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Abstract. We establish a near-cubic upper bound on the complexity of the space of line
transversals of a collection of n balls in three dimensions, and show that the bound is almost
tight, in the worst case. We apply this bound to obtain a near-cubic algorithm for computing
a smallest infinite cylinder enclosing a given set of points or balls in 3-space. We also present
an approximation algorithm for computing a smallest enclosing cylinder.

* All three authors have been supported by a joint grant from the U.S.Israeli Binational Science Foun-
dation. Pankaj Agarwal has also been supported by a National Science Foundation Grant CCR-93-01259,
by an Army Rescarch Office MURI Grant DAAH04-96-1-0013. by a Sloan Research Fellowship, and by an
NYT award and matching funds from the Xerox Corporation. Boris Aronov has also been supported by NSF
Grant CCR-92-11541, and by a Sloan Research Fellowship. Micha Sharir has also been supported by NSF
Grants CCR-94-24398 and CCR-93-11127, by a Max-Planck Research Award, by a grant from the G.LF,,
the German-Israeli Foundation for Scientific Research and Development, and by the Hermann Minkowski—
MINERVA Center for Geometry at Tel Aviv University.



374 P. K. Agarwal, B. Aronov, and M. Sharir
1. Introduction

Line Transversals in Three Dimensions. Let S be a collection of n compact convex sets
with nonempty interiors in R*. A line € is called a (line) transversal of S if it intersects
every member of S. Let 7 (S) denote the set of all line transversals of S. Since lines in
3-space can be parametrized by four real parameters, 7 (S) is a four-dimensional set.
For example, one may use the parametrization (&, &, &;. £4), where the equations of the
line are given by v = &x + &, z = £3x + &4 this excludes lines parallel to the yz-plane,
which can be treated separately, in a simpler manner, since they can be parametrized
by only three real parameters. We assume that each § € S has “constant description
complexity,” meaning that it is a semialgebraic set defined by a constant number of
polynomial equalities and inequalities of constant maximum degree. In this case, 7 (S)
is also a semialgebraic set, whose boundary 37 (S) consists of transversals that are
tangent to at least one set S € S. We can measure the combinatorial complexity of T(S)
by the number of its faces of all dimensions, where a face is a connected component of
a portion of 37 (S) consisting of lines tangent to a fixed subset of S. Assuming general
position, a j-dimensional face of 7(S), for j = 0, 1, 2, 3, consists of line transversals
tangent to a fixed set of 4 — j members of S; see [1] and [22].

Wenger [28] obtained an O (n*) upper bound on the number of connected components
of T(S) for the case where the sets in S are pairwise disjoint. Pellegrini [19]-[21] and
Pellegrini and Shor [22] have studied several combinatorial and algorithmic problems
involving line transversals of a set S of triangles and convex polytopes in 3-space. They

obtained a lower bound of §2(n*) and an upper bound of n* - 2212 on the complexity

of T(S), where S is a set of convex polytopes in R* with a total of n vertices. The
upper bound was later improved to O(n logn) by Agarwal [1]. Pellegrini and Shor
also gave an O (n***)-time algorithm, for any & > 0, for determining whether S admits
any line transversal, i.e., whether 7(S) # #. No subquartic upper bound was known
for collections S of more general convex sets, even for collections of balls. An easier,
related problem is to bound the complexity of the space of plane transversals of S. It
is shown in [3] that if each object in & has constant description complexity, then the
combinatorial complexity of the space of plane transversals of S is O(n***). See [11]
and [29] for recent surveys on geometric transversal theory.

In this paper we study the case where S is a collection of n balls in RY. We show that the
complexity of 7(S) is O(n**), for any & > 0.' The same bound also holds if S if a set
of n homothets of a convex body of simple shape. We also show that this bound is nearly
tight by exhibiting a collection S of n balls for which the complexity of 7 (S) is Q(n*).

We conjecture that such a near-cubic bound on the complexity of 7(S) holds for
arbitrary collections S of n simply shaped convex sets in R?. As already mentioned, this
holds for the case of polyhedra.

Smallest Enclosing Cylinders. Next, we study the following problem: Let P be a set of
s points in R*. We aim to find an infinite circular cylinder C of the smallest possible radius

" Throughout this paper, £ denotes an arbitrarily small positive constant. The constant of proportionality
depends on e, and tends to oo as e | 0.
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that contains P; we refer to C as a smallest enclosing cylinder of P. More generally, we
may consider the case where P is a collection of balls, and we wish to find a cylinder of
smallest radius that either (a) contains all the balls in P, or (b) intersects every ball in P.

These problems arise in statistical analysis and computational metrology. In statistical
analysis, given a set P of points in R3, we wish to fit a line ¢ through P so that the
maximum distance between £ and the points of P is minimized, which is equivalent to
finding a smallest enclosing cylinder of P. In computational metrology, this problem
arises in measuring the quality of a product [8], [10], [26], [27]. P is a set of points
sampled from a cylindrical object being manufactured. A smallest cylinder enclosing
P serves as a calibration of how close the manufactured object is to the desired shape.
In order to capture measurement errors (in both statistical analysis and computational
metrology), we can replace each point p € P by a ball of radius 8, centered at p. In that
case, problem (a) seeks the smallest cylinder that is guaranteed to contain all the points,
regardless of their exact position; and a solution to problem (b) gives an underestimate
on the radius of a smallest cylinder containing S.

