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Abstract A new class of chromatic, or potential, polyno-
mial is considered. These polynomials are obtained by restrict-
ing the potential differences on adjacent vertices to either odd or
even parity. For colourings involving an odd number of colours,
the polynomials can be evaluated to give an indicator for di-
rected cuts on rooted graphs. Corresponding flow polynomials
give directed path indicators. It is shown how the polynomials
arising from these restricted colourings and flows can be used to
generate the correlation function for directed interaction models
which generalize the standard Potts model. A further statistical
mechanical model is introduced where odd and even potential
differences are given different weights. In this case when each
vertex has an odd number of states the percolation limit of this
model is Redner’s oriented diode model.

1 Introduction

This paper is concerned with particular cases of the Z(A)
model in statistical mechanics which describes a system of
interacting atoms each of which can be in one of A-states.
The interaction energy is taken to be a sum over pairs of
atoms and the cnergy associated with a given pair is as-
sumed to be a function of the two states involved. The
function which determines the interaction may be differ-
ent for each pair but is specified in defining the model.
The atoms are assumed to have fixed positions and some
pairs may be considered to have zero interaction depend-
ing on their separation. In the usual case the atoms form a
crystal lattice and the interactions are restricted to nearest
neighbours.

A graph theoretic approach will be taken in which the
system is defined on a finite directed graph H = (V,A4)
where the vertices V represent the atoms and the arcs A
represent the non-zero interactions. The state of vertex ¢
is specified by a variable ¢;, called its colour or potential,

which takes on one of the values in C = {0.1,...,A—1}.
The Hamiltonian may be written
H=kpT Y ha(bc(a)) (1)
acA

where the energy associated with arc o = (i,7) depends
only on the potential difference (PD) éc(a) = ¢; — ¢; (mod
A).

The determination of the partition function Zx(H) be-
comes the problem of enumeration of potentials subject to
specified constraints on the potential differences. For ex-
ample in the Potis model (Redner 1982) the interaction
energy takes on only two values depending on whether or
not the vertices are in the same state. The problem then
is to enumerate the number of potentials which have non-
zero potential difference on each subgraph of H. In graph
theory this is the well known problem of finding the num-
ber of proper A-colourings and it is easy to show that this
number is given by a polynomial in A known as the chro-
matic polynomial (Whitney 1932).

The Potts model may be considered as a spin model
in which the spin vector at a given vertex is directed in
one of A symmetrically placed directions in a space of di-
mension A ~ 1 and the interaction depends on the scalar
product of the vectors of interacting spins. In a second
spin model, known as the cubic model (Aharony 1977) the
n-dimensional spin vectors point to the A = 2n faces of a
hypercube and the scalar product then takes on three val-
ues so that additional constraints are placed on the enu-
meration. However it is still relatively easy to show that
the required number of potentials is a polynomial in .

The correlation function between vertices 1 and 2 is
determined in terms of the probability Us y(H) of finding
c2 —¢; =  (mod X). Let Hf be the graph H with the
additional arc @ = (1,2). The combinatorial problem as- -
sociated with the correlation function is similar to that for
the partition function but the potentials are enumerated
on HF with a fixed PD of B on 'a. This is implied by
the notation Ug x(H) which does not explicitly show the
vertices 1 and 2 and in fact the additional arc a could be
between any vertex pair.

An alternative approach to the correlation function

143 is in terms of the discrete Fourier transform of Us r(H),
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known as the transmissivity (Alcaraz & Tsallis 1982)

A-1
Tua(H) = 3" 2meB/Aug (H). (2)
B=0

This is conveniently expanded in terms of the arc trans-
missivity t.(a), which is the transmissivity for the graph
consisting of the arc « in isolation. The partition function
may also be so expanded. The associated combinatorial
problem is now one cf enumerating restricted flows (Tutte
1954, Essam & Tsallis 1986) on the subgraphs of H and
H; which is less well known than graph colouring. For the
Potts model and the cubic model the numbers of flows are
polynomial in A.

