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It was proved uver a centurv ago that an algebraic curve C in the real projective plane,

{n-1l)(n- 2
of degree n, has at maost * ),\ )
’ then each of its components is a topological circle. A circle in the projective plane either

| connected components. If C is nonsingular,
separates it into a disk (the interior of the circle) and a M5bius band (the circle’s exterior),
or does not separate it. [n the former case, the circle is an ovel. If C is nonsingular, then
all its components are ovals if n is even, and all except one are ovals if n is odd. An ovalis
} ineluded in another if it lies in the other’s interior. The topologicai type of (a nonsingular)
C is completely determined by (1) the parity of n, (2) how many ovals it has, and (3)
the partial ordering of its ovals bv inclusion. We present an algorithm which, given a
hoemogeneous polvnomial f(z,y,z) of degree n with integer coefficients, checks whether
the curve defined bv f
algorithm’s maximum computing time is O{n?7 L(d)), where d is the sum of the absolute

= 1) is nonsingular, and if sn, computes its topological tvpe. The

values of the integer coetficients of f, and L(d) is the length of d.

! Introduction

g.! begin with an example of what our algorithm does. Let f(z,y, z) be the homogeneous
ynomial

‘i R 22y
!EP equation f - () defines an algebraic curve (7 in the real projective plane. Let us
A¥ a picture of C in two steps. Suppose that points in the projective plane have
Mogeneous zyz coordinates: then the points for which z - 1 constitute an affine zy-
e imbedded in the projective piane. The portion of € lving in this zy-plane is the
of the equation

9.3 2.2
yzt - 227y + rz EA

Dy’ R TR P VAR SO S}

's shown on the left in Fig. 1. Using the standard disk model for the projective
€, the full curve (" is shown on the right in Fig. 1. (' is of degree four, and happens
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Figure 1: Sample algebraic curve.

to be nonsingular, so the facts cited in the Abstract tell us that C has at most four
connected components, each of which is an oval. Recalling that antipodal boundary
points are identified in the disk model of the projective plane, we can guess from Fig. 1
that C has two components, but it may not be obvious whether one includes the other
or not. Given this particular f(z,y,z) as input. the algorithm we present in this paper
determines that C has two ovals, one included in the other.

Our algorithm divides naturally into two main steps. To describe them we use the
notion of a cellular decomposition (cd) of a topological space. Let us recall the limited
form of it we need here (cf. Massey, 1978, p. 54ff.). For anv i > 0, an i-cell is essentially
(to be precise. is homeomorphic to) an i-dimensional open ball. Thus a 0-cell is a
point, a l-cell is an “open arc”, a 2-cell an “open region”, etc. Let X be a subset of the
projective plane #P?; we can view X as a topological space with the topology it inherits
from RP?. A cellular decomposition of X is a nested sequence X° C X! C X? = X
of closed subspaces, such that X° consists of finitelv manv 0O-cells, X! — X© consists
of finitely many disjoint I-cells, and X% — X! consists of finitely many disjoint 2-cells.
Given a cd D of X, and a subset ¥ of X, we say that D is compatible with ¥ if Y is the
union of certain cells of D. Fig. 2 shows a cd of the projective plane compatible with
the curve that we looked at in Fig. 1. This cd consists of eleven 0-cells, twenty-three
l-cells, and thirteen 2-cells.

We will be much concerned with the precise arrangement of cells in the cd’s we work
with. Informallv, two {distinct) cells of a cd are adjacent if thev touch: formally, this is
the condition that their union be connected. Clearlv adjacency is a symmetric relation
on a cd. Thus, we can represent it as an undirected graph which has a vertex for each
cell of the cd. and an edge between every pair of adjacent cells. This is the connectivity
graph of the cd, and is the basic data structure for our algorithm.

The first main step of our algorithm, the subject of Sections 3-6, starts with the input
polvnomial f(z.y, z). determines whether the curve (" defined bv f is nonsingular, and if
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avel along an affine line towards infinity, the extended lines we have defined are
Jogical circles.

ame spirit. what is considered to be a true algebraic curve will be obtained by
certain of the points at infinitv to an affine curve. First let us join the affine
s and the points at infinitv into a new object: the real projective plane RP? is the

affine plane extended by the collection of all points at infinity. It is standard to

v r:vmzxrks of Gudkoy (1974, p, v RP? as a closed disk (see e.g. Kendig, 1978, p. 6), with antipodal points on the
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nted l.. Naturally any particular point of [, is the point at infinity for the affine
through the origin which approaches it. and for all affine lines parallel to that line.
ince RP? has more points than the affine plane. to give its points coordinates we
t somehow expand the coordinate system we used for the affine plane. We do so
y homogeneous coordinates. We start with the convention that each point (z,y) in
Qfﬁne plane is assigned the coordinate triple jz,y,1; as a point of the projective

i

e. We further adopt the convention that for anv nonzero real number ¢. all triples
y,t] correspond to exactly the same point of the projective plane (so a point in the
ective plane has a whole equivalence class of coordiate triples, any one of which is
homogeneous coordinates” ). By definition, there is no point in the projective plane
h coordinate triple [0,0,0]. As we saw, any point at infinity 1s the limit point of
e affine line through the origin. Consider an affine line through the origin which
‘contains the affine point (a,b) different from the origin. All points on the line are
e form (ta.tb), for t real. Hence, as we travel out to infinity along the line, the
tive coordinates of the points we pass over can be written in the form la.b,1/1]
steadily decreasing (in absolute value). Hence it is natural to assign the coordinate
[a,b,0] to the point at infinity by which we extend this line. Note that with this
inate assignment, we indeed approach the same point at infinity whether we travel
“to infinity along the line by making t large positive or large negative.

order to have algebraic curves in the projective plane, we must have polynomial
tions which define them. Since points in the projective plane have coordinate triples
¥, z], we need trivariate polynomials f(z,y, z). Furthermore, it must be the case that
% 2) = 0 if and only if f(tz,ty,1z) = 0 for nonzero {. We achieve this by limiting

selves to homogeneous polynomials, i.e. polvnomials in which every monomial has

2
z

¢ same total degree. For example, the polynomial y*> — 22 + #z - z? is homogeneous,
ty? — 22+ z - | is not. It is easv to see that any homogeneous f has the property
nt f(z,y,z) = 0 if and only if f(¢z,ty,{z) = 0 for nonzero ¢.