This problem is closely related to the space of line transversals of balls in R>. Indeed,
suppose, for specificity, that P is the set {B(xy,r)...., B(x,, r,)}, where B(x, r) de-
notes the closed ball of radius r centered at x. Suppose that we conduct a binary search
on the radius r of the cylinder, and that we need a procedure that can determine, for a
given r, whether there exists a cylinder of radius r that contains (resp. intersects) ail the
balls of S. This decision problem is equivalent to the problem of determining whether
the sets

Pr_ :{B(x|,r—r1),...,B(x,,,r—r,,)}
and
Pf:{B(xl.r+r|),...,B(x,,,r+r,,)},

respectively, have a line transversal.

This indeed is the approach that we use to solve this problem. We first present an
algorithm for determining whether a given set of » balls in 3-space has a line transversal.
The running time of the algorithm is O (n***), for any & > 0. We then combine this pro-
cedure with parametric search to obtain a near-cubic solution to computing the smallest
enclosing cylinder. This improves a recent n* log®!"’ n solution of Schomer et al. [23].

We also present an O((1 + 1/8%)n)-time algorithm to compute a cylinder enclosing a
set of balls in R, whose radius is at most (1 + 8)r*, where r* is the radius of a smallest
enclosing cylinder of the set. Schomer et al. [23] gave an O((1 + 1/8*)n log 1/8)-time
algorithm to compute a cylinder of radius r* +8 enclosing a set of n points in R?, assuming
that the input points lie inside a unit sphere. They also presented two other algorithms
for this problem that run in time O (n*log(1/8)) and O((1 4 1/8)n° log(1/$)).

2. Geometric Preliminaries

In this section we introduce a few technical concepts and results that we will be using in
subsequent sections. Let F be a set of n d-variate, possibly partially defined functions.
The lower envelope of F is defined as Fl(x) = minsex f(x), and the upper envelope
of F is defined as FY(x) = maxsc 7 f(x); in case of partially defined functions, the



376 P. K. Agarwal, B. Aronov, and M. Sharir

minimum and maximum are taken only over those functions that are defined at x. The
decomposition of R into maximal connected regions over each of which a fixed subset
of tunctions attains the lower (resp. upper) envelope of F is called the minimization (resp.
maximization) diagram of F. A recent result of Sharir [24] shows that if the graphs of the
functions in F have constant description complexity, i.e., if the graph of each functionis a
semialgebraic set defined by a constant number of polynomial equalities and inequalities
of constant maximum degree, then the complexity of the lower and upper envelopes of
Fis On*+), for any ¢ > 0. Moreover, Agarwal et al. [2] have shown that, ford = 3, F
can be preprocessed in O (n**%) time into a data structure of size O (n***) so that, for a
query point x € R, F-(x) and FV(x) and one of the functions attaining each envelope
can be determined in O (log” n) time.

Let B be a given set of n balls in R?. We use the parametrization (£, &, &3, &) of lines
in R? defined in the Introduction. For each ball B € B, let o denote the surface in R*
consisting of all lines tangent to B. We can represent oy as the union of the graphs of two
partially defined functions £y = Fg(&1. &2, §3), & = Gp(§1, &2, &3), where F(§1, &2, &3)
(resp. Gg(&], &, &3)) is the &4-coordinate of the line (&), &, &3, &) that is tangent to B
from below (resp. from above). The functions Fz and G p are defined whenever the line
v = £, x + & intersects the xy-projection of B (a condition independent of &3); otherwise
we put Fp = 400 and Gy = —o0. The graphs of Fg and G 5 are semialgebraic sets of
constant description complexity. Let F = {Fg | B € Bland G = {Gp | B € B}. The
foliowing observation is immediate:

Observation 2.1. A line (&), &, &, &4) intersects B if and only if

Fp(&1,6,8) <& <Gp§,.5.8).

Thus (&), &. &3, &) is a transversal of B if and only if

max Fp(§1,6:,6) <& < 1;1612 Gplé1,62.63).

In other words, 7 () is the region “sandwiched” between the upper envelope FY of F
and the lower envelope Gl of G.

Since the functions in F, G are partial trivariate algebraic functions, of constant
description complexity, the result of Agarwal et al. [2] mentioned at the beginning of
this section implies the following fact.

Observation 2.2. A set B of n balls in R* can be preprocessed in time O (n***), for
anv ¢ > 0, into a data structure of size O (n*%), so that we can determine in 0(10g2 n)
time whether a query line € is a transversal of B.

This observation, however, falls short of giving a bound on the complexity of 7 (13).
In order to bound this complexity, we need a bound on the complexity of the “sandwich”
region enclosed between the lower envelope G“ and the upper envelope F U It is still
an open problem whether a near-cubic bound holds for the case of trivariate functions.
However, such a result was recently established in [3] for bivariate functions, and is used
in the next section:
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Theorem 2.3 [3].  The complexity of the region enclosed between the upper envelope
of n bivariate functions of constant description complexity and the lower envelope of n
other bivariate functions of constant description complexity is O (n***), foranye > 0,
This region can be computed, in an appropriate model of computation, in time O (n>**),
foranve > 0.

