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Abstract. Let S be a set of noncrossing triangular obstacles in R? with convex hull H.
A triangulation 7 of H is compatible with S if every triangle of S is the union of a subset
of the faces of 7. The weight of T is the sum of the areas of the triangles of 7. We give a
polynomial-time algorithm that computes a triangulation compatible with S whose weight
is at most a constant times the weight of any compatible triangulation.

One motivation for studying minimum-weight triangulations is a connection with ray
shooting. A particularly simple way to answer a ray-shooting query (“Report the first
obstacle hit by a query ray”) is to walk through a triangulation along the ray, stopping at the
first obstacle. Under a reasonably natural distribution of query rays, the average cost of a
ray-shooting query is proportional to triangulation weight. A similar connection exists for
line-stabbing queries (“Report all obstacles hit by a query line”).

1. Introduction

Let S be a finite set of noncrossing obstacles (line segments in R?, triangles in R?) with
convex hull H. A triangulation 7 of H is compatible with S if each obstacle is the union
of a subset of the faces of 7. 7 may have Steiner vertices, i.e., vertices that are not
vertices of S. The weight of a facet f, | f|, is edge length in R? and triangle area in R3);
the weight of T, | T, is the sum of the weights of its facets.

We give a polynomial-time algorithm that computes a triangulation 7 compatible
with a three-dimensional obstacle set S. The weight of 7 is within a constant factor

* Work of the first author was performed while he was visiting Bell Laboratories, Murray Hill, NJ, USA.
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of the smallest possible compatible triangulation. The algorithm is a generalization of
Eppstein’s algorithm [9] to compute a constant-factor approximation to the minimum-
length Steiner triangulation of a set of points in two dimensions. As with Eppstein’s
analysis, the approximation ratio is large, though constant.

The algorithm has two steps. The first step produces a depth-bounded octtree from
the obstacles, where the rule is that an octtree cube is split if it meets an obstacle vertex
or edge and is not too small. The second step triangulates each leaf cube in a manner
compatible with the obstacles and neighboring leaf cubes. For the worst-case set of
n obstacles, the algorithm runs in time O(n®) and produces as many tetrahedra. An
improvement of an order of magnitude in both running time and number of tetrahedra
is possible if the obstacle set is well-shaped (see Section 3.3). A further improvement is
possible if obstacles are just points (though this is not discussed in this paper).

The proof of the approximation ratio has two parts. The first part is to show that the
total surface area of the octtree is at most a constant factor times the area of an arbitrary
triangulation 7. To do this we charge the surface area of each leaf cube to some local
feature of 7. There are essentially two cases: if the central subcube of the leaf cube
meets a vertex, edge, or face of 7, then the area of 7 within the leaf cube must be at
least proportional to its surface area. Otherwise the central subcube must be contained
in a tetrahedron of 7 , some face of which must have area at least proportional to the
surface area of the leaf cube. (The actual argument is more complex, to guarantee that
a single tetrahedral face is not charged by too many leaf cubes.) The second part of
the approximation-ratio bound is to triangulate all leaf cubes with total area at most a
constant times the tree surface area plus the obstacle area.

We also briefly consider the two-dimensional case of compatible triangulations. As in
three dimensions, there is a polynomial-time algorithm that approximates the minimum-
weight compatible triangulation. In Section 2 we show that the minimal Steiner trian-
gulation weight is approximately the length of S plus the length of the MST (within
a logarithmic factor). Here MST is the minimum Steiner spanning tree of S, i.e., the
minimum-length set of line segments so that MST U S is connected.

Other Work. A long-standing open problem is the question of whether there is a
polynomial-time algorithm that finds the minimum-length triangulation of a point set in
two dimensions, without using additional Steiner points. Beirouti and Snoeyink [5] report
recent progress and give many references. Eppstein [9] describes a polymial-time algo-
rithm that gives a constant-factor approximation to the minimum-weight triangulation
of a two-dimensional point set, allowing Steiner points.

Average-Case Line Stabbing and Ray Shooting. 'We now describe a connection between
triangulation weight and the average cost of simple algorithms for ray shooting (“Report
the first obstacle hit by a ray”) and line stabbing (‘“Report all obstacle hit by a line™).
Line-stabbing queries can be answered in a particularly simple way given a triangula-
tion of space compatible with the obstacles. It suffices to walk through the triangulation
along the line, reporting each encountered obstacle. The walk takes constant time per
visited triangle, so the total cost of the walk is proportional to the number of triangle
faces crossed. In the worst case, the walk can be long. For example, Agarwal et al. [2]
describe a configuration of n obstacle triangles in R* so that there is a line missing all
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the obstacles yet hitting $2(n) faces of any triangulation compatible with the obstacles.

We consider instead the average-case cost of line stabbing, using the standard rigid-
motion invariant measure x on lines [16]. Let L(U) be the set of lines that meet a set
U. A basic fact from integral geometry is that for a facet f, u(L(f)) is the weight of f
(length in two dimensions, area in three dimensions) times a constant depending upon
dimension.

Let S be a set of obstacles so that any facet of its convex hull is the union of obstacles.
Let 7 be a Steiner triangulation compatible with S. For line £, let s(€) and ¢ (£) be the
number of obstacle facets and triangulation facets intersected by £, respectively. Then

[t®)dup
u(L(H))

is the average walk length to answer a line-stabbing query that meets the convex hull H
of S. The ratio

_ [1®dp
o) = [s@dp

is the average walk length per reported obstacle facet. Letting d¢(l) be 1 if line [ hits
facet f and O otherwise, we have that

fl(@) dup _ ZfeTfaf(l)d/’l’ _ Zfe’flfl _ m
Js@dp  Fies [ du T Y psfl T ISE

A ray-shooting query can be answered by an algorithm similar to the line-stabbing
algorithm: locate the endpoint of the ray in the triangulation, and walk along the ray
through the triangulation until an obstacle facet is encountered. For a ray r, let z(r)
be the number of triangulation facets encountered in a walk along r up to an obstacle.
Formally, (r) should include the facet containing the ray endpoint (if any) and should
count all facets up to but not including the first obstacle facet. Clearly, 7 (r) is proportional
to the cost of answering a ray-shooting query, ignoring the cost of locating the triangle
containing the endpoint of ¢.