Now suppose we have a defining polvnomial g(z,y) for an affine curve, sav y? -
.+ z -1, and suppose we construct the “homogenization” of it, namely f(z,y,z) =
s~ 22+ 2z - z2. Clearly, for any point (a, b) of the affine plane, q(a b) = 0 if and only
fla,b, 1) = 1. Hence in the affine plane. f defines the same curve as g. As one might
pect, the manner in which we want to extend affine curves is so that they contain
$heir limit points on l.. It turns out that all such limit points will be solutions of the
#quation f(z,y, =) — 0 which lie on I

which is essentially a repetition of our original derivation of homogenous coordinates. If

As we now show, this follows {rom reasoning

,,!e are approaching infinitv on an affine curve, then in projective coordinates, we have
..Points [z, y 1 in which either ». or y. or both, are approaching infinitv. Suppose without
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loss of generality that y is. We can represent the points we are looking at as
Hence as y approaches infinity, we approach the point [z/y, {,0]. By a stra
continuity argument, the fact that all points [2/y, 1,1/y] satisfy f =0 i
f(2/y,1,0) = 0. Thus every point we want to add to our affine curve is ig
the solutions of f = (. ;

We define an algebraic curve in the projective plane (a projective
the point set (in the projective plane) defined by a homogeneous pOlynom'w
f(z,y,z) = 0. Obviously for any homogeneous f(z,y,z2), we can get a certalnd
g(z,y) (which in general is not homogeneous) by evaluating f at z = |. gd
tain affine curve, which we call an “affine representative” of the projective cu
by f. We say that the curve f = 0 is the “projective completion” of the
defined by g. The projective completions of affine lines are just the extended
we began with above.

Let C be the projective curve defined by f(z,y, z) = U for some f. A point
Jective plane, with homogeneous coordinates [z, y, z|, is a singular point of C §
= fo(2,y,2) = fy(2,9,2) = f.(2,¥,2) = 0 (f, denotes the partial derivative
respect to w). C is nonsingular if it has no singular points. Walker (1951, pe#
pictures of some of the different kinds of singularities which can arise. Projectig!
can have points on I, which are not limit points of the curve’s affine repre
these are always (isolated) singular points of the curve. Where g(z,y) = f(a
singular points of f in the affine plane correspond to the common zeros of g, 1
(see Walker, 1951, p. 54).

Pictures of singular curves such as Walker’s may serve to make plausible
that a nonsingular projective curve is a compact one dimensional manifold:§
1978). This captures such observations as “nonsingular curves do not cross th
and “nonsingular curves do not have isolated points”, that the pictures st
compact one-dimensional manifold is known to be homeomorphic to a disjoin
topological circles (Milnor, 1965). A topological circle is known to have t
imbeddings in the projective plane (Wilson, 1978). One is what we called an
other is like the imbedding of a projective line in the projective plane {e.g.
second kind of imbedding in the projective plane). Harnack’s theorem (Wi
which we cited in the Abstract, established that a projective curve of degree?
most g"—_%‘ﬂ) + 1 connected components. It is known that for a nonsingulaf
even degree, each component is an oval (Wilson, 1978). For a nonsingular cu
degree, one component is like a projective line, and all the rest are ovals.

It is illustrative to consider nonsingular curves of degree two, i.e. conics.
in the affine plane we have a variety of nonsingular conics, i.e. parabolas, hyp
circles, ellipses. The results we have cited say that a nonsingular projective &
at most (ﬂ)i(z;ﬁl + 1 = 1 components, and since degree two is even, this comp

an oval. Thus the projective completion of any nonsingular affine conic is an OVeLEg

projective plane. Consider, for example, the hyperbola zy — 1 = 0, which in .
plane has two “branches”: its projective completion is the nonsingular projecti
zy —z = 0. Setting z = 0, we see that it has the points ‘1,0, 0] and [0, 1.0) onl, >
the two branches “connect up” on [, and so in the projective plane the curve
of a single oval.

Projective curves '} and 'y have the same topological type if there isa ho”
phism of the projective plane to itself which maps ¢ onto (. If C is a nons .
curve defined bv f(z,y,z} = 0, then the parity of the degree of f, the number 3
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Figure 2. Cellular decomposition of projective plane compatible with sample algebraic
curve.

%0, constructs a (connectivity graph for a) cd of the projective plane. The key component
here is construction of a certain cylindrical algebraic decomposition (cad) of the affine
Plane z = | (see e.g. Arnon et al., 1984a, for information on cad’s). This cad is a cd
of the affine plane, and the cad algorithm from Arnon et al. (1984a, 1984b) that we use
constructs its connectivity graph, so the only work that remains for us is to extend it to
a cd of the projective plane and construct the enlarged connectivity graph. Fig. 2 shows
the c¢d of the projective plane our algorithm produces for the sample f(z,y, z) given at
the beginning of this Introduction. Identification of the cells of this cd that belong to C
is straightforward.

The second of the two main steps of our algorithm, discussed in Section 7, assumes
that the input polynomial f(2,y,2) defines a nonsingular curve C, that a cellular decom-
Position D* of the projective plane compatible with C' has been constructed, that D*’s
connectivity graph has been constructed, and that the cells (vertices) in the connectivity
graph which belong to (" are marked in some fashion. The topological -type, i.e. the
number and ordering of ovals, of C is then computed. The key idea is to reduce the
determination of the ovals and their ordering to a series of connected components and
Euler characteristic computations in appropriate subgraphs of the connectivity graph.

Section 8 summarizes our discussion with a main algorithm TOPTYP, and in Sec-
tion 9 we trace TOPTYP for the sample f(z,y, z) that we considered above. Section 10
contains an analysis of the TOPTYP’s maximum computing time, which we show to be
()(n”L(d)s)A This is not out of character with other algebraic algorithms, such as poly-
Nomial factorization (Kaltofen, 1982), and indeed the most costly parts of our algorithm
are standard algebraic algorithms for such tasks as algebraic number computations, root
1solation, and resultant computation. And as for other algebraic algorithms, despite a
high worst-case computing time bound. our topological type algorithm has a useful range
of application in practice. It has been implemented and applied to examples such as the




e

"
B
]
1

ST

-le D. S. Arnon and S. McCallum

\
one considered above.