Flows and PDs are dual concepts in two different senses
(Biggs 1976,1977). Firstly on any graph, flows and PDs
when considered as vectors on the arc space lie in orthog-
onal and complementary subspaces (the cycle and cocycle
or cut spaces) having ranks c(H) and r(H) respectively
such that ¢(H) + r(H) = |A|. Secondly there a bijection
between the PDs on any planar graph and the flows on the
dual graph. The cocycle and cycle ranks determine the
degrees of the above chromatic and flow polynomials.

In general t,(0) = 1 and for the Potts model the values
of ty(a) for a > 0 are equal as are the values of T, x(H).
For the cubic model there are two different transmissivities
for positive a which depend on whether o is odd or even.
We are thus led to consider fixed parity flows. The values
of Ty x(H) for a > 0 also depend only on the parity of a.

For the cubic model the value of A is even and con-
sequently the number of fixed parity flows is independent
of the directing of the subgraph. This is a manifestation
of the fact that the interaction was via a scalar product
which is symmetric. In terms of flows, reversing an arc
is equivalent to replacing o by A — a which preserves the
parity.

Choosing A to be odd in the case of fixed parity flows
and PDs leads to theoretically interesting results. The
numbers of PDs and flows now become directing depen-
dent. The interaction therefore has chirality and the model
is similar in this respect to the standard Chiral Potts model
(Ruse, Ostlund 1981). It is always possible to redirect the
graph so that the parity is everywhere even. Thus much
of this work will be concerned with even PDs and flows for
odd A. The polynomial property survives for odd X but in
a restricted form. Clearly if the enumerations for odd A
are to be given by a polynomial it must be different from
that for A even since the latter is directing independent.
To establish the polynomial property is far from trivial
(Arrowsmith & Essam 1994a,b) and we give the results in
theorems 1 and 2. The number of flows is polynomial in
both A and o but different polynomials are required for
odd and even a.

It turns out that the correlation function (transmissiv-
ity) may be expressed as the expected number of PDs(flows)
in a bond percolation process. In the case of the Potts
model this was discovered (Kasteleyn and Fortuin 1972)
for undirected percolation. More recently (Arrowsmith &
Essam 1990) we have shown that for odd X the fixed par-
ity PD and flow models give rise to directed percolation.
In the case of PDs this turns out to be the dual directed
percolation model (Dhar et al 1981). One important conse-
quence of the above polynomial dependence is that when
the polynomials are used to extrapolate the correlation
function (transmissivity) to A = 1 and B(a) = 0, the pair
connectedness (blocking probability) functions are found.
This places directed percolation theory in a statistical me-
chanical context.

In a polychromatic bond percolation model the open
bonds can be of several types (colours) which occur with
different probabilities (Zallen 1977). In general the correla-
tion function for the Z(A) model, when there are k distinct
interaction parameters, may be expressed as an expected
value in a k-chromatic bond percolation problem. The cu-
bic model is a bichromatic model. We will consider an odd
A, mixed parity model in which different weights are given
to odd and even flows (PDs). This bichromatic model
turns out to be related to the oriented diode percolation
model of (Redner 1982) in which the open bonds may be
oriented in either direction with different probabilities.

2 Chromatic and Potential Polynomials
2.1 The unrestricted case

The chromatic polynomial is obtained by enumerating the
number of ways, P;(G), that X\ colours denoted by C =
{0,1,...,2— 1} can be attached to the vertices of a graph
G = (V, E) such that every non-loop arc has distinct colours
on its adjacent vertices. Such a colouring is said to be
proper. To obtain a formula for PI(G), we observe that:

e the number of unrestricted colourings, Py(G), is given
by MG}, where v(G) is the number of vertices of the
graph G;

o given a colouring of graph G, let G/G' be the graph
obtained by contracting those edges E’ of the graph
G which are not properly coloured, i.e. those that
have vertices of the same colour. Then G/G' has
an induced proper colouring. Thus, every colouring
of G is an induced proper colouring of a suitably
contracted graph G/G'. The total number of colour-
ings PA(G) on G can be counted by summing over
the proper colourings, Py (G/G') of the contracted
graphs G/G’ to obtain

PAG)= ). Pl(G/G). (3
$CECE
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Mobius inversion then gives