The ratio ¢(7') is also the average value of ¢ (r), for a particular distribution of query
rays. Let £ be a directed line, and assume that the intersection of £ with each obstacle
is either empty or a point. (Note that c(7") is changed neither by assuming that lines are
directed, nor by ignoring the measure-zero set of lines that overlap an obstacle.) Associate
with £ the set of rays in the same direction as £ and with endpoints at an intersection of
¢ with an obstacle. Clearly, s(£) is the number of such rays and t(£) = ) _t(r), r in the
associated set of rays. Hence

c(T) =

_ [t)du

[s(€) du
1s the average of ¢(r), under the distribution on rays induced by the distribution on lines.
Using integral geometry [16, Section 12.7, eq. (12.60)], the induced ray distribution is
sin dA A du, where d A is the uniform area distribution, du is the uniform solid angle
distribution, and 6 is the angle between the ray and the surface of the obstacle. Informally,
aray is chosen with endpoint uniformly at random from an obstacle and with direction
proportional to the sine of the angle 8 between the ray and the obstacle.

c(7)
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Let

¢(S) = inf (7)),
T

where 7 ranges over all triangulations compatible with S. Clearly, to answer line-stabbing
or ray-shooting queries it is desirable to choose a triangulation 7 with ¢(7) as close
as possible to ¢(S). It is not obvious that the lower bound ¢(S) can be attained [6]; for
example, it is conceivable that it is always possible to decrease weight and hence ¢(7")
by adding Steiner points.

In two dimensions, ¢(S) ~ (IMST| + |5])/[S| (see Section 2). Hence in cases where
the MST is short, for example if the obstacle set is connected or nearly connected,
the average cost of ray-shooting by walking through a triangulation should be small.
This good behavior has been observed experimentally [10] (even without explicitly
minimizing the weight of the triangulation).

Other Work.  The ray-shooting problem has been studied extensively in computational
geometry (see [1} or [15] for a survey of theoretical results). Assuming roughly linear
data-structure storage, the best theoretical algorithms for ray shooting have worst-case
query time O (logn) for a simple polygon [11], roughly O (/) for a set of planar line-
segments [4], and roughly O (n*/#) for a set of triangles in three dimensions [3]. The last
two query times can be improved to O (logn) with polynomial storage. Agarwal et al.
[2] consider the line-stabbing number of triangulations consistent with a set of obstacles.
Mitchell et al. [12] consider segment shooting, a variant of ray shooting. They show that
the cost of a segment-shooting query in an octtree can be bounded up to a constant factor
by the “cover complexity” of the segment.

2. The Two-Dimensional Case

Throughout this section § is a set of n planar obstacle segments that meet only at
endpoints; S must include segments partitioning the boundary of its convex hull. A
triangulation 7" is compatible with S if any edge in S is the union of closed edges of 7.
Vertical bars | - | denote length, thus |S| is the sum of the lengths of the segments in S.
Let M be inf7 |T|, where 7 varies over triangulations compatible with S.

Lemma 2.1.  In polynomial time it is possible to compute a polynomial-size Steiner
triangulation T compatible with S so that |T| = O(M).

We omit a detailed proof of Lemma 2.1; it can be proven using techniques of Epp-
stein [9] or of the proof in Section 3. The basic strategy is to build a depth-bounded
balanced quadtree using only the vertices of S, and then triangulate each square in a
fashion compatible with the edges of S meeting the square. We remark that Lemma 2.1
depends upon including the length of the obstacle set S in the length of the triangulation;
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if the length is not included, a constant-factor polynomial-time approximation algorithm
is not known [9].

Let MST be a minimum (Steiner) spanning tree of S, i.e., aset of segments of minimum
total length so that § U MST is connected. An easy compactness argument shows that
the minimum length can actually be attained.

Lemma 2.2. |S|+ [MST| < M < O((|S| + [MST|) logn).

Proof.  The first inequality is obvious, since any triangulation compatible with S must
be connected. For the second, notice that MST U S partitions the convex hull of S into
simple polygons (recall that § includes the convex hull boundary). The total number of
vertices is O (n), since the MST is a forest with no vertices of degree 2 and the number
of leaves is the number of connected components of S. By a result of Clarkson [7], each

simple polygon can be triangulated with weight proportional to log n times the perimeter
of the polygon. |

Let D be the diameter of S, i.e., the length of the longest segment contained in the
convex hull of S. The minimum spanning tree of the vertices of § has length at most
O(D./n), hence IMST| < O(D./n). The following lemma improves the worst-case
bound that can be obtained from Lemma 2.2 and this estimate by a factor of logn. Again

we omit a detailed proof of the lemma (see Section 3.7 for a similar proof in three
dimensions).

Lemma 2.3. M < O(|S| + D/n).

Corollary 2.4. [MST|/[S| + 1 < ¢(S) < min(O((l + [MST|/|S|) logn), O(1 +
D/n/|S))).

3. The Three-Dimensional Case

This section describes an algorithm that produces a Steiner triangulation compatible
with a set of polyhedral obstacles in three dimensions. The triangulation has area within
a constant factor of the smallest possible. Section 3.1 reviews some basic definitions.
Section 3.2 states the main theorem in the case where the obstacles are “wide,” a condition
on the aspect ratio of their convex hull. The main theorem is proved in Sections 3.3-
3.5. Section 3.3 gives an algorithm that constructs an octtree from a set of polyhedral
obstacles. In Section 3.4 we prove that the surface area of the octtree is at most a constant
factor times the area of any Steiner triangulation compatible with the obstacles, while
Section 3.5 gives an algorithm to triangulate the octtree with total area proportional to
the area of the octtree plus the area of the obstacles. The wideness condition on obstacles
is removed in Section 3.6. Finally in Section 3.7 we show some worst-case bounds on
the ratio of triangulation area to obstacle area.
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3.1. Definitions

We use terminology from the theory of convex polyhedra [8]. For example, a polyhedral
set is any set obtained from open and closed halfspaces by a finite number of unions and
intersections. A face of a convex polyhedron C is the relative interior of the intersection
of the closure of C with a hyperplane supporting C; 3C is the relative boundary of C.

A polyhedral subdivision Q of a polyhedral set Q is a finite partition of Q into
relatively open convex polyhedral cells so that every face of every cell is a union of cells
in Q. A subdivision is proper if every face of every cell is itself a cell in the subdivision.
Notall subdivisions are proper, since some face of a cell may be subdivided into more than
one cell. If f is a face of a cell C, we will occasionally refer to f as a polyhedral face of
C to distinguish it from a cell contained in dC that is not a face of C. The k-skeleton Q®
of Q is the subdivision consisting of all cells of Q of dimension at most k. If C is a convex
polytope that is the union of cells of Q, then bdry(C, Q) is the subdivision consisting of
the cells in Q whose union is 3C. For convenience we define bdry(Q) to be bdry(Q, Q).
The area of a subdivision Q, area(Q), is the sum of the areas of the 2-cells in O; similarly
the length of Q, length(Q), is the sum of the lengths of the 1-cells in Q. A triangulation
of a polyhedral set is a proper polyhedral subdivision so that all cells are simplices. A
triangulation 7" is compatible with a subdivision S if every cell in S isa union of cellsin 7.

If C is a square or cube and k a positive real, then kC is the square or cube with the
same center and orientation as C and side length & times the side length of C. We write
for example C/2 for (1/2)C.

3.2.  The Main Theorem for Wide Obstacles

The obstacle set S is a subdivision in R* consisting only of 0-, 1-, and 2-simplices. For
simplicity we assume that there are no isolated edges and vertices in S, i.e., every edge
or vertex lies on the boundary of a 2-simplex; with minor modifications the algorithm
can be extended to handle isolated edges and vertices. We let H be the convex hull of
§; we assume that S contains a triangulation of d H. Throughout » is the total number
of simplices in S.