We summarize basic properties of algebraic curves and homogeneous coordinates,
and provide background on the facts cited in the Abstract. in Section 2. The purpose
of this material is to establish connections between the conventions and viewpoints of
algebraic geometry and those of computer algebra. The knowledgeable reader may skim
or skip it.

We were led to seek a topological type algorithm by remarks of Gudkov (1974, p.
67} Polotovskii (1973) gave a topological tvpe algorithm for so-called ‘rough’ curves of
»ven degree. but did not discuss 1ts feasibility or computing time. His approach is quite
different from ours: he examines the curves f(.. Y.zl - 2" (n= degree( f)), for variogs
small values of €. We have recently learned of an independentiv developed topological
tvpe algorithm bv P. Gianni and C. Traverso (1983). which has some resemblance to our
method. but does not make use of cellular decompositions. As noted by Fuks (1974), one
could get a topological type algorithm directlv from a decision procedure for elementary
algebra and geometry (e.g. Tarski. 1951, Collins, 1975, or Ben-Or et al., 1986), but it
seems unlikely that such an algorithm would have a polynomial time bound.

The algorithm we give in this paper existed in rough form by summer 1982, and was
presented in a seminar at Purdue University in February 1983. An expanded version of
this paper has appeared as Arnon & McCallum (1983), and an abstract of it as Arnon
& McCallum (1984). A graph data structure for cad’s similar to the one we use in this
paper is employed in the cluster-based cad algorithm {Arnon, 1988).

2 Algebraic curves

Kendig (1978) and Walker (1951) provide additional coverage of the material contained
in this section. Real affine space is euclidean space without the notions of distance and
angle (Walker, 1951). An important difference between euclidean and affine space is that
the usual distance function gives euclidean space a (metric space) topology, which affine
space lacks. The cylindrical algebraic decomposition algorithm makes essential use of
this topological structure of euclidean space. In this paper, the term “affine space” is
mainly useful to us as a means of referring to a certain distinguished subset of projective
space. We view affine and euclidean space as essentially the same, i.e. we take for
granted the existence of the usual topology on real affine space whenever we need it. We
write £' to denote i-dimensional euclidean space.

Curves in the affine plane defined by polynomial equations g(z,y) = 0 are called
affine algebraic curves. Throughout this paper, when we say “curve”, we mean what is
usually referred to as a “real curve”, i.e. the real (and not, for example, the complex)
solutions to a polynomial equation such as g(z,y} = 0. It has long been the prevail-
ing viewpoint in algebraic geometrv that an affine curve is only a portion of some true
algebraic curve. This point of view is motivated bv consideration of the intersections
of lines in the affine plane. Two lines in the affine plane have exactly one intersection.
unless they are parallel, in which case thevy do not intersect. We can remove this excep-
tional behavior of parallel lines by extending affine lines to contain a “point at infinitv".
and specifving that lines which are parallel in the affine plane have the same point at
infinitv. Now we can say that any two (extended) lines, without exception, have exactly
one intersection. Since we get to the same point at infinity no matter which direction
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not completed until 1967. For degree eight and up the problem is unsolved.
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defined bv p(z,y, z). We mav assume that the input polynomial f(

Z.y,z)1s squarefree.
Let n be the degree of f, and let

F@oyz) - frley)z® T s faley),

where ) < r < n, each fi(z,y) is homogeneous of degree 7, and fela,y) # 0. Suppose
fa(2.y) = 0. Then z divides fl2,y,2), but 22 doesn’t divide f(2,y,2), since f(z,y,2)
is squarefree. We can therefore write fle,y,2) = = o(z,y, 2), where

1

M%%ﬂ E fr('tvy)znir” } --*‘fn-!('b-y)
and fn i{z,y) # 0. I, is contained in the curve Cy, hence if C, has any point on
lx (that is. if either f,_ (0, 1) =0, or fa-1(1.y) has a real root), then Cy is singular,

we report this fact, and exit from the algorithm. If Cy4 does not meet ls, then Cyis
nonsingular if and only if C,, is nonsingular. Moreover, if Cy is nonsingular, then Cy
and Cy have the same number and arrangement of ovals. Hence we can replace f by ¢:
since Cy does not meet I, conditions (C1) and (C2) are trivially satisfied.

Suppose now that f,(z,y) # 0. Let us transform f(2,y,2) to F(X,Y, Z), such that
F(0,1,0) # 0 (so that the point [0,1,0] is not on Cg). We know fa(z, 1) # 0, since
otherwise f,(z,y) = 0. Thus there is an integer A such that fa(X 1) £ 0. Define
F(X,Y,Z) by

F(X.Y,Z) = f(X + Y)Y, Z)

Then F(0,1,0) = f(A1,0) = fa(A1) # 0. Let G(X,Y) = F(X,Y,1) # 0 and let
D(X) be the discriminant of G(X, Y). Then D(X) # 0, since G(X,Y) is squarefree
(and nonzero). Find an integer x with D(x) # 0. Change variables as follows: X =
W + gU, Y =V, Z=U. Since W = X _ kZ, the line X = xZ (which is the
projective version of the affine line X - k) corresponds to the line W = 0 (which is the
line at infinity in U/, V, W coordinates}. Let

E(UV.W) = F(W +&U, V, U).

£ is squarefree and homogeneous of the same degree as f. Observe that E(0,1,0) =
F(0,1,0) £ 0. We have E(U,V,0) = F(sU, V,U), so that E(1,V,0) = F(e ,V,1) =
G(x,V), a nonzero squarefree polynomial (since D(k) # 0). Thus E(U,V, 0) is nonzero
and squarefree. Hence C'g satisfies conditions (C1) and (C2).

It remains to show that (1) Cy is nonsingular if and only if Cg is nonsingular; and
(i) C; and Cg have the same topological type. Let T(z,y,2) = (z,y,2 ~ 5z — Ay).
Then T is an invertible linear transformation of E3 with inverse T-1(U, V, W)= (W -+
rRU + AV, V., U). We have

E(UVWY = f(T"YU,v,W)) .

Applying the chain rule for differentiation. we obtajn

Ey s 01 Iz
Ey N B U fy
Ew 1 0 0 f.

