.e.:NJ+ _a tﬂ_v

:mk~

, m.o&» partition 7,
inn VEE then removing the block if : .aoouBo empty.

<H=oEnnxmm:o:=amﬁoo. K, C ;isthe set of partitionso 3 -
two G-adjacent vertices are in the. same block. . . et
_;The partial solutions in class (7, K) are oo_o_.Emm of the mucm_.mvr 3. Q En__o&
3, K Cwﬁm ), such that n describes the 8—02& of X.~The state ooavcumaﬁ value
fi }»n_nmm is the minimum total number of colors used in a partial solution of the
class. Initially, B(K) is empty and thus s(m, K)=|x|. o

O:Eu a coloring n’ of K’, consider colorings S, of K¥ (ueK’) taken »..__.,oB‘ Ea
class (n'/u,K*). Since these colorings are compatible on K for all ue K’ (no two
blocks overlap unless identical on K*), U, ex: Sus @ partition of K" UlJ, N. B(K*")
is a coloring of XU B(X).

This coloring is assigned the new equivalence class (n’/v,K), and the number of
colors it uses is the largest of |n’|, the number of colors required for X’, and the
largest of the number of colors required for any S,. Thus, upon removal of vertex
v, the state should be updated as follows:

s(r,K)= min max(|n’|,maxs(z’/u,K’'~{u})), mneCK).
n w\maﬂv uek’
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The final answer is

min s(n, 3
amﬂa

The state of N is indexed by a ma of pairs Am
disjoint (unordered) pairs of different vertices Ehmhubn Iis a set.of *‘touched’ énn
tices in K, disjoint from H.::A partial ‘solution of ¢lass (H,I) is-a set.of tﬁ,i

~ disjoint paths:in the mﬁin»uu of G: En:ooA by:K GEN v. Sn_u asn_ nu gﬁﬁ

a pair of H, siich that no two Consecutive
and ivo_.n 9« vnz- get covers NCNQOGCKE 2

AE Zo pair occurs in more than oua.h& )
- h F=K\U, ok H) (i.e., with edges over K’ .
H,) has ﬁo n&m_m or vertex of degree 3 or higher, ie., Fis m,uﬁ,bn paths_and:
isolated vertices,. L T L :

We now define (H,I") € C(K") as follows: H is the set of endpoint pairs of paths
in F, I" is thé union of the I, (ueK") and the interior points of the paths of m
(H,I)eS is obtained from (,I’) in one of the Tollowing ways:

@) If cm~. then I=1'—{v} and H=H".
@i) If {v,v;} e H’, for some v;, and there exists a vertex v, €K’ which is
adjacent to v, and such that v,#v, and v, ¢, then either -
(a) there is a vertex v; € K* such that {v,, vs} eH', H=H'—{{v, v}, {v2, vi}}
U {{v;,v3}} and I=1"U{vy}; or .
(b) v, is member of no pairin H', H=H'— {{v,n}}VU :c_.cnx and I=1I".
(iii) if v is neither in I’ nor in any pair of H’, but is G-adjacent to vy and v,
which are in K’ —1', augment the graph F given above with {vy, v,} and then define
(H, 1) in exactly the same way as (H',1") was defined but on the augmented graph.
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Note that not every element of C(K*) vields an element of C(K) (when none of
the cases above apply).

The root case, i.e., the last reduction made, follows the same rules, but two addi-
tional cases must be considered. >mm==_n that v is the _PA <o;ox 353& and
R’=R U {v}: , SRR

(i) 'If there are nxwonw onnBvQ branches on En k.o__n.._a in | R’ :5: we may
combine states (H, 1;) and (H, upv for Eﬁn ‘branches if ;N =9, H={{vn, v}} N:E
~_C-C?_.c~u R, in ‘ in mEm_. at once with answ <nm )

(i) If the m..wvw F zn sists of one cycle, Eo sets I, are 9&0_5 Ea
Smo:_o_. with Ea <nn:oa of F Eow cover R’, then we »_3 mE.&. i:r answer yes.

Corh BV

-If the root case did no~ unoSao an answer, the final answer is’ ocﬁE& from s{(R)
as follows: The answei is yes if ‘and only if there is a (#, 1) € S(R) such that.the

mccmnmvr o~. G En:oon by EE ».._mEnE& 53 edges no—.nm,m,uoun_um to H, rmm

,:

Problem 5 9@29.& ngg 9, ZUno_v
.. Wé assume that a NBE_ QNQ\M v is'given Sma___ﬂ. 53 a nnrwg_q De 9328:

c»c._:w Emﬁ the moﬁ —W,

remains.