PHG) = Y (-1)FIR(G/EY (4)
PCE'CE

where G’ = (V', E'). Since Py(G) is interpolated by the
polynomial P(),G) = (%),

PA(G/G"Y = P(A,G/G') = (G )

where w(G') is the number of connected components of G'.
Hence we have a polynomial interpolation for the num-
ber of proper colourings which is of degree at most v(G)
and is known as the Whitney polynomial (Whitney 1932).
Throughout this paper we adopt the convention that if a
subscript is changed to a function argument then the do-
main of the function is the real numbers, thereby providing
an interpolation for the values corresponding to the natu-
ral domain of the subscript which is always a subset of the
positive integers.

An alternative language for the colouring problem is
that of ‘potentials’. A A-potential ¢ on G is a map ¢ :
V. — C. We can now go further and consider potential
differences. Let D(G) be the set of 2!E! directed graphs
obtained by orienting the arcs of G in all possible ways.
For H € D(G) it is trivial to see that the signed sum of
the potential difference 8¢ is zero (mod A) around any cy-
cle of GG, when the PD on any arc is counted negatively if
is directed opposite to some chosen direction for the cy-
cle. Conversely, if d : E — C is such that it satisfies the
property that d sums to zero {mod A) on every cycle, then
there exists a A-potential ¢ such that its potential differ-
ence 6c = d. The potential ¢ is unique up to fixing the
value of ¢ at an arbitrary vertex on each connected com-
ponent of ¢. In fact Py(G) = M) D,y (G), where D,(G)
is the number of distinct mod-X\ potential differences de-
fined on G. This relation restricts to proper potentials and
potential differences to give

PHG) = 29DEHG) (6)
Also, it follows that
Dy(G) = X"(?) ()

where r(G) = v(G) — w(G), the cocycle rank of G.

The dual construction to the mod- potential difference
is the mod-A flow. A mod-A flow on the directed graph H
is a function ¢ : A — C such that the ¢(e) have a signed
sum to zero (mod A) over all arcs incident with a given
vertex v, for each v € V. The flow on an arc which is
directed away from v counts negatively. The number of
unrestricted flows is given by

F\(G) = 29 ®

where ¢(G) is the cycle rank of G.

A crucial property of the above polynomials is that
they are independent of the directing, H, of the graph G
which was chosen in defining the PD. Given any two graphs
H,H' € D(G) there is a bijection between the PDs on H
and H’. The corresponding PDs d and d' satisfy d = d' on
arcs which are coherently oriented and d + d’ = 0 (mod \)
on those arcs of H and H' which are oppositely oriented.

2.2 Parity Constraints

We now introduce new collections of chromatic polynomi-
als, some of which are distinguished by their orientation
dependence. For X even, define C***" = {0,2,4,...,A - 2}
and C°% = {0,1,3,...,A — 1}. For X odd, define C¢¥*" =
{0,2,4,...,2 — 1} and C°¥ = {0,1,3,...,A — 2}. An
even (odd) mod-X PD d on H is a mod-A PD such that
6c(a) € C®**" (respectively € C°%) for all @ € A. The na-
ture of the interpolating polynomials for the constrained
A-potentials depends strongly on the parity of A. For A
even, odd and even PDs both preserve their parity un-
der reversal of arcs and so odd PDs cannot be changed
to even PDs (and vice-versa) by orientation reversal and
hence the number of PDs is orientation independent. For
A=2n,n € Z"%, the mod-) even PDs and the mod-n PDs
on G are in 1-1 correspondence and we obtain

Diuen(c) - DA/2(G) — (/\/2)T(G). (9)

The corresponding numbers of proper PD’s are given by a
formula similar to (4). For the.case of odd mod- PDs, G
must be bipartite to support a proper odd mod-A PD; all
vertices adjacent to a vertex with odd potential must have
even potential and vice versa, hence

DMH(G) = (A/2)O(G) (10)

where b(G) = 1 if G is bipartite and zero otherwise. The
corresponding results for flows are obtained by replacing
r(G) by ¢(G) and b(G) by ¢(G) where ¢(G) = 1 if G has
all vertices of even degree and zero otherwise (i.e G is an
Euler graph).