The matrix on the right side of this equation is invertible. Hence by the two preceding
cquations. {{", V. 1) is a singular point of (', if and only if T-Y(U,V,W) is a singular

e
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Figure 3: Sample cylindrical algebraic decomposition of E2.

#oint of C;. This proves (i). Since T is an invertible linear transformation of E3 T
fnduces a homeomorphism T. RP? — RP? given by Tz, y,z] = [T(2,y,z)i. Clearly T
c}rries C; onto Cg. Thus Cy and Cg have the same topological type: so (ii) is proved.

" The reader may wonder why we do not transform C;y to a curve which has no inter-
sections with .. Ragsdale (1906, p. 377 footnote) notes that there exist curves which,

for any linerz_x__r_"_g_}}_a;r‘}gg__qg_SQQLQQpates, will have points on lng-

-4 Decomposition and adjacencies of the affine plane

We will discuss testing the curve C for the presence of singularities later in this section.
Assume for the moment that we have determined that C 1s nonsingular, and we wish to
construct an appropriate cd of the projective plane. As detailed in Section 2, we view
the projective plane RP? as the disjoint union of an affine plane and a line at infinity.
Our strategy is to separately construct decompositions and connectivity graphs for the
affine plane and I, and then to join the two connectivity graphs by adding edges that
join a cell of one decomposition that is adjacent to a cell of the other. Thus we arrive at a
connectivity graph for a decomposition of the projective plane. Both the decomposition
of the affine plane and the decomposition of the line at infinity are constructed so as
10 be-compatible with C. and so that the cells belonging to C_are marked in some
fa-S_hLog; Thus. on completion-of these QLeps we have a decomposition of the projective

B U
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plane that is compatible with €', and in which the cells belonging to C are marked. In
this section we discuss the decomposition of the affine plane. In Section 5 we discuss
the decomposition of the line at infinity, and in Section 6, determination of adjacencies
between cells in the affine plane and cells in /..

Assume now that f(x,y,z) is squarefree, homogeneous, and satisfies conditions (cy
and (C2) of Section 3. Let g(2,y) = f(z,y,1). As mentioned in Section I, the
decomposition we construct of the affine plane is a cylindrical algebraic decomposition
(cad}. Given input g(z,y}, we construct a cad that is g-invariant, i.e. for each cell ¢
of the cad, either g(z,y) < 0 for all (2,y) in ¢, or g(z,y) = 0 for all (z,9) in ¢, or
glz.y) > 0 for all (z,y) in c. Fig. 3 shows the cad of E? that we construct for the
example of Section 1. where g(z,y) = 3 - 22y - 22y? o+ oyt 4 223y + 2% . |

Algorithm A f fine Plane Decomp given in Fig. 4 presents our complete algorithm for
decomposition and adjacencies of the affine plane. [t basically consists of portions of
algorithm CADA?2 of Arnon et. al. (1984b). It detects singularities of C in the affine
plane as it builds the cad and halts if any are found. The method used for singularity
detection is the same used for determination of basis polynomial signatures in the cluster-
hased cad algorithm (Arnon, 1988). As we have said, the cad that is constructed is a cd;
Af finePlane Decomp produces the connectivity graph of this ¢cd and marks the vertices
(cells) in it that belong to C. The map gsfd used in the algorithm denotes “greatest
squarefree divisor”, and the map PROJ used in the algorithm is as defined in Arnon
et. al. (1984a).

5 Decomposition and adjacencies of the line at in-
finity

We isolate the roots of f(1.y,0), a univariate polynomial with integer coefficients (Collins
& Loos, 1982). For each root y, {1,y,0] is a point of C on l, and we make it a O-cell of
our decomposition of [,,. We make also the point {0, 1, 0] (which is not on C by condition
(C2) of Section 3) a O-cell of the decomposition. We then take the complementary open
intervals of these O-cells to be the 1-cells of our decomposition of l,,. The cells on the
boundary circle of the disk in Fig. 2 illustrate these steps for the sample curve of Section
1. Recalling the identification of antipodal points in the disk model of RP?, we see that
I is decomposed into five O-cells and five I-cells in this example. In sum, once we know
how many roots f(1,y,0) has, we know what the cells of the decomposition of I, are,
and what the connectivity graph of this decomposition is.

Let us introduce some notation for the cells of our decomposition of . Suppose
that there are k > 0 points of C on [,,. Since [0, 1, 0] is not on C, these points can be
written 1y, 00 = P .., [1,7 ,0] = Pe , where v, < ... < ~x are the real roots
of f(1,y,0). Our cellular decomposition of I, consists of: Py, ..., Py, the point [0, 1, 0]
= Py = Py.y, and the 1-cells ¢;, 0 <1 <k, where e; is the open interval in I, bounded
bv P; and P;,,. Fig. 5 illustrates this notation for the sample curve of Section 1. Let
us assign to P; the index (0, 2i), and to e; the index (0, 2d + 1), for 0 < i < k. This
assignment of indices preserves the rule that the dimension of a cell is the sum of the
parities of the components of its index (cell indices are defined in Section 6).
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ut: g(z,y) is a primitive bivariate polynomial with integer coefficients. Let C, denote the

ve in the real affine plane defined by g =0

uiputs: If C, is nonsingular, then G is the connectivity graph for a g-invariant cad D of the
slidean plane in which the cells comprising C, are marked. If C, is singular, then T is the

ing “SINGULAR”.

3[Basc case.| Set P — PROJ({g}). Isolate the real roots of the irreducible factors of the
sngero elements of P to determine a cad D' of the real affine line. Construct a sample point
+ each cell of D' as in algorithm CADA?2 of Arnon et. al. (1984b).

)[Extension and singularity check.] Let a; < az < -+ < d2m < @2m+1, m 2 0, be the

é%mple points for D’ (each az:.1 is a rational sample point for a 1-cell: each az; is an algebraic
ymple point for a 0-cell). For ¢ = 1,...,2m + 1, let ¢; denote the cell of D' whose sample
sint is a;, and do the following five things: first, construct open isolating intervals for the real
sots of g{ai,y) to determine the sections of a stack S(ci) in E?; second, compare the signs of
1 'fd(g,(a.,y)) at the endpoints of each isolating interval, and the signs of gsfd(gy(a:,y)) a
Jhe endpoints of each isolating interval, and if the signs are different in either comparison, then
ht G — “SINGULAR” and exit; third, construct cell indices for the cells of S{ci) and add a
“wertex for each cell of S(c:) to G; fourth, mark each section of $(ci) as belonging to Cy; fifth,
dd the intrastack adjacencies for S{c;) to G. When we are done, we have built a g- -invariant
D of the affine plane that is proper in the sense of Arnon et. al. (1984b).