3. Complexity of the Set of Line Transversals

Let Bbe a setof n balls of arbitrary radii in R*, In this section we bound the combinatorial
complexity of 7(B). The following theorem states the main result.

Theorem 3.1.  Ler B be a collection of n balls in R3. Then the complexity of T (B) is
Oy, forany ¢ > 0.

Proof.  We assume that the balls in B are in general position, i.e., that no line is tangent
to more than four balls, and that the point (£, &, &, &) corresponding to a line tangent
to exactly k balls, k = 1, ..., 4, lies in a face of codimension k in the arrangement of the
set of surfaces {op | B € B). Following the same argument as in [24], the upper bound
can be extended to the situation when the balls are not in general position.

For a set B of balls in general position, a simple counting argument shows that the
number of faces of 7 (B) that are not incident to any vertex of 7 (B) is bounded by
O(n?), and that the number of all other faces of 7 (B) is proportional to the number of
vertices in 7 (BB). It thus suffices to bound the number of vertices in T(B). Wereferto a
transversal as extreme if it is tangent to four balls in B, so that it corresponds to a vertex
of T (B) (where four of the graphs of the functions Fg, G g intersect).

Let the set B = {B,, ..., B,} of balls be ordered so that the radii r; of the balls B;
form a nonincreasing sequence. Fix a direction n in R? not parallel to the x-axis, and
consider the family of all lines in direction n. Let H, be some plane orthogonal to n, and
let B™ denote the orthogonal projection of a ball B to H,. Let B™ denote the collection
of n disks in Hy resulting from the projection of the balls in B.

Suppose that £ is an extreme transversal of 53 in direction n, and let B;,, B;,, B;,, B;,
be the four balls of B to which £ is tangent. Without loss of generality, assume that
| < iy < i3 < i, ie., B has the largest radius among these four balls. Clearly, the
point £ N Hy must lie in each of the disks of B™ and on the boundary of the four disks
B,‘A"). fork = 1,.... 4. Our strategy is to fix the ball B;,, and to analyze the number of
extreme transversals ¢ with these properties, that s,

(%) extreme transversals that are tangent to B;, and to three other balls of B whose
indices are larger than i, .

We will show that the number of such extreme transversals is O (n2+¢), for any ¢ > 0.
This will clearly imply the bound asserted in the theorem. In fact, we will count the
number of extreme transversals of B;, = {Bi,. Bi,+1, ..., By} that are tangent to B;,.
Since any transversal of I3 satisfying property (x) is also an extreme transversal of B;,,
what we are counting is a superset of transversals satisfying property (x) (clearly, not
every extreme transversal of B;, is necessarily a transversal of B satisfying (x)).
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(n)

i

§(m)

Fig. 1. Projection of B; and B; onto Hy.

Fix a ball B;, for some i = 1,...,n — 3, and let n be an arbitrary direction not
parallel to the x-axis. Intersect B,.(") with the plane I1 passing through its center and
parallel to the yz-plane (since we have excluded the case in which n is parallel to the
x-axis, B™ ¢ TI). Let 8™ denote the semicircle bounding the portion of B™ that lies
in the positive half-space bounded by T1. Let ¢, o™ denote the center of B™ and
the clockwise endpoint of §™ (when viewed in direction n), respectively. For a point
p € 8™ we define o™ (p) = tan((Lo™c™ p)/2). Since 0 < Lo™Wc™Wp < 7, ™
increases monotonically with the length of the arc of §™ from o™ to p. See Fig. 1.

Foreach j > i, we define two functions f;(n), g;(m), as follows. Letaj(") = 8‘“’03}").

Since r; < rj, oj(") must be a (possibly empty) connected arc. Let p;"’ , q;") denote the

clockwise and counterclockwise endpoints of orj("), respectively. We define f;(n) =

w(“’(p](.“)) and g;(n) = w("’(q;"’). If aj(") is empty, we put fj(n) = oo and g;(n) = 0. It

is a routine task to show that the graphs of f; and g; are semialgebraic sets of constant
description complexity, provided that n is specified appropriately.

Let £ be an extreme transversal in direction n that is tangent to B; and to three other
balls with larger indices, such that £0 Hp, lies in 8™ . Then the parameter t = ¢™ (£N Hy)
must satisfy

max f;(m) <t < ming;(n).
=t j>i

Moreover, the point (n, t) must be a vertex of the region enclosed between the upper
envelope of the f;’s and the lower envelope of the g;’s, since it lies on (at least) three of
the surfaces and the balls in B are assumed to be in general position. By Theorem 2.3,
the number of such vertices is O (n***), for any & > 0.