For odd A, if H? is the directed graph obtained by re-
versing the orientation of all the arcs of H, then D§¥*"(H) =
DU(H?). Thus it is possible to reduce evaluations to
those for even PDs. The difficulty in evaluating the num-
ber of even or odd mod-A PDs is that in this case there is no
simple formula corresponding to the result D)(G) = a6
for unrestricted mod-A PDs. Moreover, simple examples
show that the number of PDs is orientation dependent.
However polynomial interpolation is still possible and we
give the results for odd X after first introducing rooted
PDs.
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3 Rooted Potential Differences and Flows.

Suppose now that the graph H € D(G) has a distin-
guished, or root, arc @. The incident vertices of a are said
to be roots of the graph and we denote the rooted graph
by Ha. In this section we consider the problem of evalu-
ating the number of mod-A PDs, as well as the restricted
problem of odd and even PDs, subject to there being a
fixed “root PD” of 8 on the arc @. Rooted flows are also
considered.

3.1 Unrestricted Rooted PDs and Flows

The number of mod-A PDs with root PD 8 but which are
otherwise unrestricted will be denoted by Dg »(G3). We
use G rather than H to emphasize that, just as in the un-
rooted case, the number of unrestricted PDs is independent
of the directing of H. Likewise the numbers of flows with
given flow a in the root arc are denoted by Fa x(Ga).

If B > 0, then Dg (Gz) is zero unless G5 has a cut
containing a. Notice that G will have such a cut unless @
is a loop. Let xa be the cut indicator for G, i.e. xa(G) =1
if @ is not a loop and zero otherwise. Then we have

Dga(Ga) = D(B,A\,Ga) = 7O 1xa(G)  (11)
and using (6)
Ps(Ga) = P(B,0,Ga) = X xa(G)  (12)
and hence
P(8,1,G3) = D(8,1,G3) = xa(G). (13)

For a > 0, the number of mod-A flows, F, A(G3), is
zero unless there exists a cycle containing a (i.e. @ is not
an isthmus). Then, fixing the flow to be & in some cycle
through &, we have

Fax(Ga) = F(a,A,G3) = ¥-ly(@),  (19)

where 7z(G) = 1 if there is a cycle containing @ and 0
otherwise. Hence

F(a,l,G:a)=7a(G). (15)

Notice that the presence of a cycle is equivalent to the
existence of a path between the root vertices not includ-
ing @. We use this fact later when considering the pair
connectedness in percolation theory.

3.2 0Odd and Even Rooted PDs and Flows for
even A

We now restrict the PD(flow) to be of fixed parity and
allow 8(a) to be odd or even independently of the parity
of the PD(flow) on the rest of the arcs.

For even X and 8 > 0, the chosen parity of the PD, and
that of the root PD, are independent of the orientation of
H and so there are four different parity pairs to consider
given by the choice of parity of the PD and that of the
root PD. Denoting the odd or even restriction by * it can
be seen that

Dja(Ga) = (M2 xa(G)(Ga)  (16)
where ¥(G3) is given by the following table.

root puity\PD perity proper odd even
odd HG)  1-%(0).
even b(G1) 1

where b(G) is defined as in equation (10) and GI is the
graph obtained by contracting the arc @. Notice that the
resuit for odd PDs is simplest when the proper condition
is imposed, the total number of odd PD’s is given by (3).

These are special cases of a mixed parity problem in
which the PD is even (including zero) on the subgraph
G even and odd on the remaining edges. The general result
is

D5 (Ga, Geven) = (M2) 97 xa(C)B(Ca/ G even)-
(1
As in §2, the symbol ”/” denotes contraction and the su-
perscript + indicates the non-zero condition outside G .yes.
The number of PDs on relaxing this condition is

D;i’:izgd(cﬁy Geven) = Z
A'CA\(AevenUa)

D;::'\zed-{- (GE/GI; Gemm)-

(18)
Notice that when Geyen includes the whole of G, except
possibly the root arc, DF¥*** (G4, Geven) = Dg'5™(G).
The corresponding results for flows are

F;’.';Ied+(cﬁ‘ Geven) = (A/Q)C(G)_I’Y&(G)f(Ga\chen)
g (19)
an

F:"ized(cﬁy chcn) = E
A'CA\(AevenUa)

F2E44(Ga\G', Geven)-

(20)

Notice that all of the above enumerators have polyno-

mial dependence on A for fixed S(a) and depend only on
the parity of the root PD(flow).