) [Adjacency computation.j For i = 1,...,m, call algorithm SSADJ2 of Arnon et. al
1984b) with inputs g, a2, azi-1, and a:41, and add the contents of its outputs L; and L2
G. Note that the section numbers which occur in the adjacencies returned by SSADIJ2
fmust first be converted into the indices of the corresponding cells of D; for example, if the list
s returned by the i*" call to SSADJ2 contains the adjacency {3,2}, it must be converted to
2i,6), (2 — 1,4)} before being added to G. Infer the remaining interstack adjacencies between
§(c2:) and S(c2:-1), and between S(c2:) and S(c2i41), as described at the end of Section 2 of
. Arnon et al. (1984b), and add them to G. All adjacencies of D are now recorded in G. O

Figure 4: Algorithm AffinePlaneDecomp.

°
fa

Figure 5: Cellular decomposition of [, for sample curve.
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6 Adjacencies between finite and infinite cellg

Let us now consider the question of determining the adjacencies between g cell in oy
decomposition of the affine plane (which we call a finite cell) and a cell in our decom.
position of the line at infinity (an infinite cell). Consider the sample curve ¢ shown iy
Figs. | and 2. We see that for this example it is straightforward to describe al] such 1
adjacencies. The affine l-cells which are on C, and which “go off to infinity” 1o the '
“right” or to the “left”, are each adjacent to exactly one (O-cell on the line at infinity,
and this 0-cell is not [0,1,0], In fact, for this example, when we have either determined
how manv roots f{2,1,0) has, or found out how many finite I-cells that lie in C gooff
to infinity to the “right”, or found out how many finite l-cells that lie in C go off to
infinity to the “left”. we know exactly what the adjacencies among finite 1-cells that Jj
in C and infinite O-cells are. Furthermore, all cells which are topmost or bottommost in
some stack of the cad, and only those cells of the cad, are adjacent to the point [0,1,0
on the line at infinity. This is precisely the situation that conditions (C1) and (C2) of
Section 3 are designed to bring about. We prove with Theorem 6.1 below that they do,
We first review some definitions from Arnon et al. (1984a). Let X be a nonempty
connected subset of F!, The cylinder over X, written Z(X),is X x E. A section of
Z(X) is a set s of points < z,¢(z) >, where 2 ranges over X, and ¢ is a continuous, ‘
real-valued function on X. s, in other words, is the graph of ¢. The constant functions
¢ = —oo and ¢ = +oo are allowed; in these cases, s 1s an infinite section. A sector of
Z(X) is a set § of all points < €, y >, where z ranges over X, and #(z) < y < y(a)
for (continuous, real-valued) functions ¢ < y. A stack over X is a collection of disjoint
sections and sectors of Z(X) whose union is Z(X); X is the base of the stack. A
cylindrical decomposition D of E? is a finite ceilular decomposition of E2, such that for
some cellular decomposition D’ of the real line £, the cells of D comprise stacks over
the cells of D’'. The decomposition shown in Fig. 3 is a cylindrical decomposition D of
EZ?. For that example, D' consists of two 0-cells and the three complementary !-cells,
Any cell ¢ of a cylindrical decomposition D of E? can be assigned an index, consisting
of an ordered pair of positive integers. The first component specifies the cell of D’ which

P

is the base of the stack containing c; the cells of D' are numbered 1, 2,... from left
to right. The second component specifies the position of ¢ within the stack; the cells
of the stack are numbered L, 2,... from bottom to top. The indices for the cells in
Fig. 3 are shown in Fig. 6. It is easily seen that the dimension of a cell in a cylindrical
decomposition is the sum of the parities (even = 0, odd = 1) of the components of its
index, e.g. (1,9) is a 2-cell, (2,6) is a 0-cell.

In a cylindrical decomposition D of E? the cells over the leftmost cell of D' comprise
the leftmost stack of D, and the cells over the rightmost cell of D' the rightmost stack.
Thus in Fig. 6, the cells with indices (L, ), 1 <j <9, are the leftmost stack, and the
cells with indices (5, 7)1 <7 <9, are the rightmost stack. In general, the leftmost and
rightmost stacks of D are distinct, however if D’ consists of a single 1-cell (the entire real

line}, then the leftmost and rightmost stacks are identical. This concludes our review of
definitions.

THEOREM 6.1 Let f(z,y,2) be a homogeneous trivariate polynomaial with integer coef-
ficients, which satisfies conditions (C1) and (C2) of Section 3. Suppose that f(1,y,0)
has k > 0 real roots vy, < ... < Ve Letg(z,y) = fla,y, 1), and suppose that S and T are

(respectively) the rightmost and leftmost stacks of a g-invariant cad of the affine plane.
Then

v e o —

-——

e e
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of all limit points of X which do not belong to X. Thus two cells are adjacent if
only if one meets the boundary of the other.

Now, for some given f, let S and T be as in Theorem 6.1. Let P; and e; be o
in Section 5. Consider first adjacencies between sections of S and T and cells ip L.
Suppose S # T. We claim that P; is a limit point of the jth section s; of S, As in
the Theorem, let s; be the graph of a function ¢;. Let [2:, ¢(2:), 1] be a sequence of
points in s;, with z; approaching +o0o. Then limfz;, ¢(z;), 1] = lim[1, é(2;)/z;, /e
=1, %, 0] = P,. It can be shown that P; is in fact the unique limit point of i on i,
Stmilarly, P, ;| is the unique limit point of ¢; on lo. If S = T, then s; = t; has the
limit points P; and Pr_i.1in i, (P; and Py_;.1 may coincide).

Consider now sectors of S and 7. Suppose the 1-cell ¢ in the induced cad of the jipe
15 the base of S, and let sg = ¢ x {—o0} and Sk+1 = ¢ x {+oo} denote the infinite
sections of Z(c). For 0 < i < k, let §; denote the sector of S between s; and 8i+1 (similar
definitions hold for T by replacing s by ¢ throughout). Note that &; = e; U{P;, P}
IfS # T,itis evident that the portion of the boundary of 5; contained in lo 1s €;, while
the portion of the boundary of {; contained in loo is €p_;, for 0 < ¢ < k (see example in
Fig. 7). If S = Tis the only stack of D, the portion of the boundary of 8; contained
inlo is e; U €4 ; (see example in Fig. 8).

