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of 1. The 1issue of the topology of manifolds specified by algebraic equations

one of the fundamental and classical problems of mathematics; at the same

ar- -, it Is

still a long way from belng solved and it is one of the problems
.e solution determines to considerable extent the level of progress in mathe-

of a *cs Some problems of this type are contained in Hilbert's 16th problem.

Plane second-order curves were investigated as early as the ancient Greeks,
*e third- and fourth-order curves were studied by Descartes and Newton. The
the
plogy of nonsingular sixth-order curves was completed as recently as 1969,

ge all the possible positions of ovals of an eighth-order curve are unknown
p today (see surveys [1,2]).

'ish-
t
a logy of curves of higher order turned out to be much more difficult;
f the
oned,
theor
nkov)
ucted
s of
the
ding

"2, Harnack proved in 1876 [3] that the maximum number of connected compo-

§s of a real algebralc curve of degree n on a projective plane does not exceed

(n—lglzfl 1s the genus of the curve.

were given as early as Harnack); I. G.
lbe called M-curves.

jl, where g= Curves with g + 1 ovals

jt (examples Petrovskii proposed that

iHurw1tz [4] and Klein [2] offered a new proof of Harnack's inequality. They
:yed a Riemannian surface formed by complex points of an irreducible curve.
Omolex conjugate defines the involution of a2 Rlemannian surface of this type.

*eal points of the curve form the set of stationary points of this 1nvolu—

If one of the ovals is removed, the remaining ones are homologically inde-

;'t on the Riemannian surface

OEP' ; (the film that effects homology together with
y"' pllage under involution forms a connected component of the Riemannian surface,
N ;te the assumed irreducibility). This implies that the number of ovals does
Oi, QXCeed g + 1. Thus, Harnack's inequality. was not only proved but also extend-
nJ{ ;‘arbitrary (not necessar;;x p_ene) algebraic curves.

——
;3- In a paper presented at the Internatlonal Mathematlcal Congress in 1900,

PTt included problems of the topology of real algebraic manifolds in his
Allerton Press, Inc.




16th problem. In particular, he specially singled out problems of the

arrange
ment of ovals of sixth-order curves in RP2 and of fourth~order surfaces in RP3

The accompanying table gives the number N of "logically possible" arrangements

of g + 1 ovals of M-curves of small de-
; 2
gree n in RP°.

n ’ g+1 ‘ N Y

The last column of the fable indi-
2 ; é i cates how many of the "logically possi-
4
6 11 4766 3 " . :
o o 268 287 e 10< 2ox 144 ble" arrangements are reallzed Regarc

ing sixth-order curves, Hilbert wrote
that he was convinced that it was not
possible for all 11 ovals to lie outside one another, but the proof did not
appear., Hilbert (6], and subsequently, Briusotti and Wieman and others, pro-
posed a variety of methods for constructing M~curves; in a series of papers,
Roon attempted to prove Hilbert's hypothesis regarding sixth-order curves (see

survey [1]). L Read || you cwld do i+too ]!

. In 1906, 2 baper by Ragsdale appeared [7], which contained extensive

experimental material and a number of hypotheses. Each oval of a real nonsingu-

(the other is diffeomorphic to a Moebius sheet). An oval is called positive (or

even)} if it lies inside an even number of other ones, and negative (or odd) if i
lies inside an odd number of ovals.

Ragsdale's main hypothesis was the following. Assume that an M-curve of
degree n = 7y consists of p even and m odd ovals. Then

12(p—m)— 1< 382 — 30+ 1. (1) 3
This inequality was Subsequently proved by Petrovskii, and we will call it the
Petrovskii inequality. Ragsdale gave examples that demonstrated that the in- g
equality cannot e improved. She also pointed out the relationship betwem1th9ﬁ>
problem of the arrangement of the ovals and btounds for the Kronecker characteris

tics and indexes of singular points of vector fields.

5. In 1932, Comessatti proved [3] an inequality for the Euler characterita
tic X of a nonsingular real algebraic surface; in modern notation, the inequalfgf
is

[x—2—t|< kM —d,
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bOrm =

gre © 1s the trace of the involution of the complex conjugate on the space of
blfogy classes generated by algebraic cycles; d 1s the dimensiocn of this space;
tf 1,1 is the Hodge complexification number. By applying this inequality to a
Kitable surface, it is possible to prove the Petrovskii inequality (as was re-
pErly pointed out by V. M. Kharlamov).