3.3 0dd and Even Rooted PDs and Flows for
odd A

As for the unrooted case, the situation for odd A is simpler
in the sense that there are fewer cases to consider but thisis
counterbalanced by the fact there are no general formulae
and the numbers are directing dependent. Reversal of the
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orientation of the root arc will change the parity of 3 and
the reversal of the remaining arcs will change PDs from
odd to even or vice versa. Thus we do not need a table
of enumerating polynomials for odd A. All cases can be
reduced to considering even PDs with an even root PD
by a suitable change in the orientation of the arcs of the
graph.

The various cases of the ’even’ and ’odd’ constraints
and the parities of 8 are related by the following lemma.
Lemma 1 shows that, for the case of odd A, the interpolat-
ing polynomials for rooted potentials with odd potential
difference can also be interpreted in terms of potentials
with even potential difference.

Lemma 1. Let H; be the rooted directed graph obtained
from H € D(G). Let Hf be the rooted directed graph
obtained from H; by reversing the orientation of every arc
of H except for the root arc @. The graph H? is obtained
from H by reversing the orientation of every arc of H. For
A odd,

() PYUM(H) = PSn(H?), (21)

and

()  PS&(Ha) = P5X™(HY). (22)
Moreover, if (Hz)? denotes H; with all arcs reversed, then
(iii) odd(H )_ even ((H )P) (23)

where A — B is an element of C by reducing mod-\ if nec-
essary.

A circuit is a directed cycle in which the arcs are co-
herently oriented. Thus a coherently oriented loop is a
circuit. A directed cut of the graph H; is a minimal set of
arcs b C A(H) containing @ which form a cut of H with the
property that there is no circuit containing @ for any choice
of orientation on the complementary edge set E{H)\E(b).
The directed cut indicator, x;(H), for the graph H is de-
fined by xa{H) = 1 if H; has a directed cut containing a
and zero otherwise. Notice that the same function name,
Xa,» has been used for both undirected and directed cut
indicators. We adopt the convention that if the argument
of xa is a directed graph then a directed cut is implied.
The function x; is simply related to the dual indicator for
circuits y5(H) which has value 1 if there is a circuit in
H containing @ and 0 otherwise. The existence of a di-
rected cut containing a is equivalent to the non-existence
of a circuit containing a and so xz(H) = 1 — v;(H). Again
we have used v; for both cycle and circuit indicators and
these are distinguished by whether the graph to which the
indicator is applied is undirected or directed respectively.

Fhe following theorem is proved in (Arrowsmith & Es-
sam 1994a).

Theorem 1. Let H € D(G) have a rooted arc a, then the

valuesof Dg's™(Hz) for f = 2m and A = 2n+1,m,n € Z*,

are interpolated by a polynomial D***"(#,\, H;), in 8 and
A, having joint degree at most r(H) — 1 with the property

D*v*™(0,1, Hz) = xa(H), (24)

where xa(H) is the directed cut indicator for root arc a.
Also, D§*™(Hz) = D5*"(HJ) is a polynomial D***"(X, HJ)
of degree at most r(H7) in X such that Dv*"(1,H]) = 1.
There also exists a similar polynomial for B odd.

Remark The graph H7 can be any directed graph by choos-
ing G and the directing H appropriately. It follows that
the function D*v¢*(1, H) = 1 for H € D(G).

There is a dual theorem for flows.

Theorem 2. Let H € D(G), then the valuesof F'™(Hz)
fora=2m, A=2n+1, m,n € Z*, are interpolated by a
polynomial, F¢¥*™(a, A, H;), in & and X having joint degree
at most ¢(H) ~ 1 with the property

0,1, Ha) = va(H). (25)

Also, Fg%™(Ha) = Fs**"(H?), where HE is the graph
obtained by deleting the arc @ of Hj, is a polynomial
Feuen(X, HE) in X, such that Fe¥*™(1, HE) = 1, and is of de-
gree at most c(H?). There also exists a similar polynomial
for a odd.