Now let R be any stack of D besides S and 7. Let r1 < ... < 1y be the finite sections
of R. Let 79 and #; be defined as were 5o and si. From the disk model for RP? it is
evident that ry and #, are the only cells of R to have limit points in I, and each in
fact does have the unique limit point Py in l,, (Fig. 2 illustrates this discussion). This
completes the determination of adjacencies between finite and infinite cells.

We omit the proof, in the present paper, that the decomposition D* of the projective
plane we construct is actually a cellular decomposition in the sense of Massey (1978) .
A stronger result can in fact be shown: D* gives RP? the structure of a cell complex.
The proof is given in Arnon & McCallum (1983).

and

7 Topological type from cellular decomposition

In this section, we will think of the cd D* of RP? as a certain collection of cells. Thus
we write the connectivity graph as G*= (D*, E), where E, the set of edges of G*, is
the set of all pairs of adjacent cells of D*. We write D¢ to denote the subset of D*
consisting of all cells contained in the curve C.

Our first task is to determine the components of C'. This is accomplished by con-
structing the connected components of the subgraph of G* induced by D.. In the
data structure for G*, we mark each cell of D¢ with an index identifying the particular
component of C' to which it belongs.

Now, for each component of C, we want to determine if it is an oval, i.e. if its
complement with respect to the projective plane has two rather than one components.
If so, we want to identify which component of its complement is its interior, and which
its exterior. Let Dy C D¢ be the cells which comprise a component Cy of C. We
compute the connected components of the subgraph of G* induced by D*— D), (call this
subgraph G,). If there is only one such component, than C) is not an oval, and we do
no further processing for it.

The Euler characteristic X, of a cd of a subspace of the projective plane, is ag - o
= @3, where a; is the number of i-cells in the cd (cf. Massey, 1978, p. 61). Suppose
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C, is an oval, i.e. G has two connected components. Since D¥ is compatible
C, it follows that one of the components of Gy is a cellular decomposition of the
ior of C), and the other is a cellular decomposition of the exterior of Cy. As we have
ioned, the interior of C is topologically a disk, and its exterior is topologically a
Khius band. It follows (e.g. from Exercise 2 of Massey, 1978, p. 61) that the Euler
e acteristics of the two components of Gy must be different. In fact, x{(disk) = 1,
x (Mébius band)= 0. Hence, by computing the Euler characteristics of the two
ponents of G, we determine which is the interior and which the exterior of Cy.
fally, in the data structure for G*, we record at each cell of D*— D whether it is In
interior or exterior of C;.
& “'When we have processed each component of C in the above-described fashion. it
ns only to determine the partial ordering of C’s ovals. We may do this in any
ber of ways, for example, by picking one cell in each oval and reading off the order
formation we have recorded with it in the data structure for G*.

' Main algorithm

W give a formal description of our main algorithm TOPTYP in Fig. 9. The map pp used
he algorithm denotes “primitive part” (see Arnon, 1988, for definition of primitive

art).

' Example

et us now consider the example of Section 1 in more detail. Let f(z,y,z) be as at
the beginning of Section 1. f is irreducible, hence squarefree. f(z,¥, 0) has no multiple
tors, and [0,1,0] does not lie on C, so we need not change coordinates. Let g{e,y) =
I'(z,y, 1). Recall that the cad of the affine plane z = 1 constructed by algorithm CADA2
ith input g(z,y) is shown in Fig. 3. We find that C is nonsingular. Continuing, we
ave

‘ F(Ly0) = y-H @+ -2,

and so C has the four points [1,0,0], {1,1,0], [1,-1,0}, and [1,2,0} on lx. Thus the cells of

D* on I, are as shown in Figs. 2 and 5. In Fig. 10 we enlarge Fig. 2 and label each cell
with its index. The connectivity graph of D* is clear from Fig. 10 (or Fig. 2). We find
that C has two components, composed respectively of the following collections of cells:

Ji=A (1»2),(2,2%(1»4)7(0)6),(5»5),(476),(5»8),(078) 1,
and
J2 = { (1,6),(2,4),(3,2),(4,2),(5,2),(0,2),(1,8), (2,6),(3,4),(4.4), (5,4),(0,4) }

Since f has even degree, both correspond to ovals.
Let O, denote the oval of C that comprises the cells of Ji. complement(O1) turns
out to have two components, composed of Ky ~{(1,3),(0,7),(58,7) }, and

L - {u).m,(o,1).(0,2),(0,3),(0.4),(0.5),(0.9),(_1.1),(1,5),(1,6),(1,7),
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T TO TYP ( f(z,y,z) V)r

Input: f(z,y, z) is a homogeneous trivariate polynomial with integer coefficients, j.e. a home-

geneous element of Z [2,y,2]. Let C denote the curve in the real projective plane defined by
F -0

Outputs: If C is nonsingular, then 7 is the number and partial ordering of the ovals of C.Ifc
is singular, then T is the string “SINGULAR”.

(1) [Transform fiif necessary.| If f is not squarefree, then replace f by gsfd(f). Test whether
f(z,y,z2) satisfies conditions (C1) and (C2) of Section 3. If not, then change coordinates ag
per Section 3 to get some new f(z,y,2). Recall that we may detect during the coordinate
change process that C is singular; in this event, set T to the string “SINGULAR” and exit.
Set g(z,y) — f(z,y, 1). By conditions (C1) and (C2), V(content(g)) is empty, hence V(g) =
V(pp(g)), hence replace g by pp(g).

(2) [Decomposition and adjacencies of the affine plane.| Set G*— AffinePlaneDecomp(g). If
G* is the string “SINGULAR”™ then set T to the string “SINGULAR” and exit.

(3) [Decomposition and adjacencies of the line at infinity.] Determine the number of real roots
of f(1,y,0). From this information, place new vertices in the connectivity graph G* for the
corresponding 0- and I-cells cells on the line at infinity, mark all 0-cells except [0,1,0] as
belonging to C, and add new edges to the connectivity graph corresponding to the adjacent
pairs of cells within the line at infinity.