Let B be the smallest cube containing S, and let its side length be b. Obstacle set S is
wide if the area of 9 H is ©2(b?). Informally, H can look like a ball or pancake, but not
like a pencil. The following theorem holds for wide obstacles; it follows immediately
from Theorem 3.2 in Section 3.4 and Theorem 3.9 in Section 3.5, using the fact that the
area of 9H and hence S is ©2(b?). The wideness assumption is removed in Section 3.6.

Theorem 3.1. Let S be a wide set of obstacles with a total of n simplices. In time
O(n®) it is possible to compute a triangulation compatible with S whose area is within
a constant factor of the smallest possible. The triangulation has O (n®) tetrahedra and
partitions the convex hull of S.

3.3, The Octtree Algorithm

We now describe how to build an octtree T from the obstacle set S. If necessary, perturb
the minimal enclosing cube B slightly so that no obstacle face is parallel to a face of B.
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Recall that b is the side length of B. Let m be the first power of two greater than or equal
to n. Define 5o = b/m. Then b/s is a power of two and b/(2n) < sp < b/n.

We first build an octtree 7. Every node of the tree is a cube. B is the root node. A
cube is skewered if it meets the 1-skeleton of S. A cube C is subdivided (i.e.,isnot a leaf)
if it is skewered and has side length greater than so; its children are the eight subcubes
obtained by cutting it by the three planes through its center parallel to its facets. This
process is repeated until no cube can be further subdivided. Clearly, each leaf cube in
the octtree has side length 2'sg, for some integral { > 0, and each skewered leaf cube
has side length s.

Octtree Ty must then be made balanced, resulting in the octtree T. Two cubes are
adjacent if they have overlapping 2-faces; an octtree is balanced if the side lengths of
any two adjacent leaf cubes differ by at most two. If an octtree is unbalanced, it can be
made balanced by repeatedly choosing a pair of adjacent cubes that violate the balance
property and subdividing the larger cube. Standard results [13] imply that balancing T
increases the number of cubes by at most a constant factor.

An obstacle triangle A fully cuts a cube C if A intersects C and dA avoids C. Notice

that a cube may be fully cut by an obstacle triangle independently of whether or not it is
skewered.

3.4.  Area of the Octtree

The area of octtree T, area(T), is Zc area(dC N H), where C varies over the leaf cubes
of 7. Let M = infs area(7), where 7 ranges over triangulations compatible with S.

Theorem 3.2. area(T) < c - M, for some absolute constant c.

Proof. Let7 be an arbitrary triangulation compatible with S and let C be a leaf cube
of T. We can assume C N H is not empty. We charge area(dC N H) to features of T,
with cases as follows (see Fig. 1):

1. C/2 & H.Necessarily d H meets C/2 (and C).ByLemma 3.3 below, area(0CNH)
is O(area(d H N C)). We charge area(0C N H)to dH N C.

C C >< C /\

J M/

case 1 case 2 case 3

Fig. 1. Cases of Theorem 3.2. In case 1, § H meets C/2; in case 2, the 2-skeleton of 7" meets C /4; in case 3,
the 2-skeleton of 7 avoids C/4.
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2. C/2CH and C /4 meets the 2-skeleton of T. By Lemma 3.4 below, area(dC N H)
is O(area(T N C)). We charge area(dC N H) to T7ncC.

3. C/2 € H and C/4 avoids the 2-skeleton of 7. This is the most complex case.
Let o, B, and y be constants (chosen in the proof of Lemma 3.6 below, with
O<ao,B<landy > 1). Let the side length of C be 5. A charging pair (A e)
for C is a triangle A of 7 and an edge e of A so that area(A N yC) > as? and
length(e N yC) > Bs. We charge the area of 3C N H (which is O(s?)) to the
triangle of a charging pair, whose existence is guaranteed by Lemma 3.6 below.
By Lemma 3.8 the total charge to any triangle A of 7T, over all Jeaf cubes of T,is
at most O (area(A)).

In cases 1 and 2, the charges are to disjoint portions of o H and T, respectively, so
the total charge is O(area(d H) + area(T)) which is O(area(T)) In case 3, the total
charge to any triangle A of 7 is O(area(A)), so the total charge over all triangles is
O(area(’]’ }). O

Lemma 3.3. IfCisaleafcubeand C/2 & H,thenarea(d3CNH) is O(area(dHN(C)).

Proof.  Let s be the side length of C. Pair each corner of C/2 with the corresponding
corner of C, and consider the eight subcubes whose opposite corners are formed by the
pairs. At least one such subcube D must be entirely outside H, else H would contain
C/2. Let d be the center of D. See Fig. 2.

Fig.2. Proof of Lemma 3.3.
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Let Sp and ) be the spheres of radius s/8 and +/3s, respectively, with center d. S
is contained in D and is outside H, and S; contains C. Let mappings 7 and 7; be
central projections from d into Sy and S, respectively. Any ray from d to a point of
9C M H must first hit a point of dH N C, since d is outside H and inside C. Hence
T (0C N H) € m(dH N C). For some constant ¢, we have

c-area(dC N H) < area(mr1(8C N H))

since, for any point p € dC N H, the angle that a ray d_}) makes with 3C N H is bounded
away from zero, as d is bounded away from 3C. We also have

= (8/«/5)2 -area(mp(dH N C)) < 64/3 -area(dH N C),

area(m(0C N H)) < area(m(dH N C))

proving the lemma. d

Lemma 3.4. IfC is aleaf cube and B = C/2 C H and B/2 = C/4 meets T (the
2-skeleton of’T) then area(3C N H) is O(area(T N C)).

Proof. Let s be the edge length of B. Clearly, area(3C N H) is O(s?); we show
area(7 N B) is (s2) Let D be the open cube of side length s /2 centered at a point x of
the 2-skeleton of 7 in B /2, with the same orientation as B/2; plainly D C B. Choose
three orthogonal edges ey, e;, e3 of D, and for any p € D let]; =, (p)i=1,2,3be
the segment through p parallel to e; connecting opposite faces of D. We claim at least
one of [, I, I3 must meet 7®. Suppose not, then they must all lie in the same tetrahedron
A of T since they share point p. Hence the convex hull of I;, I, I3 is contained in A, a
contradiction since the convex hull contains x, which is in 7@.

Let D;,i = 1,2, 3, be the set of points p € D for which /;(p) meets T®_ Since D =
Dy U D, U D3, we can assume, say, that the volume of D is at least (s/2)3/3 = 53/24.
Now D; must be the Cartesian product of a segment of length s /2 parallel to e; with the
projection of 7@ N D onto a facet of D perpendicular to e;. Hence the projection of
7 has area at least 52/12, and 7@ N D itself has at least the same area. O

Lemma 3.5.  For any leaf cube C of T, 1C meets the 1-skeleton of S.