Repeating the same analysis, but replacing §™ by the other semicircle bounding
B,.("), we conclude that the number of extreme transversals that are tangent to B; and to
three other balls with larger indices is O(n***), for any & > 0. As observed above, this
completes the proof of the theorem. O

Remark 3.2. The crucial observation in the above proof is that, for every direction n,
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;" = 8" N B;" is a connected arc. A similar property also holds for a set of homothets

04‘ a compact convex set. More precisely, let S be a set of n homothets of a semialgebraic
compact convex set of constant description complexity in R?. Assume that the sets in
S are sorted in a nonincreasing order of their scaling factors. For a direction n, let S,.(")
denote the projection of S; onto a plane H, orthogonal to n, and let I, be the plane
parallel to the yz-plane for which the length of I, N Si(") is maximized over all planes
parallel to the vz-plane. Let '™ be the portion of BS,.‘“) lying in the closed positive half-
space bounded by IM,. Then, for any j > i, §™ N S;") is a connected arc. This follows
from the vbservations that (a) 3S™ and 8S;"), being homothetic to each other, intersect
at two points [13], and (b} if these two points lie on 8™, then, SI(.") al BS;") C 8™ for
otherwise S/(-") N I, would be longer than S\™ N I, which is impossible since SJ(.") has

a smaller scaling factor than that of Sf"). Now an easy modification of the above proof
shows that the complexity of 7(S) is also O (rn>*%), for any ¢ > Q.

4. Testing for the Existence of a Line Transversal

Let B = {By...., B,} be a collection of n balls in 3-space in general position, as
described in the beginning of the proof of Theorem 3.1. We present a near-cubic-time
algorithm for determining whether 7 (B) # (. If n < 4, we can explicitly compute 7 (B)
in (1) time, so assume n > 4.

We begin by extending the notion of extreme transversals so that there always exists
an extreme transversal whenever 7 (B) # .

Recall the parametrization (&, &,. &3, &;) of the set of lines, as defined in the Intro-
duction. Then 7 (B) is the region “sandwiched” between two envelopes in R*. Consider
a connected component C of the sandwich region and let w be the highest point of C, if
such a point exists (the remaining case will be discussed below). Then w is a vertex, a &4-
extreme point on a curve, a £4-extreme point on a two-dimensional face, or a £4-extreme
point on a three-dimensional face. We extend the definition of extreme transversals, so
that they also include lines that correspond to these points. For example, the second
type corresponds to a line transversal of 3 touching three fixed balls and, among nearby
such transversals, locally maximizing &. Clearly the number of extreme transversals
that are not vertices of 7 (B) (i.e., the extreme transversals that are tangent to fewer than
four balls) is O(n?) and a superset of them can be trivially computed in O(n?) time, by
considering all individual surfaces, intersections of pairs and intersections of triples of
surfaces, and by computing locally £4-extreme points on each such set (assuming general
position, there are only O (1) such points on each of these sets).

Suppose C is unbounded in the &-direction. Then C contains a transversal parallel to
the vz-plane: The unboundedness implies that there are lines in C whose projection on
the xz-plane has arbitrarily large z-intercept. The projection of such a transversal must
be nearly vertical (in the xz-plane), because of the compactness of the balls. As 7 (B) is
a closed set, in the limit we get a line transversal orthogonal to the x-axis.

In the three-dimensional space of lines perpendicular to the x-axis, we choose another
parametrization and repeat the process, identifying local extrema in the last parameter. It
is easily verified that no more than O (n*) potential extreme transversals can be generated
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by carrying out this process to its logical conclusion; a superset of these transversals, of
size O(n?), can be computed in O n?) time.
The following lemma follows from the definition of extreme transversals given above.

Lemma 4.1. If T(B) is nonempty, then each connected component of T (B) contains
at least one extreme transversal of B, in the extended sense just defined. Moreover, if
T (B) has nonempty interior, then the closure of each connected component of its interior
contains at least one point corresponding to an extreme transversal.

{n view of the lemma, the emptiness of 7 (13) can be tested by determining whether
there exists an extreme transversal of 3. The algorithm works in two phases. In the first
phase we compute a superset of extreme transversals (i.e., we compute a set of lines
that are guaranteed to contain all extreme transversals of B3), and in the second phase we
check whether any of them is indeed a transversal of B. As discussed above, there are
O (1) lines that touch fewer than four balls and could potentially be extreme transversals
of 13; they can be computed in O(n*) time. Let £, denote the set of these lines. (This set
also includes extreme lines perpendicular to the x-axis.)

We next compute a set £, of O (n1¢) lines that touch four balls of B and include all
extreme transversals that correspond to vertices of 7 (13), by proceeding along the same
lines as the proof of Theorem 3.1. For each B; (and for each of the two semicircles,
5™ and its complement, in the corresponding planes of projection), we define the two
collections of bivariate functions, { f;(n)};.;, and {g;(m)};;, as in the preceding section.
Let ¢ be an an extreme transversal that is tangent to B; at a point that projects to the
semicircle under consideration and that is also tangent to three other balls with larger
indices. Then ¢ corresponds to a vertex of the region sandwiched between the lower
envelope of the g;’s and the upper envelope of the f;’s. Using the algorithm described in
13] (see Theorem 2.3), we can compute all these vertices in time O (n**%), for any ¢ > 0.
We repeat this step for each ball B; and for each of the two corresponding semicircles,
and obtain, in overall time O (n>%¢), forany £ > 0, a set of lines that contains all extreme
line transversals corresponding to vertices of 7 (B).