{4) [Adjacencies between finite and infinite cells.] As discussed in Section 6, all adjacencies
between a 1-cell of the cad that is contained in C and a O-cell on the line at infinity that is
contained in C are now known; add them to the connectivity graph. From these adjacencies,
infer the adjacencies of 2-cells of the cad with 0-cells and 1-cells on the line at infinity, and
add them to the connectivity graph. Add an edge to the connectivity graph for each adjacency
between the point [0,1,0] on the line at infinity, and the topmost and bottommost cell in each
stack of the cad of the affine plane. We now have a cellular decomposition D* of the projective

plane that is compatible with C, and all adjacencies of this decomposition are marked in the
connnectivity graph.

(5) [Topological type from cellular decomposition.] Determine the components of C, determine
which components are ovals, and for each oval, determine which cells of D* comprise its interior,
and which its exterior. From this information, determine the partial ordering of the ovals of C
by inclusion. Set T to some representation of the ovals and their partial ordering, and exit O

Figure 9: Algorithm TOPTYP.

(
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&
(1,8),(1,9),(2, 1), (2.3),(2.4),(2,5), (2,6),(2.7),(3,1), (3,2),(3,3), (3,4),

(3,5), (1, 1), (4,2). (4,3), (4,4), (4,5), (4,7), (5,1, (5.2), (5. 3),(5.4),(5,5),(5,9) }.

Computing the dimension of each cell as the sum of the parities of the two COMponent,

of its index, we find that the Fuler characteristic of X, is X = 0-1+2 = | For Ly,

we have x = 7 - 182411 = (. Hence K corresponds to the Interior, and L, to the
exterior, of 0.

Consider the second collection Jo of cells comprising oval Oy of C. We find twg

collections of cells corresponding to the components of complement(0,)

Ko = {(1.7),(0.3).(5,3), (1.3).(3.3), (2,5) }

and

Ly = {(070),(011)»(075)’(016)’(0:7)’(0,8)7(‘%9):(171)7(1»2)1(1y3)»(1,4),(115),

(1,9),(2,1),(2,2),(2.3),(2,7),(3,1), (3,5), (4, 1), (4,5), (4,6), (4,7), (5,1), (5,5),
(5,6),(5,7),(5,8),(5,9) }.
The Euler characteristic of Kyisx = 0-3+3 = 0. For La, we have y = 514+

10 = 1. Hence K, corresponds to the exterior, and L to the interior, of 0,. We see
that the cells comprising O; occur among the cells comprising the interior of O;. Hence
O, is included in O3, and we have determined the topological type of C.

The time required for this example was approximately five minutes, using an imple-

mentation of TOPTYP in the SAC-2 computer algebra system (Collins, 1980) on a Vax
11/785.

10 Computing time analysis

We count the cost of the individual steps of algorithm TOPTYP.

10.1 TOPTYP Step (1)

In computing the greatest squarefree divisor of f, the ged calculation takes O(n®L(d)?)
steps (Collins & Loos, 1982, p. 84; Loos, 1982). This dominates the cost of the division.
Using Mignotte’s bound (Collins & Loos, 1982, p. 84), the maximum coefficient d
of the greatest squarefree divisor satisfies d < 2"d. We do not consider this greatest
squarefree divisor calculation to be really a part of our algorithm, and so we will ignore
this potential coefficient growth in the remainder of our analysis. Note that the greatest
squarefree divisor has lower degree, if different from f

The significant operations in the coordinate transformation, if it is carried out, are
two linear changes of coordinates and computation of the discriminant of a bivariate
polynomial of degree n. The cost of the two coordinate changes is dominated by the
discriminant computation, and since we will always do a discriminant computation on
an input of the same or larger size in step (2), we ignore the cost of the coordinate
transformation.

Examination of the two linear changes of coordinates shows that the transformed f

may have a sum norm (i.e. sum of the absolute values of its integer coefficients) of dn”.
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Sre d was the sum norm of the original polynomial (consider. for example, the use
Horner type evaluation to actually do the changes of coordinates). We will assume

jt L(dn") = L(d) + nL(n) is O(nL(d)), and so assume from now on that the length

the sum norm of our input polynomial is O(nL(d)). The cost of computing pplyg) is
than the cost of the discriminant computation that we will count in Step (2).

p.2 TOPTYP Step (2)

. %Qgep (1) of Af finePlane Decomp, since [0,1,0] is not on C, g has constant lead-
Ay coefficient, hence PROJ({g}) = Discriminant(g). Discriminant computation 1is
ultant(g,g'), 1-e- resultant of two bivariate polynomials of degree n or less and sum

otm n - dn®. Note that the length of this new sum norm is still O(nL(d)). Comput-

g the resultant of two bivariate polynomials of degree s and sum norm u takes time

(6% L(u)?) (Loos, 1982, p. 134), which gives us time O(n”L(d)?) altogether, and pro-

uces a polynomial of degree n2 or less. If e is the sum norm of the discriminant, then

= O(n - nL(d)). The factorization of a univariate integral polynomial of degree s
sum norm u takes O(slz+sgL(u)3) (Kaltofen, 1982, p. 111). Hence the factorization

#'D(z) into irreducibles takes O(n?* + n'8L(e)?) = O(n?* + n2tL(d)?) = O(n**L(d)?).

simplicity let us assume that the discriminant has only one irreducible factor; if

has more than one, that will complicate the analysis but will reduce the computing

e. Root isolation applied to a squarefree univariate integral polynomial of degree s

d sum norm u is O(s® L(u)?) (Collins & Loos, 1982, p. 93), so for the discriminant

his gives us O(n'®L(d)?). The remaining actions of Step (1) of Af finePlane Decomp
not significant.

n Step (2) of Af finePlane Decomp, let m be the number of roots of the discrimi-

)} nt D(z) just computed; we have m < n?. The dominant cost of this step is the root

T lations of the polynomials glasj,y), 1 <3 <m since in these cases a,; is an alge-
taic, rather than a rational, number. The only bound presently available to us for root

golation of algebraic polynomials is that given for the Collins-Loos algorithm (Collins

E Loos, 1982) by Rump (1975). We get a better bound assuming the use of an alterna-

five, somewhat roundabout, algebraic polynomial root isolation algorithm. The alterna-

five algorithm is to compute the “normal polynomial” V(y) = Resultant(g(z,y), D(2))

(?lhose roots include those of g(asj,y) ), isolate its roots, and use gsfd(g(azj, ) to

. Belect the intervals that contain a root of g(az;,y). To compute the normal polynomial,

L We compute a resultant of one polynomial of degree n? or less and sum norm e (given
our assumption that D(z) has only one factor) and one of degree n ot less and sum

_morm d; so this is O(n'°L(e)?) = O(n'*L(d)?). The resultant is a polynomial of degree

+  n®or less with sum norm v with L(v) = O{nL(e)), so root isolation takes O(n?"L(d)?)