The proofs of the above theorems are given elsewhere
(Arrowsmith & Essam 1994a,b). They are tedious to prove
as the evaluations which give the indicators are at 8 = 0
and A = 1, yet the polynomial Dv¢*(8, A, H;) interpolates
for 8 > 0 and A > 1. This aspect of the problem is most
obviously apparent in the previous undirected even X case
where the cycle and cocycie indicators have to be explicitly
incorporated into the formula.

The essential idea for the proof of Theorem 1 is to show
that the enumerations of D§*% | (Ha), where m,n € Z*,
are polynomials of degree at most ¥(G) — 1 in the vari-
ables m and n. An inductive step is set up which re-
lates D32*%,  ((Hz) and Dsie™, o (Hz). Reversal of arcs
on cuts are used to reduce the value of 8 from 2m to
2m — 2. Thus the problem of evaluation of polynomials in
the rooted case can be related to that of the unrooted case
where the specific evaluations which give D***"(0,1, H;)
can be made. The difference equation obtained is suffi-
cient to obtain the general polynomial properties given in
the theorem.

4 Application to Statistical Physics

4.1 The Z()) model
Using (1), the partition function of the Z(\) model is
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A—1 A-1
ZH) = 3 ... Y T] walbe(a)) (26)
=0 cv=0a€A
where
wa(a) = e~ha(®) (27)

is the Boltzmann factor associated with the arc a.

In the following section we consider the A-state Potts
model, the correlation function of which is expressed in
terms of unrestricted PDs and yields the pair-connectedness
for ordinary percolation theory when A = 1. We also con-
sider versions of the Z()) model in which the potential
differences are restricted to be of fixed parity. For odd
A these vield a type of Chiral Potts model related to di-
rected percolation theory. The case of even A is covered
later along with the corresponding flow model.

4.2 0dd and Even PD models for odd X\ and
the Potts model.

A special case of the Z{)X) model, which was called the
“0dd-PD model” in (Arrowsmith & Essam 1990) is de-
fined by restricting the sum in (26) to be over potentials
such that 8c(a) € C°¥ for all @ € A. Similarly an “even-
PD model” may be defined by restricting the PD (o be
everywhere even. Other restrictions may be imposed and
we denote the set of allowed potentials for a general con-
straint by P}(H) and the corresponding partition function
by Z3(H).

4.2.1 The Partition Function

Without loss of generality the partition function may be
normalised so that we(0) = 1 and assuming this condition
we obtain the following generalisation of (3)

ZiWHY= Y Z*(H/H"), (28)
QCA'CA
where
zr) = 3 1] walbc(a))- (29)
ce Pyt (H)e€A

Suppose now that w,(a) has thesame value for all non-
zero values of a which satisfy the * condition, then we may
write

1 for a =0,
wa(a) = § w, for non-zero & allowed by *, (30)
L0 otherwise.

This together with (28) and (29) yields

zyy= ¥ prr/H) 1 we (31)

@CA'CA ac A\A'

which allows the partition function to be seen as a generat-
ing function for the numbers of proper restricted PDs. In
the case that * represents odd or even or the condition is
removed, the work of previous sections shows that the par-
tition function has polynomial dependence on A. When the
parity of the PD is fixed different polynomials are required
for odd and even A.

The partition function may also be written as a perco-
lation average by making use of the following identity.

wela) = wee'(a) + (1 — ws)A(a), (32)
where ) 0
a=0,
Ale) = {0 otherwise, (33)
and

e*(a) = { 1 o allowed by =,

34
0 otherwise. (34)

Substitution in (26) and expansion of the product yields

A=l Al
ZyHYy=Y ... 3 Y TG - wa)A(sc(a))ix
=0 c,=0A'CAach’ (35)
I [wae(c(a))]
a€ A\A’

and carrying out the summation over the ¢; gives

ZiHy= Y BH/HY[[ (1 -wa) [] wa (36)
A'CA ac A’ a€A\A'
which is the expectation value of Py (H/H') in a bond per-
colation model on H in which the arc a is present with--
probability p, = 1 — w,.