Proof.  Let a refinement step during balancing be the replacement of a leaf node by an
interior node with eight children. We show that the lemma holds for T and is maintained
by every refinement step.

By construction, every skewered leaf in Ty meets the 1-skeleton of S. Every unskew-
ered leaf C in Ty has a skewered parent, so certainly 3C meets the 1-skeleton of S.

A refinement step maintains the condition of the lemma for every unchanged cube.
So suppose C is refined into eight subcubes, with s the original side length of C and C’
an arbitrary child of C. See Fig. 3. C must share a common 2-face with a cube D whose
side length is at most s /4. By inductive hypothesis, 7D meets the 1-skeleton of S. Easy
calculations show that the L, distance between the centers of C” and D is at most 7s /8
and that 7D C 7C’. Hence 7C’ meets the 1-skeleton of S. a
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C

Fig. 3. Proof of Lemma 3.5.

Lemma 3.6. IfC is aleaf cube, B = C/2 C H, and B /2 avoids the 2-skeleton of 7,
then there is a charging pair for C.

Proof. Let s be the side length of B, so B/2 has side length s /2. By Lemma 3.5 there
is a point ¢ on the 1-skeleton of 7 within 7C = 14B, hence at distance 7+/3s < 14s
from the center p of B. We assume that open segment pq meets the 2-skeleton of 7
only at interior points of 2-cells; otherwise a slightly modified argument with a perturbed
segment p’q is necessary.

Let o be the plane orthogonal to pq through p and let 7, be the orthogonal projection
ontoo.LetU be the infinite cylinder with axis pg and radius s /4; then the disk D = UNo
is contained in B/2. Let py, ..., p;_; be the intersections of 2-cells of 7 with open
segment pq in order from p to g, and set pp = pand p; = g. Fori = 1,..., [, let 7
be the 3-simplex of 7 containing the open segment p;_;p;. See Fig. 4. We have that
B/2 C 1), since pg = p € B/2 and the 2-skeleton of 7 avoids B/2.

Let u; be the connected component of d7; N U containing p;. Choose k& minimal so
that 14, contains a point of the 1-skeleton of 7; such k must exist since p1 = q is on the
1-skeleton of 7.

We claim that w; fully cuts U, ie., m,(u;) = D, fori = 1, ..., k. Now w fully cuts
U,since D € B/2C 7. Forl <i <k, ;—; must be a portion of a single 2-face of
7;, since it contains no point on the 1-skeleton of 7. Hence there must be two connected
components to U N d1;, specifically u;_; and u;, and u; must fully cut U.

We now show that u; lies at distance at most 28s from . Let Sfr—1 and f; be the faces
of 7, containing py_; and py, and let P,_; and P; be the planes containing f;,_; and f;,
respectively. Now P,_y N D = P,_; N U N o must be empty, since P,y NU = py_
lies entirely in face f;_; but D = U N o lies entirely in the interior of simplex 7;. Also
P N D must be empty: if not, choose u € P, N D; then py and u lie on opposite sides
of P,y within U, so segment up; meets an interior point of face f;_; of 7;; however,
upy also lies entirely in the plane P, of face f; of 7, a contradiction. The intersection of
Py with 9U is an ellipse, whose center py is at distance at most 14s from o. The ellipse
avoids D, since P, avoids D. Hence the farthest point of the ellipse is at most 28s from
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Fig. 4. Proof of Lemma 3.6.

o. Since the closed halfspace of P, containing D also contains t; and i, My is at most
distance 28s from o .

We set the charging-pair constants o = 7/48, 8 = %, and y = 43. To finish the
proof, notice that area(i;) > area(m, (iy)) = m(s/4)%. Since p; consists of portions of
at most three triangular faces of 7, at least one such triangle A satisfies areca(ANU) >
w5 /48 = as®. Ais the triangle of 7 promised by the lemma statement. We have AN U
within distance 28s from o, in fact within distance 28s fromo N U C B/2 C B. Since
the side length of Biss, ANU C (2-28 4+ 1)B C yC.

It remains to find a piece of an edge of A of length at least s within yC. Let U’ be
the cylinder coaxial with U but with double the radius. By analogous reasoning, we have
AN U’ within distance 425 fromo NU’' C B,so ANU’' C (2-42+1)B C yC.If A is
completely contained within U’, then by the isoperimetric inequality [16] the perimeter
L of A satisfies L > /4m - area(A) > ms/2+/3, so one edge of A has length at least
s/ 63 > Bs. Otherwise dA intersects both 83U’ and the interior of U. Since 8U and
dU’ are separated by s /4, there is a portion of an edge of d A lying within U’ of length
at least s /8 = Bs. O

The width of a compact planar set S, width(S), is the smallest distance w so that S
is contained in the closed region between two parallel lines w apart. The diameter of S,
diam(S), is the length of the longest segment contained in the convex hull of S. It is easy
to see that the area of S is at most width(S) - diam(S).

Lemma 3.7.  Let A be an obstacle triangle and let r be the radius of its inscribed circle.
If leaf cube C with side length s has charging pair (A, e), then s is O(r).
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Proof. The width of A is at most 3r, by some elementary geometry. Since (A, e)isa
charging pair for C, we have

2

as arca(ANyC)

<
< width(A Ny C) - diam(A Ny C)
< 3r- \/gys.

Hence s < 3ﬁyr/a, whichis O(r). O

Lemma 3.8. The total charge to triangle A of T Sfrom all leaf cubes in case 3 above is
Of(area(A)).

Proof. Let p and r be the perimeter and inscribed-circle radius of A, respectively.
Some elementary geometry gives area(A) = pr/2.

Consider the set C, of all leaf cubes with a fixed side length s. Since no two cubes
in C; overlap, no point in space is covered by more than 33 open supercubes y C, for
C € C,. Since the intersection of yC with dA has length at least Bs, no more than
v3ip/(Bs) = O(p/s) cubes in C; can be charged to A. The charge for each cube is
O(s?), so the total charge to A for cubes in C; is O(ps).

Let § be the largest cube side length for which a cube is charged to A; by Lemma 3.7,
§is O(r). The total charge over all cube sizes is O(p(so+2s0+---+35)) = O(ps) =
O(pr), which is O (area(A)). O

3.5. Triangulating the Tree

Theorem 3.9. In time O(n’) it is possible to construct a triangulation T from the
octtree T so that area(T) < ¢’ - (area(T) + area(S) + b?), where ¢’ is an absolute
constant and b is the side length of the root cube of T. T has O (n’ ) tetrahedra and
partitions the convex hull H of S.

For C aleaf cube of T, the clipped cube Cy is C N H. We choose below a subdivision
P of H whose 3-cells are clipped-cube interiors and whose 2-skeleton is a triangulation.
In Sections 3.5.2 and 3.5.3 we show how to triangulate a clipped cube so that its boundary
triangulation matches P. The desired triangulation 7 is then obtained simply by pasting
the clipped-cube triangulations into P.