.: k(51
of graphs s._E respect to two sets of edges, then their join is the resulting partition
into connected components of a graph whose edge set is the union of the two edge
sets. The operator */** is defined as in Problem 3.

Let P;(K,v,n) be the probability that the links between a w.a__azo K and vertex
v are in states (“‘up’’, :notu:v such that ““up”’ links form a w_.ubr 59 connected
components z on K U {v}.

Let I7(K, v) denote the set of partitions of K U {v} that have only singleton blocks
except for possibly the block containing v. Let likewise P,(K, 7} be the probability
that links in state ‘“‘up’’ between vertices in X induce partition x.

The index set C(K) for the state of X is the set of partitions of K. Partial solutions
considered are partial graphs (where the included edges are ‘‘up’’) of the subgraph
of G induced by K U B(K), with no edges between vertices of K.

A partial solution belongs to class (7, K) if and only if the corresponding partial
graph consists of || connected components such that the intersection of each com-
ponent with X is a block of z. The value for a component of the state is the sum

- blocks; or not.

Linear time algorithms 19

of probabilities of partial solutions in the corresponding class. The probability of
a partial solution is the product of reliabilities of ‘‘up” edges and unreliabilities
(1-p,) of ‘“down’” edges. Initially, the state components. describe networks
without links, i.e., s(m, K v _ or o n«?u&:m on i.nnﬁn n me o_& E:m_nﬁou

- Upon removal of a vertex v, a va& mo_:aou S’ for N ‘isd u»_.:& wnwva o». Eo
mzcw-.wvr of G E.Eo& by KU C..m X EN J. with &ma in:Kfremoved.’ mcov an

.vamor Sy c&o:mm 8 class Aa.:N #), these mc—__co:m will EE-& ﬁ»ﬁwaco

e probabili-

ms.nb 3Bv===m En new Eovwc—__na of partial uc_._ E“

Pty

0 Thé probicm pbtaimned ..t...r .._: [] .:.‘
on the partial solutions (involving only edges not in 5 €o,~8=m_anq 59.&.96 all

partition pairs that have as the only block of their join the iro_n &Eza h ,E_:m.

: zﬁ, .uaio_.w reliability is m_ﬁn by: ~ i =

T s@,RPR ).
ny, m2€ C(R)
mvra={R}

For the case V' being a proper subset of V, the classes of states must be refined:

W " For each partition  of K we define one subclass for every subset of not more than

{V| blocks. A partial solution is assigned a subclass if the’selected blocks corres-

E pond to connected components of the branches with at least osn member of V', and
E ~ we'allow connected components isolated from K as long as they contain all or no
- members of V.

st

A naive implementation of this algorithm would be clearly infeasible for k=4,
but a careful implementation of the sum of products evaluation above makes at least
k=6 feasible.
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of terms in the update expression, but this number can be trimmed by careful
analysis of the computation and is therefore an upper bound. A lower bound for
the worst-case update cost is proportional to the maximum number of state com-
ponents of a k-clique, since it is possible to construct problems where all state com-
ponents are nontrivial. In the INDEPENDENT SET problem we have JC(K)| < 2%, and
every state component from K #.occurs twice:in the update expression; giving the-
upper-bound (k +1)2%*", In the DOMINATING SET problem, |C(&X)} is bounded:by
3*.. The number of minimal elements:of (1% @’) can be crudely:bounded by the
number:of injections w’~1, 25K+ 1;¢which: has- the sum over G.w&@ﬁﬁu.&w,
(k+1)t*1. In the CHROMATIC NUMBER problem, the lower and upper<bounds will’
be: p(k)-and p(k+1), respectively;. where:p(n) is the number -of: pdrtitionsof: n
elements: The remaining probleris-have éxponential index sets for the'statés and the-
update procedure is, ina straightforward.implementation, tWO-EXpOT because
all combinations of one index from €ach:of the (k+1) Jinvolved ik: ot
considered. We do not know:if:a one-exponential implementation:
. these'problems is possible. Sincé the asymptotic'e ponential beha
anything about the complexity;of: algofi