Let £ = £, UL, be the set of all lines computed by the above procedures. As already
observed, some of the lines may not be transversals to the entire set of balls, so we need
to test whether any of these lines is indeed a transversal of 5. By Observation 2.2, we
can preprocess B, in O (n**°) time, into a data structure of size O (n*t¢), so that we can
determine in 0(log2 n) time whether a line £ € L is a transversal of 5. Hence, we can
identify all extreme transversals of B in O(n**¢) additional time, for any ¢ > 0. We
therefore conclude:

Theorem 4.2. Givena set B ofn balls in 3-space in general position, we can determine
in O3t time, for any € > 0, whether B admits a line transversal.

Remark 4.3. (i) If all balls in B have the same radius, then, for each i, we can compute
the region lying between the lower envelope of {g;(m) | 1 < j # i < n} and the upper
envelope of {fj(m) | 1 < j # i < n}. In this case the collection of these sandwich
regions represents the boundary of T (B3). It is therefore sufficient to determine whether
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any of these sandwich regions is nonempty (and thus the second “filtering” phase is not
required).

(ii) The above algorithm can handle some limited degeneracies in the input. For
example, the algorithm works even if more than four balls are tangent to a line, as long
as the number of such balls is bounded by a constant. We need this extension in 6.

S. Lower Bound

In this section we describe a construction of a family B of » balls in R?, for which T(B)
has complexity Q(n?). We also present an easier construction of a set B of 1 balls of the
same radius, with 7 (83) consisting of 2 (n?) connected components. The constructions
are inspired by those of Pellegrini [21].

We begin by describing the second, simpler construction. Consider a plane 7 through
the origin O inR*. Let R > | bea quantity to be fixed later. Place two balls of radius R
langent to 7 at O from the opposite sides of 7, and then move them apart, perpendicular
to 77, so that they lie at distance 1 from 7. Denote the resulting two balls by B! and BZ.
Note that no line transversal of (B, B2} is parallel to 7. Moreover, any line that passes
through O and makes an angle larger than & = ¢(R) with 7 is a transversal of this set.
Note that e(R) — Qas R — oc.

Consider a setof n/2 planes {7, ..., 7,2} passing through the origin, with no three
planes sharing a common line. Put

B={(B,.B: |i=1,....n/2).

We claim that 7 (B) has ©(n?) connected components, for some sufficiently large R.
Indeed, no line parallel to any of the planes is a transversal of B. Let S denote the
sphere of directions in R*—the unit-radius sphere centered at the origin; each direction
in 3-space can be represented as a point on S. The locus of orientations of lines parallel
to 7; is a great circle C; = C(m;) on S, and the n/2 great circles {Cy, ..., C,p2} in
general position corresponding to the n/2 planes {n;, . . ., 7,,2} induce an arrangement
A on S with ®(n?) faces. To finish the argument it is sufficient to show that, for a
sufficiently large R, each face of A contains at least one line orientation corresponding
to a transversal of B. Indeed, any line passing through O and making an angle more
than & with the planes is a transversal of B. Therefore every point on S outside the union
of n/2 bands of half-width e, each centered around one of the great circles C;, is the
orientation of a line transversal to B through O. Picking R large enough we can assure
that the bands are sufficiently narrow so that every face of .4 contains a point outside
of their union. This completes the construction of a family of balls for which 7 (B) has
Q(n?) connected components.

To obtain 7 (B) with a large number of extreme transversals, we proceed as follows:
Forany § -~ 0, let K5 € S be the closed spherical cap centered at the north pole (0,0, 1)
with angular opening 24, i.e., K5 is the set of unit vectors whose angles with the positive
Z-axis are atmost 8. Let {my. ..., 7,4} be a set of n/4 planes passing through the origin
andletC = {C(n;) | i = 1,...,n/4) be the set of great circles as defined in the previous
paragraph. We choose the planes so that most (i.e., ©(n?)) of the faces of the arrangement
of great circles A = A(C) on S lie in a spherical cap K centered at the north pole,
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for some 8 < 1. Clearly this requires a choice of ¢ < §/n and a correspondingly large
R. (Notice also that A is centrally symmetric, with center at the origin. Two opposite
points of S correspond to lines with opposite orientation. So, in fact, we are considering
an arrangement in which two opposite spherical caps contain most of the features.) Let
B ={B} Bl |i=1....,n/4)be the resulting set of n/2 spheres.

Consider now the set of lines passing through a point O’ near O. The set of orientations
of lines missing both balls B),’ , B; and passing through O’ is a slightly distorted version
of the band of half-width ¢ around the great circle C;. Indeed, the orientations of the lines
tangent to B,iy and passing through O sweep out a cone corresponding to a circle near
the great circle C;, so the claim follows. In particular, the orientations of all transversals
of B passing through O’ is a complement of a set of narrow (in general, asymmetric)
bands around the same family of great circles {C;}. It is easy to verify that there are a
sufficiently small neighborhood N of O and a choice of R, so that the following holds:
There is a fixed set of ©(n?) orientations 6, one in each face of A contained in the
spherical cap K, so that each 8 corresponds to a different component of T (B') and such
that for every point O’ € N the line passing through O’ in direction 6 is a transversal
of B

Now we constructacollection B = {B/, ..., B,’[/z} of /2 additional small congruent
balls around O, so that the following conditions hold:

I. Foreachi = 1,...,n/2, B/ is contained in N and the distance from O to the
center of B’ is half the common radius of these balls.