In octtree T, two adjacent cubes may have overlapping but distinct k-faces, k = 1, 2,
if the cubes are of different sizes. A clipped-cube k-face is minimal if no other clipped-
cube face of the same dimension is properly contained within it; a minimal k-face is a
tree-partitioning face if it is properly contained in another clipped-cube face (possibly of
higher dimension). It is easy to see that any clipped-cube k-face is the union of minimal
faces of dimension at most k. In fact, since 7T is balanced, any 1-face is the union of at
most four minimal 1-faces and three vertices, and any 2-face is the union of at most four
minimal 2-faces, four minimal 1-faces, and a vertex (forming a “+”-shape in the middle
of the 2-face).
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Fig.5. A and A’ are obstacle triangles that meet minimal cube 2-face f.InP, fisreplaced by a triangulation
of f compatible with AN fand A'N f.

Let P’ consist of clipped-cube interiors plus all minimal O-, 1-, and 2-faces. Subdivi-
sion P is obtained from P’ by replacing 1- and 2-faces. A 1-face e of P’ is replaced with
the chain of 0- and 1-cells formed by subdividing e at each point of intersection with
an obstacle triangle. Let f be a 2-face of P’. Form the set of line segments obtained by
intersecting f* with all obstacle triangles, then triangulate this set together with the set
of 0- and 1-cells partitioning 3. The resulting triangulation replaces f in P. See Fig. 5.
Itis easy to check that P is a subdivision of H whose 2-skeleton has been triangulated.

The combinatorial complexity of leaf cube C, n¢, is the number of edges of C plus
the number of obstacle triangles meeting C. It is easy to check that bdry(Cy, P) has
O (n¢) edges and vertices.

3.5.1. Central Triangulations. Let Q be a 3-cell in a polyhedral subdivision Q with
bdry(Q, Q) atriangulation and let g be an interior point of Q. Recall that by the definition
of polyhedral subdivision, Q is convex. The central triangulation of Q from g consists
of the tetrahedra formed by g and the triangles in bdry(Q, Q), and all tetrahedral faces.

Proposition 3.10. Ifbdry(Q, Q) has k vertices, then the area of any central triangu-
lation of Q is at most 3k /2 times the area of 8 Q.

Proof. Let q be the central triangulation vertex. There are at most 3k edges of
bdry(Q, Q). Each new tetrahedral 2-face is formed by g and such an edge, and has
area at most half the area of 9 Q. O

3.5.2. Triangulating an Unskewered Cube. For this section, C is an unskewered leaf
cube (i.e., C avoids the 1-skeleton of S). A triangulation 7¢ of Cy is obtained as follows.
Start with the subdivision consisting of Cy and bdry(Cy, P). Subdivide Cy by all
obstacle triangles that meet it. Notice that all such obstacle triangles must cut C fully
and cannot meet within C; furthermore, bdry(Cy, P) already contains all edges of
intersection between obstacle triangles and 8Cy . Now triangulate any new 2-cells, and
centrally triangulate each 3-cell.

Lemma 3.11.  7¢ has area O(area(S N C) + area(dC N H)).
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(i)

Fig. 6. The edges of obstacle A are projected onto a horizontal plane, extended to lines, and clipped to the
projection of Cg (labeled 7 (Cp)). The result is triangulated and each triangle is lifted to an infinite vertical
prism.

Proof. Let T be the subdivision before central triangulation, and let Cqy be a 3-cell of
To. We show that the number of vertices in bdry(Cy, 7p) is constant. The lemma then
follows using Proposition 3.10 and the fact that area(7p) is area(SN C) + area(dC N H).

First notice that Cy has at most fourteen polyhedral 2-faces, six faces that are subsets
of a 2-face of C and at most eight faces separating a vertex of C from Cy. Hence C,
has a constant number of polyhedral vertices. Any vertex of bdry(Cy, 7) that is not
a polyhedral vertex must be a cube partitioning vertex, of which there are at most a
constant number. a

3.5.3. Triangulating a Skewered Cube. TFor this section, C is a skewered leaf cube
(i.e., C meets the 1-skeleton of S); recall C has side length 5. A triangulation 7¢ of
Cy 1s obtained in two steps. We first compute a triangulation 7. so that bdry(7}) =
bdry(Cy, 1) is a refinement of bdry(Cy;, P). Using Lemma 3.15, we then compute a
triangulation 7¢ so that bdry(7¢) = bdry(Cy, P).

The first step has four substeps. In the following, the “vertical” direction can be chosen
to be any direction not parallel to a face of C or a face of S and so that no vertical line
meets three obstacle edges that do not already meet at a common vertex. See Fig. 6.

1. Orthogonally project each edge of bdry(Cy, P) onto a horizontal plane (i.e., a
plane orthogonal to the vertical direction), and extend the projection to a line.
Similarly project and extend each obstacle edge meeting C.

2. Let 7 be a (two-dimensional) triangulation of the resulting arrangement, truncated
to the projection of Cy. Lift 7; to a set of infinite vertical triangular prisms.

3. Subdivide Cp using both the vertical prisms and any obstacle triangles meeting
C, forming a subdivision 73.

4. Extend the triangulation of bdry(Cy, P) to form a triangulation of the 2-skeleton
of 73. Then centrally triangulate each 3-cell, forming the triangulation 7.

Lemma 3.12. The total length of T, is O (n¢sy).

Proof. Let £ be a line in the plane and let 7(¢) be the number of edges of 7; met by
¢. Consider the arrangement (in substep 2 above) before triangulation and truncation.
By the zone theorem for lines [8], the total combinatorial complexity of the cells of the
arrangement intersected by a line £ is O (n¢), so t(£) is O (n¢).
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Let u be the rigid-motion invariant measure on sets of lines in the plane [16]; up
to a constant multiple, the length of 7; is [7(£) du. The measure of the set of lines
intersecting 75 is O(sg), since the perimeter of 7; is O(sg) [16]. Hence [t() du is
bounded by O (son¢). O

Lemma 3.13.  Triangulation T;. has area O (area(S N C) + area(dC N H) + n¢s?).

Proof. The total area of the vertical 2-cells in the subdivision 75 is O(ncsg), since the
total length of 7, is O(ncso) and the height of Cy is at most O(sp). Any nonvertical
2-cell is a portion of either SNC or 3C N H, hence the total area of all nonvertical 2-cells
is area(S N C) + area(dC N H). Let P be a 3-cell in T3; we show that the number of
vertices in bdry (P, T3) is constant. The lemma then follows using Proposition 3.10 and
the bound on the sum of the areas of all 2-cells.

Cell P is a section of a triangular prism and has at most five polyhedral facets, hence a
constant number of polyhedral vertices. We claim bdry (P, 73) has at most two additional
vertices per vertical polyhedral edge of P. To see this, note that, by construction of 73,
any vertex of bdry (P, 73) must either be a vertex of bdry(Cy, 73), and hence a polyhedral
vertex of P, or must lie in the interior of a collinear vertical chain of edges of 73. In the
latter case, the vertex must either lie in the interior of an obstacle triangle, and hence
must be a polyhedral vertex of P, or on the closure of an obstacle edge. However, there
can be at most two such vertices of this last type per vertical chain, since the vertical
direction was chosen so that no three obstacle edges lie on a common vertical line. O

Itis easy to see that 7/ has O(n%) tetrahedra, has O(n%) vertices on bdry(7), and
can be computed in time O (n}.).