Problem 6 (Minimum vertex removal forbidden subgraph F). - .
For a fixed graph F the problem is: Given a graph G(V, E), which is the smallest
size of a vertex set such that its removal leaves a graph with no subgraph isomorphic
to F. s T T TN EMEE R v L : - o o
. This problem is a generalization of NDEPENDENT SET (where we-ask for the
_ minimum number of vertices that must be removed from G so.that the subgraph
induced by the remaining vertices has no subgraph isomorphic to K ; the complete
graph on two vertices). The algorithm we present is impractical E&» much more
. efficient implementation is:found; but it shows a large family of problems that can
. " besolved in lincar time-on partial k-treess.. <. . < i w =
. Let F=(VpEp). A member of the index set for K is a.set of:pairs, {(m, )},
/. where m is a bijection between'a subset K™ of K and a subset ¥.™of. Vz, and cis
the set of vertices of the union of ‘some connected comiponents of F(V— V™), the
subgraph of Finduced by Vg5V (the number of “these’ smponeats vary over the
fill range of choices from ‘the et of all connected comp snéiits of F(Vp= V™). The
‘Value s for a state 893.5«:.&.@@%&.5 {(m, )} means't t 1east § vertices must

‘e removed from B(K) §6 that"G(B(K)) contains no subgraph isomorphic to F and
| G(X UB(K)) contains 1o siicli Subgraph intersecting K ‘and'isomorphic to an induc-
7' ed subgraph of F, except as described by the pairs (m, ¢). By the laitr we mean that
G(K™UB(K)) has a mﬁ.«BﬁEWOBoBEo to F(Y™U &»um j&%orresponding bi- -

jection is an extension oFm:alnitially, all isomorphisms‘between
are.described in one state com
- PR

of F and subgraphs of G(K)"
and the state component valuézero. . B
** The update procedure consists of combining a set of at moston¢
for each K*, ue K’ and combining compatible mappings. We dojnot describe the
procedure in detail, because it is straightforward, clearly independent of the size of
. jal i jze of Foo o olvet T

(3 GRAPH K-COLORABILIT}
| 4) FONIAN CIRCUIT: A.“ﬁO 7;
S ORK RELIABILITY: 3 to 8

" When the final state of the root has been computed, delete from the indices all
pairs (m, ¢) such that V™ Uc is a proper subset of V. Should this make two indices
equal, select the smallest of the two state component values. For each remaining
state component, find the sum of the state component value and the size of the
smallest set hitting all V™ in the index, and take the minimum of these sums as the
answer to the problem. b

. Here the lower value has been demonstrated feasible in this pape hereas the
higher value is a possibility that may be approached after careful ‘analysis and im-
plementation of the update step.. 1 R R AR

4. Crude performance estimates ; Applicability and related work

Many graph optimization problems, NP-hard on general graplis, can be solved
in polynomial time when restricted to a special class of graphs: We have described
a design paradigm yielding linear time algorithms when the w_.»umm are embeddable
in k-trees with a fixed value of k. The examples cover a range of problems chosen
$0 as to suggest that the approach is generally applicable.

' 'We want to relate our work to three different previous approaches. First, it is well
known that many problems, NP-hard on arbitrary graphs, are polynomial when the

For each of the discussed problems we claim performance linear in |G|. This is
obvious once we notice that the embedding is given with a vertex removal order, and
we have (up to now tacitly) assumed that the next vertex for removal, and the infor-
mation required for the corresponding state update, can be found in constant time.
The work required for the update step is constant, except for Problem 5 where the
cost is constant under the uniform cost measure (charging unit cost to arithmetic
operations). The performance dependence on k is essentially given by the number
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graph is restricted to be a forest or a tree [9] or a series-paraliel graph [11]. Since
these are the first two members of the hicrarchy of partial k-trees, our results are
a natural generalization of those results. A general characterization of a family of
problems solvable in linear time on two-terminal series-parallel graphs was attemp-
ted by Takamizawa, Nishizeki and Saito {20}. They consider graph properties defin-
ed by means of a finite set of graphs which are forbidden configurations in n_.»urm
. with the property. Three different cases arise: when.a configuration. means a
L uug-.»vr an induced subgraph, or a homeomorphic subgraph. For any graph pro-
-pérty P defined in one of these ways they show that the decision problem:for P, the.