2. The centers of the balls lie at the vertices of a regular (n/2)-gon in the xy-plane
centered at O.

Put / = (), B/ and B = B’ U B”. Note that / is a scaled copy of a set /o that
depends only on n and not on 8. Fix a face f C K; of .A. The preceding discussion
implies that there is a connected component Q of 7 (B) that contains only lines whose
orientation lies in f. We claim that each such component Q contains at least #/2 distinct
two-dimensional faces of 7 (1) on its boundary. This implies the claimed lower bound,
since the number of faces f in K is ©(n?).

As observed above, there exists an orientation 6; € f so that for all points O € 1
the line £(O', 0y) through O in direction 6 is a transversal of B’ and thus of B. Let I*
denote the projection of I onto a plane perpendicular to 6. I* is a scaled copy of the
corresponding projection of Jy. Since 6 is near-vertical, I* has the shape of a convex
“n/2-gon” bounded by circular arcs, provided § is sufficiently small. For any vertex v;,
fori = 1....,n/2, of this “circular polygon,” £(v;, f¢) is a transversal of B lying on
the boundary of T (B). For every i, £(v;, §;) touches a different pair of balls of B”, and
does not touch any other ball of B”. Therefore, the lines {€(v;,0¢) | i = 1,...,n/2} are
witnesses of the presence of /2 different two-dimensional faces on the boundary of Q,
which completes the argument. Hence we have shown:

Theorem 5.1.

(i) There exists a set of n balls in R* whose transversal space has (n) complexity.
(il) There exists a set of n unit-radius balls in R?, for which the space of line transver-
sals consists of S2(n?) connected components.
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6. Computing a Smallest Enclosing Cylinder

Let B ={B(x),r)...., B(xy,r,)} be a set of n balls in 3-space, where B(x;, r;) is the
ball of radius r; centered at x; and r; > r; wheneveri < j. We assume that the balls in B
are in general position in the sense that any cylinder is tangent to at most five balls of B.
We wish to compute a smallest cylinder containing all balls of B. (The case of a smallest
cylinder that intersects all the balls in B can be handled in essentially the same manner.)
For a real parameter r > max; r;, let B, = {B(x;,r —r;) | 1 <i < n}, and recall that
there exists a cylinder of radius r containing all balls of B if and only if B~ has a line
transversal. By our assumption, a transversal of B, is tangent to at most five balls. We
thus need to find the smallest value r* of r such that B admits a line transversal. We
accomplish this by applying the parametric search technique of Megiddo [15]. First, we
need an “oracle” for determining whether a given r is equal to, greater than, or smaller
than r*. This can be done using Theorem 4.2. In fact, Theorem 4.2 can be extended so
that it can also determine whether a given r is equal to r*, as follows. It can be shown that
the interior of 7(B;) is empty if and only if r = r*. In view of Lemma 4.1, it suffices
to test for the emptiness condition locally near each extreme transversal ¢. This local
test has to consider only the O(1) balls to which ¢ is tangent (by our general-position
assumption, at most five balls are tangent to £), and to determine whether the interior of
the space of line transversals of these balls is empty; this can be done in constant time.
The oracle thus runs in O(rn31¢) time, for any € > 0.

Next, we simulate the first phase of the oracle (i.e., the algorithm that computes a
superset of extreme transversals) generically on B3, without knowing the value of r*, and
maintain an interval / that is guaranteed to contain r*; initially, / is set to [max; r;, co].
The algorithm for computing extreme transversals, as described above, is comparison-
based, in the sense that its control flow is governed by comparisons, each of which
amounts to testing the sign of some low-degree polynomial in r*. Moreover, the algorithm
uses the value of r* only to resolve such comparisons. Since r* is unknown, resolving a
comparison involves determining the sign of a corresponding polynomial p(r) atr = r*.
Whenever the simulation of the algorithm encounters such a comparison, we compute
the roots py, ..., p; of the corresponding polynomial p(r). Applying Theorem 4.2 to
B;‘“. foreach | < i < k, we determine, in O (n**¢) time, whether i =r* pi <r*or
pi > r*. 1fany p; is equal to r*, we stop the entire procedure. Otherwise, we have an
interval (p;, p;41) that contains r*. We compute the sign of p(r*), by evaluating p(r) at
any point in (p;, p;+1), and thus resolve the comparison. Next, we shrink the interval I
to I N (p;. pi+1), and continue the simulation of the generic algorithm.

The traditional parametric search should simulate both phases of the algorithm, but
the following lemma shows that simulating the first phase is sufficient, in the sense
that the algorithm always terminates before finishing the simulation of the first phase.
(Recall that if all balls in B have the same radius, then the second phase is not required
anyway.)

Lemma 6.1.  The generic algorithm that simulates the first phase of the oracle always
performs a comparison whose corresponding polynomial vanishes at r*.