(we assume that V(y) is squarefree). Let a denote the algebraic number aa;, and let
gal(y) = g(aa;,y). We must compute gsfd(ga) = go/gcd(9a, 9o)- Evaluation of g at
a takes no time; we just interpret g(z,y) as a polynomial in y over Q{(a). Suppose
that we compute gcd(ga,da) by 2 natural polynomial polynomial remainder sequence
(Loos, 1982). At each of the O(n) steps we have to do a division with remainder of
two polynomials in Q(a)y], each of which has degree n or less, and each of which has
sum norm of O(nL(n%d)) (Loos. 1982, p. 133). Thus, since the degree of the minimal
polynomial of a is n® or less, the O(n) arithmetic operations in Q(a) we do at each
step, each have a cost of O((n?)3n? L(nd)?), thus our total cost for this ged calculation
is O(n!°L(nd)?). This surelv dominates the cost of ga/gcd(garda), and so we will take
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x
it to be the cost of the entire gsfd computation. We next must evaluate the Signs of the
gsfd at the endpoints of at most n® isolating intervals for roots of the polynomial Viy)
we computed above. Let u/v be one of these endpoints. Given that the degree of Vs
O(n®), by Horner’s rule, this costs

n® L(u){n®L(u) + n®L(v) + nL(nd)},

(Collins & Loos, 1982, p. 84), where L(u) and L(v) are each O(n®L(n3d)) (Collins &
Loos (1982, p. 84). Thus the total time for the evaluation is O(n®L(n3d)?). The resulting
element of Q(a) is represented as a polynomial with rational number coeflicients, each
of which has length that is O(n*L(n3d)). By Rump (1976), the sign of an algebraic
number whose minimal polynomial has degree s, and such that u is the largest coefficient
occurring either in the minimal polynomial or in the representing polynomial for that
algebraic number, can be found in time O(s®L(u)3). Hence since in our case the degree
of the minimal polynomial is n? or less, and the length of u is O(n3L(n?d)), we get a
time of O(n'®L(nd)®). Since we have O(n®) of these sign determinations to do, this
gives us a total time of O(n?2L(n3d)3).

We have to do two more similar gsfd calculations in this step for g; and g,, and
evaluate those at the endpoints of the isolating intervals we have found to contain roots
of gsfd(g(a,y)), but as the cost of these computations is dominated by the cost of what
we’ve already done for g, we take the cost of the Step (2) of AffinePlaneDecomp
for this i to be O(n??L(n%d)®). Since m = O(n?), the total cost for Step (2) of
Af finePlane Decomp is O(n?*L(n3d)3).

Now let us go on to Step (3) of Af finePlaneDecomp, and consider the cost of a
single call to SSADJ2. Step (1) of SSADJ2 calls for a root isolation that we already did
in Step (2) of AffinePlaneDecomp; we may assume that it is not repeated. In Step
(2), we start knowing that (by, ;) is an isolating interval for a as a root of its minimal
polynomial M (z); we must shrink (bisect) (b1, ¥,) until no g(z,s;) has a root in [by, byj,
and (b1,bz) must still contain a. We can think of this as having to isolate the roots of
product polynomials M (z) g(z, s;), for successive j. The cost of these isolations depends
on the minimum root separation of M(z) g(z, s;) versus the minimum root separation
of M(z). For simplicity we will assume that the coefficients of these two polynomials
have the same maximum size. Then it follows from Collins & Loos (1982, p. 84), that
since the degree of M(z) is O(n?), and the degree of g(z,s;) is O(n), we have to do
at most n bisections for each j, and since there are O(n) successive values of j, we
obtain a cost of O(n?) so far for step (2) of SSADJ2. Clearly this is not a significant
cost, even given the fact that our discussion ignored the cost of the (rational number)
arithmetic for each bisection. In the remaining steps of SSADJ2, we see that we have
O(n) calls to a root isolation algorithm for an integral polynomial of degree n. Let
us count O(n®L(d)?) for each such call; this gives us O(n” L(d)?) total for one call to
SSADJ2. SSADJ2 is executed m = O(n?) times, so altogether we have time O(n® L(d)?)
for step (3) of Af finePlane Decomp.

10.3 TOPTYP Step (3)

The only significant cost in Step (3) of TOPTYP is the root isolation of f(1,4,0)
is O(n8L(d)?).

which
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4 TOPTYP Step (4)

We consider the computing time of the steps described in Section 7. First, note that

acencies. Thus the connectivity graph for our decomposition has O(n®) vertices and
;0(1;4) edges. To construct the components of C involves constructing the connected
mponents of connectivity graph, hence, if we use depth first search, then the time
(n® + n*) = O(n*) (Aho et. al., 1974). As we have mentioned (cf. Abstract and
tion 2), C has O(n?) components. For each component, we must determine if it is
1 oval (which we do with a connected components computation in a subgraph of the
nnectivity graph), and if so, do two Euler characteristic computations. Thus for each
mponent of C, we have a cost of O(n*) for the connected components computation,
@nd a cost of O(n®) for the Euler characteristic computations, hence a cost of O(n®)
dor all components of C. The cost of the steps we have described dominates the cost of
étermining the partial ordering of ovals. Hence the total time for this step is O(n8).

distinguish the interior of an oval from its exterior (we had originally contemplated a
Jomology calculation). R.H. Bing was kind enough to provide us with a detailed account
of some fundamental facts of the topology of plane curves. The second author would

' j;ﬁke to acknowledge helpful and inspiring conversations on the subject of this paper with
4 Me following people: G. Collins, E. Fadell, T.-C. Kuo, E. Mansfield.
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