6. In 1923 and 1938, papers [9] and [10] of Petrovskii appeared, of which
Mﬁsecond contained a proof of inequality (1) and its generalization to curves

dd degree. Petrovskii's proof was based on the Euler-Jacobi formula:

2 g (x)/det (3f/9x) = O

‘i:sum 1z taken over all n2 roots of the system of eguations f1(x1, X2) =0, fa(xy, X2) =0,
ﬂé f1 and f2 are polynomials of degree n; g is a polynomial whose degree 1is

" than that of the denominator). Petrovskil proved, in particular, Hilbert's
thesis regarding the impossibility of all 11 ovals of a sixth-degree curve

e outside one another. This paper by Petrovskil initiated a lengthy series

;; udies in real algebraic geometry, and the entire subsequent development of
g *theory related either directly or indirectly to the ideas, methods, and
ﬁ 1ts of this pioneering study.

[
9]

7. In 1949, Petrovskii and Oleinik proved [11] an inequality analogous to

Comblmﬁv‘

1 for smooth real algebraic hypersurfaces in a space of any number m of mea-
i yics |
’ .

ments Tor hypersurfaces of even dimension in RP™ e.g., for algebraic sur-
es in three-dimensional real projective space, they obtained an upper bound
Orthelr Fuler characteristic as a function of the degree n of the hypersurface:
1
[t — 1< Tmy 1 (n),
-'?% Mi(n) is the number of entire points strictly inside cube (0, n)¢, which lie on

M hyperplane perpendicular to the principal diagonal of the cube and passing
m“ugh the center of the cube.

. 2
¢ For noneven-dimensional hypersurfaces of even degree, e.g., curves in RP

'Wiovskii and Zleinikx bounded the difference between the Euler characteristics

f the parts Into which this hypersurface divides a projective space. Thils bound
= 8 the form

[y — %= | < Tl (n).
<, 1t pecomes the Petrovskii inequality.

8. in 2921, Oleinik considered [12] spatial real algebraic curves cut out
Mg Ssurface o? degree ' by an algebraic surface of degree ns. The bounds she

i} . R T N oA
btained (see 12 velow azre not improvable, at least for curves on surfaces of

\ :



degree 2. 0Oleinik alsoc established separate bounds for the sums of even—dimé
sional and noneven-dimensional Betti numbers of algebraic hypersurfaces [13]‘$

9. In 1964-1965, papers by Milnor [14] and Thom [15] appeared, containg
bounds for the Betti numbers of real algebraic manifolds. These bounds arex;
weaker than those of Petrovskii and Oleinik. At the end of [15], Thom gave ap

this manifold (all Betti numbers being modulo 2). This inequality is a direci :
corollary of Smith's theory applied to the involution of the complex conjugatg, b

Thom ascribes 1t to Borel.

The Smith inequalilty precisely yields the Harnack inequality for algebraie ,
curves. Manifolds for which the Smith inequality becomes an equality are call&f%,
M-manifolds (at the suggestion of V. A. Rokhlin, who employed Petrovskii's term %
"M-curves" as a starting point). 1894

10, By 1969, D. A. Gudkov had completed his investigation of the topologé?f
of plane nonsingular real curves of degree 6 (see [16]). For the 11 ovals of’gn;
M-curve of degree 6, only 3 arrangements turned out to be possible: exactly one
oval contains other ones inside it, the number of the latter being only 1, 5, or_;
9, Gudkov's proofs are extremely complicated; they are an extension of the

methods of Roon and of the Italian school of algebraic geometry.

By using Gudkov's results, G. A. Utkin obtained (see [16]) considerable in-

formation regarding the topology of surfaces of degree 4 in RP3.

In considering curves of various degrees which he was able to construct,
Gudkov arrived at the following "periodicity hypothesis": the difference between
the number of even and odd ovals of an M-curve of even degree is congruent modulo

8 to the square of half the degree.

11. In 1971, V. I. Arnol'd (whom Gudkov had informed of his hypothesis)
proved a weakened version of 1t (with 8 replaced by 4) [17]. Arnol'd's proof
linked the study of real algebraic curves to the topclogy of four-dimensional
manifolds and the arithmetic of quadratic forms. The use of these relationships
led to progress in real algebraic geometry, facilitated by the employment of
powerful techniques of modern differential topology and algebraic geometry.