Proof. Suppose that the generic algorithm does not make such a comparison. Then,
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at the end of the simulation we have an open interval /; containing r*. Since r is an
indeterminate in the simulation, each potential extreme transversal computed by the
generic algorithm can be parametrized as £(r) = (§(r), & (r), E3(r), &4(r)) forr € Iy,
where the £’s are univariate algebraic functions of . Each such line £(r) is tangent to
the same subset of balls B(x;,,r — r;,), ..., B(xj,,r —r;,), forevery r € I;. Let L be
the set of parametrized lines computed by the generic algorithm. Then, for any ry € Iy,
the potential extreme transversals of B, computed by (the nongeneric version of) the
first phase is the set L(ry) = {€(rg) | £ € L}.

Let £y be an extreme transversal line of 5., and let £y(r) be the corresponding
parametrized line in £ (so that £, = £o(r*)). For the sake of simplicity, assume that £ is
avertex of 7 (B,.), which is an intersection point of four surfaces. The generic algorithm
computes a superset of extreme transversals of B,., so £y € L. Since r* is the radius of
a smallest enclosing cylinder of B, £o(r) is not a transversal of B, for any r < r*. Let
B(x;., r*—r;) be the largest (i.e., the first in the list) ball that £, is tangent to, so £, intersects
the interiors of B(xy, r*—ry), ..., B(x;-y, r*—r;_;). Hence, for any ry € Iy smaller than
r*. £o(ry) still intersects the interiors of B(xy, rg —r1),..., B(xi_i, ro —ri—1). However,
by definition of *, £o(rp) is not a transversal of Br‘o. Therefore £4(rp) is not a transversal,
and thus not an extreme transversal, of the set {B(x;,ro — ri),... B(x,,rg — ry)} and
would not have been computed by the nongeneric oracle at ro. This contradicts the fact
that £43(rg) € L(ro). Hence, the generic algorithm always performs a comparison whose
corresponding polynomial vanishes at r*. [

To make this parametric searching efficient, we perform the generic simulation of the
first phase of the oracle using a parallel implementation [15]. For each ball B;, the first
phase computes the region between the upper envelope and the lower envelope of two
families of bivariate functions, using the algorithm of Agarwal et al. [3]. The only step
in this algorithm that is nontrivial to parallelize is the construction of the overlay of two
planar maps, each of which is a minimization diagram of a family of bivariate functions.
The sequential algorithm in [3] uses a sweep-line algorithm to compute the overlay, which
is difficult to parallelize. Instead, we compute the overlay using segment trees, which is
easier to parallelize, as described in [4]. The parallel version of the overlay procedure
runs in O(logn) time using O (ntte) processors, under Valiant’s comparisons model,
which is the model that is relevant for the generic simulation. Plugging this procedure
into the algorithm of Agarwal et al. [3], we can compute the region lying between the
upper and lower envelopes in O (log? n) time using O (n>**) processors, for any & > 0;
see [3] for details. Executing this procedure for all balls of B in parallel, we can compute
the set £ of potential extreme transversals in 0(log2 n) time, using O (n>*¢) processors,
forany ¢ > 0.

Finally, simulating the parallel algorithm generically, as described in [15], we can
compute a smallest enclosing cylinder of B in time O (n***), for any ¢ > 0. Hence, we
obtain the following result:

Theorem 6.2. Given a set B of n balls in R?, the minimum-radius cylinder containing
(resp. intersecting) every ball of B can be computed in time O n**e), forany e > 0.
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7. An Approximation Algorithm

Since computing a smallest enclosing cylinder exactly is expensive, it is desirable to
design more efficient algorithms that solve the following approximation problem: Given
a set S of » balls (or points) in R? and a real parameter § > 0, compute a cylinder
containing (or intersecting) every ball (or point) in S, whose radius is at most (1 + §)r*,
where r* is the radius of a smallest enclosing (or intersecting) cylinder of S. Schomer et al.
[23] consider a somewhat different problem. They give an O((141/8%)nlog(1/8))-time
algorithm for computing a cylinder that contains § and has radius at most r* +8 -diam(S).
If the shape of § is sufficiently “round,” then r* and diam(S) are comparable in size,
so the output of the algorithm of [23] is comparable with what we want. However, if §
is “long and skinny” then r* can be arbitrarily small compared with diam(S), in which
case the value returned by the algorithm of [23] will be much larger than (1 4 8)r*. We
present an O((1 + 1/8%)n)-time algorithm that computes a cylinder of radius at most
(1 4 8)r* containing (or intersecting) S.

For the sake of simplicity, we describe the algorithm for the case when S is a set of
n points in R*. The modifications for the more general case of balls are straightforward.
Let Q(s, r) be the axis-parallel cube of side 2r centered at s, 1e.,

Qs r) = {p:lp: = Sxls lpy - Sylv |p; — .| <r}.

For a direction m, let S™ denote the orthogonal projection of S onto the plane A, normal
to m and passing through the origin. If a cylinder of radius r with axis in direction n
contains , then there is a disk of radius » within H, that contains S™ . We now describe
the algorithm.