The second step is to transform 7/ into Z¢ by removing the vertices of bdry(Cy, 1)
not in bdry(Cy, P). As will be seen in the proof of Lemma 3.15, removing a vertex that
lies in the interior of a 2-face of bdry(Cy, P) is slightly different from removing a vertex
that lies in the interior of an edge of bdry(Cy, P).

Let G = (V, E) be the 1-skeleton of bdry(Cy, T!) as a graph, and similarly let
Gp = (Vp, Ep) be the 1-skeleton of bdry(Cy, P). A subset of V is independent if no
two vertices are connected by an edge of E.

Lemma 3.14.  There is an independent subset of V\Vp whose size is a constant fraction
of VA\Vp so that each vertex has constant degree in G.

Proof.  The average degree of vertices in the subgraph of G induced by V\ V5 is at most
six, by planarity. Any vertex v in V\V} is incident to at most four vertices of Vp: either
v lies in the interior of a triangle of bdry(Cy, P), in which case it can be incident to at
most three vertices of Vp, or v lies on an edge of bdry(Cy, P), in which case it can be
incident to at most four vertices of Vp. Hence the average degree of vertices V\Vp in
G is at most ten. By standard techniques [14], it follows that there is a bounded-degree
independent set whose size is a constant fraction of V\Vp. |

Lemma 3.15.  There is a triangulation T¢ of C with bdry(T¢) = bdry(Cy, P). Ic can
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be computed from T/ in time O(n%), adding O(n3c) tetrahedra and area O(sg lognc +
area(S N C)).

Proof. T is updated in stages, with the final stage yielding 7. Each stage removes the
independent set of vertices guaranteed by Lemma 3.14. Clearly, the number of stages is
logarithmic in the number of vertices of 7, i.e., O (lognc).

For simplicity, we first assume that every vertex to be removed lies in the interior of
some 2-face of bdry(Cy, P) and not on an edge of bdry(Cy, P). Consider the triangles
incident to v; all such triangles are coplanar. Let S, be the polygon formed by the triangle
edges opposite v. Itis possible to push v slightly inside C maintaining the combinatorial
structure of 7. (in particular, v must not be pushed through the plane of the face opposite
v in any tetrahedron incident to v). Pushing v leaves a dimple in the triangulation of Cp.
The dimple can be filled by triangulating S, and then adding to 7/ the tetrahedra formed
by v and the new triangles.

The area added to 7/ at each stage is at most O(Sg«), where s¢ is the side length of
cube C. To see this, first note that when a vertex v is pushed, the change in area of the
tetrahedra incident to v is negligible, since the perturbation of v can be made arbitrarily
small. The area of the new tetrahedral faces is at most a constant times the area of S,
since S, has at most a constant number of edges. Since the vertices at each stage form an
independent set, the polygons {S,} have disjoint interiors and their total area is at most
the surface area of C, i.e., O (sé). Hence the total area added at all stages is O (sé lognc).

Now suppose some vertex v lies on an edge e of bdry(Cy, P). Edge ¢ may be a
portion of a polyhedral edge of 3Cy or may be interior to a polyhedral face of 4Cy.
If v does not lie on an obstacle triangle, then the approach is similar, except that the
triangulation of S, must use a piece of edge e.

Now suppose v lies on an edge e of bdry(Cy, P) and also on an obstacle triangle.
It does not suffice simply to push v into the interior of Cy as above, since the resulting
triangulation would not be compatible with the obstacles. Instead, vertex v is removed
as follows. Necessarily v lies in the interior of a segment s of the intersection of the
obstacle triangle with 8Cp. Let p and g be the vertices on either side of v along s. Let
Ay, ..., A be the obstacle triangles incident to s that enter the interior of C H»1n cyclic
order around s. We can assume k>0, i.e., not all triangles incident to s lie on aCy,
otherwise v can be perturbed as before. Let P; be the plane through A;, and choose
the positive and negative open halfspaces of P; so that the positive halfspace contains
Ay, ..., Ay and the negative halfspace contains A, 1, ..., A;. Let S, be defined as
above, and let S be the polygon bounded by pg and the portion of S, in the positive
halfspace of Py; similarly, let S, be the polygon bounded by pg and the portion of S,
in the negative halfspace of P;. For each triangle A;,i = 1, ...,k — 1, in turn, split v
into two vertices v and v; connected by an edge, and perturb v; slightly into the interior
of dCy while staying on A;. See Fig. 7. Incidences to v are adjusted as follows. Within
the positive halfspace of P; 1, any edge, triangle, or tetrahedron previously incident to v
should be made incident to v;; in the negative halfspace of P, ., incidences remain with
v. Incidences to v on P;; expand by a dimension: an edge uv on P;| becomes a triangle
uvv;; a triangle ruv on Py becomes a tetrahedron tuvv;. Finally, for the last triangle
Ay, simply perturb v; = v to the interior of dCy while staying on A;. After all splitting
and perturbation there is again a dimple on 3Cy. Specifically, the perturbation of v,
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Fig. 7. Vertex v lies on Cy (not shown); both A; and A, are interior to Cj; v; lies on A;; u and ¢ lie on
A; 41 though they need not be close to v.

formed a dimple bounded by S;; each subsequent perturbation of v;, i>1, increased
the dimple by the tetrahedron pguv;v;_;; in addition, the final perturbation of v = v,
increased the dimple by S, . To fill the dimple, choose triangulations of S and St
then add the tetrahedra formed by v, and the triangles of S, the tetrahedra pqu;v;_,,
i =2,...,k, and the tetrahedra formed by v; and the triangles of S; .

To check that the resulting triangulation is compatible with all obstacles, observe that
the perturbation of v; maintains a two-dimensional triangulation of obstacle A;, with the
exception of the triangle pqv;. However, triangle pqv; is a face of tetrahedron pqv;v;_,
(and tetrahedron pquv;,v;) and hence is added when the dimple is filled.

The perturbation increases area by adding tetrahedra pqv;v;,, by replacing an edge
uv with a triangle uvv;, and by replacing a triangle tuv with a tetrahedron tuvv;. In
the first two cases, the additional area is negligible since the distances vv; can be made
arbitrarily small. In the last case, the triangle ruv is essentially duplicated, adding the
triangle fuv;. However, notice that after the entire perturbation, neither v in its new
position at v nor any vertex split from v lies on dCy. Hence over all stages each triangle
tuv can be duplicated at most three times, once per vertex. Since tuv is part of an obstacle
lying in Cy, the total additional area is O (area(S N Cy)).