The four-dimensional manifold considered in [17] was a double covering of

a complex projective plane, branched along the curve being investigated.

12. Many real entities have complex analogs, sometimes quite unexpected

ones. For example, the complex analog of group Z, is group Z; the complex analog

ty

(5
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permutation group is an Artinian braid group; the complex analog of spaces
\)are spaces K(n, ; and the complex analog of the Morse theory is the Picard-
1chetz theory. (It would be very interesting to find a complex analog of
braic K~theory using the Cerf-Hutcher-Wagoner-Volodin theory as a "real"
ting point.) What 1is done upon complexification with a manifold with an

5? To answer this question, we specify a manifold with an edge by the in-
plity f(x)=0. For complexification, we algebrize this inequality, 1.e., we

2t xe it in the form f(x)==2. Thus, we arrive at a double covering which 1s
e :ched along the complexification of the edge of the initial real manifold.

; The parts into which an algebraic curve of even degree divides RP2 give rise
aic wo double coverings—manifolds of real dimension 4. The intersection index
tled yo ~dimensional integer homologies of this manifold specifies a unimodular
=rm fnear form, while the complex conjugate defines a form-preserving involution.

. Thus, the arithmetic of quadratic forms appear in the topology of real
o8y e algebraic curves.

f an 3

Sne | In addition to proofs of Gudkov's hypothesis modulo U4, Arnol'd's paper [17]

, or pined a number of new constraints on the arrangement of ovals of plane alge-
£ curves.

13. Gudkov's hypothesis was fully proved by Rokhlin [18] in 1972. Rokhlin

in- fned Gudkov's congruence to regular complete intersections [19], then to

} gular algebraic manifolds [20]. For M-manifold A of even dimension, the

f:n congruence has the form
, 3
seen 1 (A)=0(CA) mod 16
>dul§: fthe Euler characteristic, o 1s the signature, and CA is the complexifica-

A). In the noneven-dimensional case, the Rokhlin congruence involves a

_fure of a double covering of a surface with branching along A. Rokhlin

ffd several proofs for Gudkov's congruence; the later proofs are simpler and
1 P ﬁeneral, but the earlier ones contain some latent additional information.
"dpswl 5ﬂ. The congruences of Gudkov and Rokhlin were soon generalized by Kharla-

k fl 22], and also by Gudkov and Krakhnov [23] for M - 1- and M - 2-manifolds
\,- i-manifolds the left side of the Smith inequality is 21 smaller than
f

ght). Thus, for a plane curve of degree n = 2k consisting of -E(n——n(n——ﬂ

(a M ~ l-curve), the difference between the number of even and odd ovals
1gruent modulo 8 with k21,

Kharlamov obtained [24,25] new generalizations of the Petrovskii and
1k inequalities. 1In these generalizations, the Euler characteristics of




even-dimensional real algebraic manifolds are bounded 1n terms of the Hodge num-
bers of suitable complex manifolds. For the Euler characteristic of a real
smooth manifold of dimension 2k, Kharlamov obtained the inequality

[x— 1< h#k—1, (2)
where hk’k is the average Hodge number of the comblexification of this manifold.
Zvonilov proved in [26] that for a nonsingular hypersurface of degree n in cp™
the right side of inequality (2) coincides with the right side of the Petrovskii-

Oleinik inequality. Thus, Kharlamov's inequality is a direct generalization of
the Petrovskii-Oleinik inequality.

Kharlamov regards a noneven-dimensional manifold as the edge of a 2k-dimen-

sional manifold with an edge, and proves the following inequality for the Euler
characteristic of the latter: '

|2 — 1]< hek 1,

where hk’k is the Hodge number of the double covering of the complexification of

the manifold with edge which is branched along the complexification of the edge.
For noneven-dimensional hypersurfaces in CPm, he obtained precisely the Petrov-

skii-Oleinik inequality, while for curves on surfaces he obtained the 0Oleinik
inequality.

16. Other generalizations of the Petrovskii-Oleinik inequality were ob-
tained by Arnol'd in [27], on the basis of recent progress in the local theory
of singularities of differentiable mapplngs. Arnol'd considered a finite-
multiple critical point of a real analytic function of 2k variables, and bounded
the index of the gradient of thils function at the critical point in terms of the )
Hodge numbers of the mixed Hodge structure defined by Steenbrink [28] in homolo-hf

gles of the nonsingular local manifold of the level of the function. This boundwéf
has the form

lind| < A" (3)

(the subscript 1 indicating the Hodge number on the space adjoint to the eigen-
value, equal to unity, of the monodromy operator).