- 4minimum vertex deletion problem for: P, and the minimum -edge deletion problem

for P can all be solved in linear time on series-parallel graphs. The result carries over

. to partial k-trees, although their proof and notation do not. Asan example, one of

. . ‘the cases was generalized to partial k-trees in Section 3, Problem 6.:Another related

) elé—.ﬂp— wﬂg’w wuu;wwwmwl\wu i3 &w&ﬁf E v IHRal HY REATH

. %% The second nn_wﬂ& work is by Monien and m:aconoaww [14). .Eﬁw show :S." a
ST Euvan of problems have:polynomial time algorithms on: -bandwidth-constrained
S wnwurm Since a graph with bandwidth not greater than & is always a partial k-tree

‘variables, >
vertices represent the variables and which has an edge (x,X,).if and only if x and -
..k occur in the same RB-. the standard nonserial dynamic E.omBBBEw, Emo:EE
Z«%mgg. d nding an
embedding and vertex reduction order is a problem equivalent to what is known as
_the secondary optimization problem of nonserial dynamic programming.’ We have
shown, with Corneil [4], that the embedding problem is NP-hard for arbitrary &k but
can be solved in time O(n**2) for fixed k. There may be room for improvement,
since an embedding of a partial 3-tree can be found in time O(n log ) [3] as opposed
to O(n°) indicated by the general algorithm. This means that if the embedding is
not given with the graph our algorithms are no longer linear but still polynomial.
Our method can be seen as an extension of nonserial dynamic programming to a
wider class of objective functions. Note also that the independent set problem can
be directly translated to an instance of nonserial dynamic programming [2], but not
the other problems solved in Section 3. Rosenthal [17] has developed an algorithm
in the nonserial dynamic programming paradigm for NETWORK RELIABILITY which
is probably closely related to our algorithm for the same problem, although he does
not describe it in detail. He also showed nonserial dynamic programming optimal
when the terms are arbitrary functions of variables over a finite domain, in the deci-

cation-of a member of o ..-.._ ami

~iyesult is Gavril’s :2 polynomial time &monnznm for certain v_.oc_gm haﬁnn& to. _,,U

, .. :but not vice versa, our results can also. be seen as a generalization of this. Sng_n:n
) mnoE linear structure to.tree structure. At the same time, some problems easy on ,.,w

sm ‘Third, =o=ma:& aﬁmh:n E.om—.wBEm isa Eo»roa mo_. minimizing a. ?nncou 0»,
" a'set of variables which is‘a sum of terms, each being a function of a mcga of the -
see Bertele and Brioschi [6]. If we construct the interaction graph whose _‘.
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sion free computation model and for chordal interaction graphs [18].
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was found to be a partial 4-tree [1]. The wgrowﬂou eSBu_a used in'the 3«537
_ ing literature of algorithms for SBB__En&nou bo?.o_.wu are usually. partial 4-trees

and often mo_.ﬁm-uw_,»:a graphs. .H.r.n »grom:ou does =o~ generate the ; abedding,
‘but for k=<4itis easy t0 fi nd even oa _»nwo mn»vru 0: En other wwua ‘som »EES.
tions monoz;o large mncw_.o wa& Ea Eaa cannot cn mlc&m& E
values of k. As an example, the reliability problems for square m:& iEnw _.Em been
studied extensively in percolation: physics, 85 Eﬂﬂ:@ be mo_<nn on_u. by Zo::..
Carlo and other u%—.oxﬁm:ﬁ ‘meth e S
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u_wo:::u for the Euclidean ﬁ.ognn vac_oa t_.na En anﬂubu
ed number of parallel lines. .- -

iven n QSBE_ noER in:th %,Fu« En ﬁ.onn_.ho E.ov
oints Awaiwn—,o 5902253 E 8 BE_BEnhﬁ A

in.ncﬁ not only is 55 anoEnB Zm.&wa buti _n is %.rﬁn to a<
lution to -within about 15%:~The best approximation*algori y:
aranteed only to find a solution within two times the optimalsolution: [2] 1+
JIn vB&S. the vom_:oum of the. aanun voSR will =2&9»~9§ and _n an
,Ngnounwﬁ restrictions on :uo positions of the demand uo_ua are: ng._ﬁoa 19.
example, if the demand points are restricted to lieon a mEm_n line then the h.nnuﬁn
E.oEnB is solvable in O(nlog n) time {1,4]. - DR N
In this paper we consider the p-center problem where n_n demand points are
estricted to liec on a fixed number of parallel lines. ’ e

. Preliminaries . -

When dealing with any Euclidean p-centre problem, it is natura] to reduce the
.problem to that of covering the demand points with p circles of equal radius. To
solve the p-centre problem one must find the minimum radius R so that p circles
f radius R can be located so as to cover the demand points. In any such solution

t least one of the circles will be the minimum spanning circle of the set S of points
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