The number of tetrahedra required to fill the dimple resulting from perturbing v is
constant if v is not on an obstacle and O(n¢) if v is on an obstacle. Since O(n%)
vertices have to be removed, the total number of tetrahedra over all stages is O(n%).
New tetrahedra are also created by expanding a triangle to a tetrahedron. However, this
happens at most once per vertex of each triangle, hence at most O(n%) times altogether.

The running time of the algorithm is O(r}.), since it takes time O (n2) to find inde-
pendent sets and O (n}.) to add tetrahedra. O

3.5.4. Accounting

Lemma 3.16. . ncsé = Of(area(S) + b?), where the sum runs over all skewered
leaf cubes C and b is the side length of the root bounding cube.

Proof.  Letm be the total number of obstacle triangles that intersect cube C. Since ev-
ery skewered cube meets some obstacle triangle, n¢ is O (m¢). We can express Zc mcsg
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as

Y ISalsg,

AeS

where S, is the set of skewered leaf cubes intersected by obstacle triangle A. We can
write

[Sal = apn +ma,

where a, and m are respectively the number of cubes C in S, so that the doubled cube
2C avoids or meets the boundary of A.

Consider first cubes C in S so that 2C avoids the boundary of A. Plainly the area of
2C N A is ©(s?). Since no point in space is covered by more than eight open doubled
skewered cubes, as < 8-area(A)/Q(s{) = Of(area(A)/s?). Hence ans? is O (area(A)),
and )", s aasd is O(area(s)).

Now consider cubes C in S, so that 2C meets the boundary of A. The boundaries of
the doubled cubes lie on the planes of a cubic grid of step size so. An obstacle triangle
edge e meets at most 3[length(e)/so] planes, which is O (b/so) (recall that b is the side
length of the box bounding the obstacle set §). Hence each edge meets O (b/sg) doubled
cubes, so mp is O(b/sg). We have

ZmAsg =0{m-b/sy- sg) = O(nbsy) = 0O(b?)
AeS

using b/(2n) < so < b/n. O

Proof of Theorem 3.9. By Lemmas 3.11, 3.13, and 3.15, the total area of 7 is

> area(dC N H) + > area(SNC) + > nest,
C C C

where the first two summations run over all leaf cubes and the last over skewered leaf
cubes. The first two summations add to O (area(T') + area(S)). Using Lemma 3.16, the
last summation is O (area(S) + b?).

Since the minimum cube size is about b/, the total number of leaf cubes is o).
Both the running time to compute 7 and the number of tetrahedra are bounded by
0 cne) = 0 c(me + 1)*) = 0(X - mk) + 0(n?), where mc is the number of
triangles meeting cube C. All leaf cubes C have faces lying on a cubic grid of planes with
step size sp; a triangle can hit at most O (n?) such grid cubes and thus at most O (n?) leaf
cubes of T'. Hence the number of incidences between leaf cubes and triangles, 3" m is
O(n?). The sum 2o m3C is maximized if m is as large as possible, i.e., n, for as many
cubes C as possible, i.e., O(n?), yielding an upper bound of O(n® - n?) = 0(n®). O

3.6. General Obstacle Sets

Theorem 3.17.  Let S be an arbitrary obstacle set with a total of n simplices. In time
O(n%) it is possible to compute a triangulation compatible with S whose area is within
a constant factor of the smallest possible. The triangulation has O (n®) tetrahedra and
partitions the convex hull of S.
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We begin the proof by finding a bounding box of S. Choose a diametrical segment of
the convex hull H of S. Project H onto a plane orthogonal to the segment, and choose a
smallest square containing the projection. S fits into a box Bg which is a translation of
the Cartesian product of the diametrical segment with the square. As before, perturb By
slightly to guarantee that no obstacle face is parallel to a face of Bs. Let Bs have size
h x h x £h. We can assume that ¢ is an integer. It is easy to see that the area of 9 H is
Q(Lh?).

We choose a family B of boxes that partition Bs. Conceptually split Bs into £ consec-
utive & x h x h cubes. Any cube that contains a vertex of $ is a box in B. Any maximal
union of consecutive cubes not containing a vertex is also a box in B. Clearly, there are
at most 2v — 1 boxes in B, where v is the number of vertices in S.

Refine the obstacle set S using the planes separating adjacent boxes in B3, as follows.
For each plane P, if P hits an edge e of S, split the edge into two subedges and the vertex
e P;if P hits a 2-simplex A of S, split the simplex into two 2-faces and the edge e N A;
finally, triangulate the region P N H compatibly with all intersection vertices e N P and
intersection edges A N P, and add all resulting 2-faces to S. After examining all planes,
triangulate any remaining 2-face that is not a triangle. Let S’ be the refined obstacle set
and let Sp be the subset of S’ lying inside box B. Recall |7 | is the area of triangulation
T.Let M = infy |T|, where 7 varies over all triangulations compatible with S; for
B € B, let Mg = inf7 |T|, where T varies over all triangulations compatible with Sg.

Lemma3.18. >, .Mz = O(M).

Proof. Let7T be an arbitrary triangulation compatible with S. Use each plane P that
separates adjacent boxes in B to refine 7, as follows: if P hits 0-, 1-, or 2-cells, then
they are refined as § was refined to S'; if P hits a 3-cell A, then A is split into two
3-cells and the 2-cell P N A. The area of PNAis O (h?), for a total over all planes of
O(|B| - h?*) = O(area(3H)) = O(area(T )). Each 3-cell in the resulting subdivision is
either a tetrahedron or has a constant number of polyhedral faces; in the latter case the cell
can be centrally triangulated (after triangulating any nontriangular faces), increasing area
by at most a constant factor. The resulting triangulation can be split into a triangulation
of each box B € B, with triangulation areas summing to O(area(’T ). O

The obstacle set S’ is triangulated by triangulating each set Sg in turn, and then
pasting the resulting triangulations together. A detail is that adjacent triangulations must
be compatible along their common boundary; however, this is easily guaranteed using
the technique of Section 3.5. Choose a box B € Bof size h x h x €g -h,fp > 1an
integer. Let Lz be the affine transformation that fixes one of the square sides of B and
shrinks the orthogonal direction by a factor of £5; then Lg(B) is a cube. Triangulate
L(B) using L (Sp) as before: build an octtree with root cube L z(B) and subdivide it
using the obstacles L 3 (S), as described in Section 3.3, and then triangulate each octtree
leaf cube as in Section 3.5, again using L 3(Sp). Apply the inverse transformation Ly !
to obtain a triangulation 7 compatlble with Sp.

Let T be the image under L} ! of the octtree, then L 8(Tp) is the octtree with root
cube L(B) and Tp is an octtree-like structure formed from blocks with side-length ratio
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1 x 1 x £p. The area of Ty, area(Ty), is )_ area(C N H), where the sum runs over all
leaf boxes C in Tp.

Lemma 3.19. area(Tp) = O(Mp).