To bound the index of the gradient of a function of an odd number of vari-

ables,it suffices to increase the number of variables by 1, adding the square 9
the new variable to the function.

When the function 1is a homogeneous polynomial, inequality (3) becomes the
Petrovskii-Oleinik inequality.

10



17. Progress in singularity theory has made it possible to bound from
bove not only the index of a singular point of a gradlent vector fileld, but
gs0 the index of an isolated slngular point of an arbitrary vector field. It

s proved by Arnol'd in [27] that the modulus of the index of a singular point
b a vector field in RP™

]
§

whose components are homogeneous polynomials of degree
j- 1 1s bounded from above by the Petrovskii-Oleinik number:

jind | < Ity ().

fe proof is based on the Levine-Eisenbud- Khimshiashvill . formula [29], which
Wresses the index of a singular point of a vector field in the form of the
} ature of a quadratic form on a local algebra corresponding to a finite-

A xtiple Singular point ("algebra of functions on merged singular points").

When the vector fileld 1is the gradient of a homogeneous polynomial of degree

the inequality in question becomes the Petrovskii-Oleinik inequality. There-

9, Arnol'd called his inequalilty the generallzed Petrovskii-Oleinik inequality.

18. The question of whether equality 1s attained in the Petrovskii-Oleinik

}uality has been resolved only in the simplest cases: for plane curves (Rags-

for fourth-order surfaces.
Khovanskii proved in [30] that equality
ttalned in the generalized Petrovskii-Oleinik inequality for vector fields,

onstructed homogeneous polynomial vector fields of degree n - 1 in R™ with
Best possible index (equal to Mnm(n)) -

e); for curves on second-order surfaces (Oleinik);
*lity is attained in all these cases.

Moreover, he constructed fields with
trary indexes from —Ilw(n) to +I.(n) to Hm(n) congruent modulo 2 with Hn(n) (the

Fxes of all fields of fixed degree are ildentical modulo 2, since complex roots
I pairs)

F©19. Khovanskil also obtained [30] bounds for the sum 1nd+ of indexes of

K lar points of a polynomial vector fileld in a region bounded by an algebraic

brsurface. Assume that the components of the field are of degree nr—l

.y nm_ly
;e the hypersurface is of degree n

o+ Conslder the parallelepiped [1(0 n). We
R k=l -

;{e by I(a, n) the number of integral points z inside this parallelepiped for
( Iny—no 282, <Em+ny, and by 0O(n, no) the number of integral points for which

R 222, <<Zn,.  For some condition of nondegeneracy (which is usually satisfied)

v

3 lind, | <O(n, ny), |indy —ind.|<I(n, n,), |indy + ind- | < I1(n, 0).
he Inequalities together with the obvious congruences modulo 2 comprise the
ﬁete system of equations of existence of the field with these data, in par-

‘&P With sum of indexes ind, for singular points on one side of the hyper-

:ce and ind_ on the other side of it.

The proof employs an expression for

11




the indexes in the form of signatures of suitable forms, and the Eulier-Jacobi
formula. It 1is a direct extension of the work of Petrovskii [10] and Petrovskii
and Oleinik [11], and shows, incidentally, that Petrovskii's paper [10] already
contained many elements of the proof of the signature formula for the index,
which was obtained in [29].

20. Kharlamov extended generalized Petrovskli inequalities to algebraic
manifolds with singularities. One of his generalizations involves a mixed Hodge
structure of a nonsingular local manifold of level A of a homogeneous function
constructed on the basis of a given hypersurface A of dimension 2k. In this case

Kharlamov obtained the following generalization of the Petrovskii inequality:

Lx (A) — 1< Ht* (A).
A double covering is adduced in the noneven-dimensional case. For plane curves

of degree 2k with s double points and t return points, the Kharlamov inequality
has the form

Xy — A | < 3k2—3k+ 1 —s—2,
[ Xy —

where x, are the Euler characteristics of the parts into which the curve divides
the projective plane.

In [31], Viro gave a number of other constraints which involve not only the
type of the singular points but also their mutual disposition.