ALGORITHM: SMALL ENCLOSING CYLINDER

1. Compute the diameter of S.

Perform a linear transformation on S so that the two points p = (0, 0, 0)

and g = (0,0, 1) form a diametral pair, i.e, p,g € S and diam(S) =

dip.g).

3. Compute the smallest value r such that the set {O(s,ry) | s € S} of cubes
admits a line transversal. Since a cube of side length 2r has an inscribed
ball of radius r and a circumscribing ball of radius v/3r, we have

r*/N3 <rg<r*

4. Setv = 8rpand b = min{4\/§r0,n/2}. Choose a set A of O(1/82)
points on K, the spherical cap with angular opening b and centered at
the north pole g, so that, for any point n € K, there is a pointn’ € A
with Znpn’ < v; A can be computed by drawing a grid of longitudes and
latitudes on K}, of size ¢/8 x ¢/8, where ¢ > Qs an appropriate absolute
constant.

5. For each n € A, compute the smallest disk, Dy, enclosing S™_ Let r,
denote the radius of Dy, and let £, be the line passing through the center
of D, in direction n.

6. Letng € A be adirection with the minimum value of ny- Then the cylinder
of radius ry, with £, as its axis is the desired cylinder.

2
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Lemma 7.1. The above algorithm computes a cylinder of radius (1 + 8)r* enclos-
ing S.

Proof. Let n* be the direction of the axis of a smallest cylinder enclosing S. We claim
that n* € K,. Indeed, if n* ¢ K, then the angle between the positive z-axis and n* is
more than b. Let p*, g* be the orthogonal projections of p and g onto Hy:. Since S is
contained in a cylinder of radius r* whose axis is in direction n*, d(p*, ¢*) < 2r*. On
the other hand,

d(p*,q*) > sinb > b/2 = 23/3rg = 2r",

a contradiction. Hence, n* € K.

By construction, there is a direction ng € A so that the angle between n* and ng is
at most v. Let w be a point of S, and let wg, w* denote the corresponding projections
of w in S $™) respectively. By construction, we have |wwol, [ww*| < |wp| < 1
(recall that the diameter of S is assumed to be 1). Since the angle between the directed
segments wwg and ww* is at most v, it follows that [wow™| < v. Since S is contained
in a disk of radius r*, it follows that all the points of S™” are contained in a ball of radius
r* + v < (1 + 8)r*; all these points being coplanar, they are also contained in a disk
of radius (1 + 8)r*. In other words, ry, < (1 + 8)r*. Let ¢ be the center of this disk.
Then the cylinder of radius r, < (1 + 8)r* whose axis is the line passing through ¢ in

direction ny contains S. ]

The diameter of S can be computed in O (n log n) randomized expected time [9], and
rp can be computed in O (n) time using the algorithm of Amenta [5]. Foreachn € A, Dy
can be computed either in linear worst-case time using Megiddo’s deterministic algorithm
[16], [17] or in linear expected time using the randomized algorithm of Matousek et al.
[14]. Hence, the overall expected running time of this randomized implementation of the
algorithm is O (n logn + n/8%). A closer look at the proof of Lemma 7.1 shows that in
Step 1 it suffices to compute a pair of points p, g € S thatare separated by a distance of at
least diam(S)/2. Such a pair of points can be easily computed deterministically in worst-
case time O(n): choose an arbitrary point p of S and compute its farthest neighbor ¢ in
S (if there is more than one such point, choose any of them); by the triangle inequality,
d(p.q) > diam(8)/2. This makes the algorithm fully deterministic, and improves its
total running time to O((1 + 1/8?)n). Moreover, the algorithm can be easily extended
to the case in which S is a set of balls instead of a set of points. One notable difference
is that Step 5 has to be replaced by the algorithm of Megiddo [18] for finding, in linear
time, the smallest disk containing a given set of disks. Hence, we obtain the following
result:

Theorem 7.2. Given a set S of n balls in R} and a parameter 8 > 0, a cylinder
containing (or intersecting) every member of S, whose radius is at most 1 + 8 times that
of a smallest enclosing (or intersecting) cylinder of S, can be computed in (deterministic)
time O((1 + 1/82)11).
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8. Cenclusion

In this paper we obtained near-cubic bounds for the complexity of the space of line
transversuls of a collection B of n balls in R* or of n homothets of any convex body of
constant description complexity. We also developed near-cubic algorithms for determin-
ing whether 7 (B) = ) and for computing a smaltlest cylinder enclosing (or intersecting)
every member of 5. We finally presented a linear-time approximation algorithm for
computing a small cylinder enclosing 5. The main open problem is to obtain near-cubic
bounds for the case of collections of general convex sets of simple shape in R*. We con-
Jecture that such bounds hold in fairly general situations, but the proof techniques used
in this paper do not seem to extend to more general sets. In the light of the discussion in
Section 2. this conjecture would automatically be established if one manages to extend
the results of [3] concerning overlay of envelopes to four dimensions.

Another open problem is to extend the results of this paper to higher dimensions. Since
lines in & dimensions have 2d — 2 degrees of freedom, we conjecture that the complexity
of the space of line transversals of a collection of n balls, or of convex polyhedra with a
total of n faces (of all dimensions), in R? is close to O (n2¢—%).
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