Proof. We can assume that £z > 1, otherwise the lemma follows from Theorem 3.2.
Choose a leaf box C in T and conceptually partition it into £z consecutive cubes. We
show below that, for each such cube D, 21D meets the 1-skeleton of Sp. Let 7 be an
arbitrary triangulation of Sp. Using the same argument as the proof of Theorem 3.2, we
charge area(D N H) to features of 7 (with an appropriate modification to the charging-
pair constants, since 21D rather than 7D meets the 1-skeleton). Since area(C N H ) is
bounded by Y_,, area(D N H), D in the partition of C, the lemma follows.

By Lemma 3.5, 7L 5 (C) meets the 1-skeleton of L(Sg), so 7C meets the 1-skeleton
of Sp. Since S has no vertices within B, 7C must meet an edge e of Sz with endpoints
on opposite square faces of B. Consider the subsegment ¢’ of e lying between the planes
through the square faces of C. Clearly, there is a translate of 7C that contains ¢’ and
overlaps 7C. Hence for any of the cubes D partitioning C, 21D meets ¢’ O

Lemma 3.20. {p-area(L(Tp)) = O(area(Tg))and £z-area(Lg(Sp)) = O(area(Sp)).

Proof. We show the second statement; the first is easier. Assume £5 > 1, otherwise
the lemma is trivial. Choose triangle A € Sp. Since B contains no vertices of S, A
must result from refining a triangle of S by the planes through the two square sides of
B. Hence A is a triangle, with an edge e on one square side of B and a vertex on the
opposite square side of B. Similarly, L 5(A) has an edge ¢’ of the same length as e on one
side of Lg(B), and a vertex on the opposite side. The height of A opposite e is at least
h{p, and the height of L(A) opposite ¢’ is at most ~+/3. Hence £ - area(Lg(A)) =
O (area(A)). O

Lemma 3.21. area(7p) = O(area(Tg) + area(Sg) + £5 - h?).

Proof. By Theorem 3.9, we have area(L p(73)) = O(area(L 3(Tg))+area(Lp(Sp)) +
h?). Hence

area(Tp) = O(€p - area(L(7p)))
= O(¢p - area(Lp(Tp)) + £5 - area(Lp(Sp)) + £3h?)
= Ofarea(Tg) + area(Sp) + £zh?),

using Lemma 3.20. ]

Proof of Theorem 3.17. By Lemmas 3.19 and 3.21, the triangulation 73 of each box
B € B has area O(Mp + €5 - h?). Hence the whole triangulation has area

D OMp)+)_ Oty -h%) = O(M) + O(h>) = O(M),
BeB BeB
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using Lemma 3.18 and £h* = O(area(dH)) = O(M). The bounds on running time
and tetrahedra follow from Theorem 3.9 since there are O (n) boxes in B. O

3.7. Worst-Case Bounds

For obstacle set S in R, recall that ¢(S) = inf7 area(7T) /area(S), where T varies over
all triangulations compatible with S. The following lemma gives worst-case bounds on
c(S). As before, S must contain faces partitioning the boundary of its convex hull.

Lemma 3.22.  For anywide obstacle set S in R3,¢(8) = 0(/n) , where n is the number
of simplices in S. There is a wide set S of O (n) obstacles with c(S) = Q(/n).

Proof. Let B be the minimum-size bounding cube of S, perturbed slightly so that no
obstacle face is parallel to a face of B. Let B have side length b. Split B into a grid
of identical cubes, where each cube has side length s ~ b/\/n, so there are about n3/2
cubes altogether. Using the algorithms of Section 3.5, triangulate each clipped cube and
paste the triangulations together, yielding a triangulation 7 compatible with S. 7 has
area O(n’% - s%) = O(b*/n) (the surface area of the cubes) plus O (area(S)) plus
O (Y ncs?), where nc is the combinatorial complexity of cube C. An analysis similar
to Lemma 3.16 shows that ) ncs? is O (area(S) +n-(b/s)-s2) = O(area(S)+b>/n).
Hence the ratio area(7)/area(S) is O (/n), as area(S) is Q(b?).

For the second statement, choose an axis-aligned unit cube B. Subdivide B into a
cubical grid of about /n x 4/n x /n identical subcubes. For each one-dimensional
row of subcubes parallel to the x-, y-, or z-axis, choose a very thin obstacle triangle
that covers all the subcube centers in the row. Slightly perturb the resulting set of @ (n)
triangles so that no two intersect. Add to the obstacle triangles a L triangulation of their
convex hull, forming the obstacle set S. Since the 1-skeleton of § passes very near the
center of each subcube, Lemma 3.4 implies that any triangulation 7" compatible with
§ must have area Q((1//n)%) = Q(1/n) within each subcube. Since there are n3/2
subcubes, the total area of 7 is € (4/n). Since the area of the convex hull is O(1) and
the area of the remaining obstacles can be made arbitrarily small, c(S’ Y=Q(/n). O

An argument similar to this proof shows that if § contains n points (and the faces of
the convex hull), then ¢(S) = O(n'/?). Furthermore, there is a set S of n points with
c(S ) = Q(n'/3). These results contrast with the results of Agarwal et al. [2]. They show
there is a set S of n points in R? so that in any triangulation of S, some line meets /n
triangulation faces. Similarly there is a set S of n obstacle triangles in R? so that in
any triangulation compatible with S’, some line meets Q (n) triangulation triangles, even
though it misses all obstacles.

4. Discussion

We have not tried to estimate the approximation ratio for the constructionin Section 3. Our
algorithm is based on Eppstein’s algorithm, which approximates the minimum-length
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Steiner triangulation of a set of points in two dimensions. Eppstein is able to prove an
approximation ratio of 316 (though he suspects the true ratio is much smaller, perhaps
around 20); our proof is much less careful about constants than his. A challenging open
problem is to construct triangulations of approximately minimum weight in two or three
dimensions with reasonable constants and with a reasonable number of vertices.

In two dimensions, the minimum spanning tree provides an intrinsic measure of
the minimum weight triangulation, in the sense that their weights differ by at most a
logarithmic factor (Lemma 2.2). In three dimensions, the surface area of the octtree
constructed in Section 3 is an intrinsic measure of the minimum weight triangulation
(Theorem 3.2). It would be of interest to obtain a more natural intrinsic measure.

The analysis of ray-shooting-by-walking can be extended to other subdivisions be-
sides triangulations. For example, consider the leaf cubes of the octtree constructed in
Section 3, with the modification that each unskewered cube is partitioned by all obstacles
that cut it fully. Label each skewered leaf cube with the number of obstacle triangles
that meet it, and label all the other 3-cells 1. Then it is possible to walk through the
partitioned octtree along a line £ with total cost proportional to w(£), where w(£) is the
sum of the labels of the 3-cells intersected by £. The analysis in Section 3 shows that
[ w(®) du is the area of the minimum weight triangulation, to within a constant factor.
Two problems arise naturally when considering alternative subdivisions for ray-shooting
queries: first, to determine if the area on the minimum weight triangulation is always
a relevant bound; second, to provide an analytic comparison of the constants that arise
from different subdivisions.
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