Extensive studies of disintegrating sixth-order curves were made by Polotove
skii [32,33]. He discovered, in particular, the link between this issue and the
"complex orientations" to be discussed below.

21. In addition to the issue of the topological classification proper of
real algebraic curves, which was resolved by Harnack's theorem, and the issue of
isotopic classification (Hilbert's question of mutual disposition of ovals), ther
is the no less important issue of the connectivity components of a manifold of
real nonsingular plane curves of fixed degree.

The points of such a component constitute curves of the same isotopic type.
Rokhlin pointed out in [34], however, that curves of the same isotopic type do ]
not always belong to the same component; isotopy cannot always be realized in: LS
the class of smooth algebraic curves of fixed degree nXx5. :

An invariant which makes it possible to distinguish connectivity componeﬂt‘w
was essentially considered by Klein [35], who thoroughly investigated fourth-
degree curves. The ovals of an M-curve divide a Riemannian complexification
surface into two parts. Each part is an oriented real two-dimensional manifol€

on
whose edge is made up of ovals. Consequently, each oval obtains an orlentati

12



‘§efined ife within simultaneous variation of the orientation of all ovals). This
;iientation was called the complex orientation by Rokhlin. Two M-curves from

ée connectivity component of a manifold of curves of given degree are isotopic
ffh allowance for complex orientations. Therefore, M-curves with nonequivalent

fmplex orientations that are isotopic without allowance for orientations belong
B different connectivity components.

A detailed survey of all findings concerning complex orientations of M-

ives, and of complex characteristics of real curves in general, may be found
?Rokhlin's paper [36], which also gives a number of known constraints on the
?topic type of a plane curve that do not appear in the present survey
irengthened Petrovskii and Arnol'd inequalities; inequalities of Mishachev and
inilov, Viro-Zvonilov, Rokhlin [34], and others).

., 22. The problem of classification of surfaces of fourth degree in RP> was
Jinitively solved by Kharlamov as a result of a series of studies [37-39],

;¢h yielded both new constraints on the topological and isotopic types of the
ifaces and new methods of constructing surfaces of specified types. Kharlamov
ithe first to employ the powerful resources of modern algebraic geometry in

§ area. A complex nonsingular surface of fourth degree in CP3 is a manifocld
?ype K - 3. BSuch manifolds have been studied in detail; the corresponding
gle spaces have been Investigated; 1t has been determined how algebraic mani-
?s are arranged among all such manifolds. Kharlamov was able to use this
ﬁrmation to study real surfaces. Thus, he obtained a completely new method
@onstructing examples of fourth-degree surfaces.

Kharlamov's results yield not only a topological but also an isotopic clas-

igation of nonsingular surfaces. His proofs made some use of arithmetic
brmation cbtained by Nikulin in [40].

23. Nikulin was able in [40] to completely arithmecize the problem of
l1iing the connectivity components of manifolds of nonsingular real alge-
fp surfaces of type K - 3. He placed every even-dimensional real algebraic
{iOld in correspondence with a triple consisting of the following: 1) an
her—valued symmetrical bilinear unimodular form (form of intersections on
ﬁé of integer-valued homologies of moderate dimension, reduced modulo the

i?on); 2) an involution (induced by complex conjugacy); and 3) a "polariza-
;( "

¢y specified by an invariant or anti-invariant cycle (suitable degree of
prplane section).

,fNikulin constructed the complete system of invariants of such triples and,
fnumber of particularly interesting cases, he also found all the relation-

FS among invariants. TIn particular, he established a one-to-one correspondence

13




between classes of triples with suitable values of the invariants and the con-
nectivity components of a manifold of nonsingular real surfaces of type K - 3.
He obtained the components, e.g., for a manifold of double coverings of a plane

which are branched along plane curves of sixth degree (thus, for a manifold of
most plane curves of sixth degree); for a manifold of nonsingular surfaces of
fourth degree in RP3; and for intersections of cubics and quadratics in RP)4 and

intersections of three quadratics in RPS.

24. Viro [417] developed entirely different methods of constructing examples
of real algebraic manifolds with the given topology. In particular, he construct-
ed M-surfaces and M-manifolds, i.e., he established the unimprovable nature of
the inequality (a consequence of Smith's theory) for the sum of all Betti numbers

of a real manifold mocdulo 2.

25. Studies of bounds of topoclogical invariants of singularities in terms
of Newton polygons led A. G. Kushnirenko to the hypothesis that what is essentilal
for the topological complexity of an object is not the degree of the equation,
put rather the number m of monomials that appear in the polynomial with nonzero
coefficients. An elementary example of a theorem of this type 1s Descartes'
theorem, which estimates the number of positive roots of a polynomial in terms
of the number of sign changes 1n the sequence of 1its coefficients. If there arel,
few monomials, then there are also few sign changes. Thus, we have the problem 9
of "oligomials," i1.e., the topology of objects specified by polynomials of arbi-

trarily Large degree but with a restricted number of monomials.

It was recently shown by Sevast'yanov that the number of zeros of an m-omial
on a plane algebraic curve of degree n is bounded by a constant C(m,n) which is‘ﬂ‘
independent of the degree of the m-omial. Viro improved his bound, obtaining :

C(m, n) = —;‘:—’(m—l)m(m+ 1) (m+2)+

m4+1)m@m—1)(m—2)
24

+n[ +3(m—1)].

Khovanskii and Gel'fond proved a number of corollaries of the oligomial hypothe=

sis. Thus, they cbtained a bound for the number of zeros of superpositions of
real

oligomials. Their results can be carried over to the case of a field of
hment

Licuville functions, obtained from a field of rational functions by attac
of a finite number of integrals and exponents of integrals. They proved that
the real case, the Liouville functions have a finite number of zeros. For exal
cos x is not a Liouville function in the real sense, although it is in the com=
plex sense. These results give hope that the oligomial hypothesis is also val'
in the more general situation, e.g., that the number of ovals of curve £=0

be bounded in terms of the number of monomials of polynomial f.

14



26. Some unresolved issues.

1) Give an asymptotically exact bound for the number of connected components

§; a space of nonsingular real algebralc hypersurfaces of degree n.
2) Is equality attained in the Petrovskii-Oleinik inequality?

3) Is the Ragsdale hypothesis valid? This hypothesis can be reformulated as
jllows. Assume that f(x, y, 2) 1s a homogeneous polynomial of even degree;
: ifjﬁ% RV. is a local manifold of level F,=-+e. Ragsdale's hypothesis involves

junding the numbers of components
bo (RV4) < K2 (F4),  bo(RV-) < hi*(F2) +1
;terms of a mixed Hodge structure (for suitable sign of f).

4) Give unimprovable bounds (in terms of the degree or the Hodge number) for

B individual Betti numbers of real algebraic hypersurfaces, in particular for

P number of components bO‘ Perhaps it 1s easier to bound the numbers by, bo—0b,
Lo +bs, .., 2s well as combinations of local Morse type numbers M, Me—M, Mo—Mi+ M., ..
?gis the number of critical points of index 1 that merge at zero for any Morse-

ation of a homogeneous equation of a hypersurface).

ot

;"SY‘Whégmigwgggmié;éést number of handles of a component of an algebraic sur-
k of degree n in RP3? o s
B e T T e o e e e et e e e e o™

6) Bound the number of ovals of a curve whose equation is an oligomial, in

;;s of the number of its terms.
7) How many nonconvex ovals can a plane algebraic curve of degree n have?

fé 8) Does the isotopic type of a pair (plane M-curve, its complex orientation)

1;rmine the connectivity component in space of nonsingular curves of fixed de-

3 9) Investigate the fundamental complement group T to the set of singular
3frsu“faces in the complex projective space of all hypersurfaces of fixed de-
f in CPm, and find the corresponding monodromy group (representation of Ty by

}morphisms of the homology group of the hypersurface).

- 10) Assume that P, Q, and H are polynomials of fixed degrees of x and y, and
Fme that ”hy=EﬁPd»+Qdycwer the oval H = h. What is the largest number of

005 of I(n) when I(h) is not identically zero?

2‘11) Assume that P and Q in the system X = P, § = Q are polynomials of second
?ee, while H is the first integral (not necessarily polynomial). How many

%
Pt cycles can be generated from the components of the level lines of H for

11 perturbations o F and Q that leave them as second-degree polynomials?

A
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12) Assume that P and Q@ in the system ¥ = P, ¥ = Q are power series that

begin with homogeneous polynomials Pn and Qn of degree n. Is it true that for

almost all pairs (Pn, Qn) the number of limit cycles that are generated from zZero

under small perturbations of the system 1s bounded by a constant that depends
only on n?
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