4.2.2 The Correlation Function

The correlation function Uj y(H) is given by (26) with the
restriction 6c(@) = B placed on the summation which is
normalized by dividing by Z3(H).

The above analysis for the partition function gives

1

SH) = s 3 PA(HA/H —w, .

Usa(H) Z3H) ;z_;,A sa(Hz / ),g,(l w )GEE{A'w
(37)

where the sum is the percolation average of Pj W(HFJHY).
Notice that

Z3(H)
Z3(H)

Usa(H) = (38)

so we will normally consider 8 > 0. Here H is the graph
H with vertices 1 and 2 identified.
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4.2.3 The Potts Model and Ordinary Percolation

If €*(@) = 1 we obtain the standard Potts model in which
all PDs are allowed and all non-zero values of the PD get
the same weight. The numbers of PDs in (36) and (37) are
therefore unrestricted and the correlation function for 8 >
0 is a directing independent rational function U(8, A, G) of
/3 and A. Substituting from (5) and (12) gives,

(B, G) =

ZA/gA )‘w(cl)il(‘ - 'Y(GI)) HneA'(l B wa) HaeA\A’ We
ZAM;A At Maca(l — wa) HaeA\A' Wa

(39)

where we have used
wGF/G") = w(G'), (40)
xa(GF/G) = 1~+((G)}), (41)

and +y is the indicator for a connection between vertices 1
and 2 in G. This is the result of Kasteleyn and Fortuin,
1972. Note that setting A = 1 in (39) gives

U(B1,6)=1-C1(1 - w,G) (42)

where C;3(p,G) is the probability that 1 and 2 are con-
nected by a path in an undirected bond percolation process
on G in which p, is the probability that the arc a is open.

4.2.4 A Chiral Potts Model and Dual Directed Percola-
tion for A odd.

We have seen that for A odd, the even and odd chromatic
polynomials are directing dependent and hence, using (36)
and (37), so are the corresponding partition function and
correlation function.

It is sufficient to consider even PDs since any PD may
be seen as an even PD on some other directing of the same
graph. Using theorem 1 together with (36) and (37) shows
that the values of the partition function and correlation
function, for odd A > 3 and even 8 > 2, are interpolated
by a polynomial, Z¢V**(\, H), in A and a rational function,
Ueve™(B, A, H), in X and 8, respectively. Using these inter-
polating formulae, combined with (6), (36) and (37), and
setting 3 = 0 and A = 1 yields

Ueren0,1L,H)y = > xa(HF/H) [ 1 —wa) [] we
A'CA acA’ ac A\ A’

(43)

In the dual directed percolation model (Dhar et al
1981) fluid is only allowed to percolate parallel to the arc a
with probabilty p, but in both directions with probability
1 —p,. In terms of this model, the above percolation aver-
age may therefore be interpreted as a blocking probability,

Ueer0,1,H) = Gy 5(1 — w, H) (44)

where C 3(p, H) is the probability that the passage of fluid
from 1 to 2 in H is blocked in the Dhar et al model. Equa-
tion (44} is an extension of Kasteleyn and Fortuin’s result
(42) for ordinary percolation to directed percolation.

4.3 0Odd and Even flow models

It may be shown (Alcaraz & Kéberle 1980,1981) that the
transmissivity, defined in the introduction, may be written
in the form

No(H)
Toa(H) = —/—=—= 45
A(H) Noa(H) (45)
where
Noa(H)= 3> ] talé() (46)
a—flows acA
Here, for a = 1,...,A — 1, an a-flow is a mod-\ flow on

H with #(a) = a. In the context of flows H7 will al-
ways be the graph H with t.he.additional arc @ = (2,1).
The arc transmissivity t,(#) is the transmissivity Ty »(a)
of the graph consisting of a single arc a and is determined
by w,(a) and vice-versa (Arrowsmith & Essam 1990). It
follows that ¢,(0) = 1. The denominator Ny A(H) is pro-
portional to the partition function of the graph H since
when a = 0 the a-flow becomes a normal flow on the
graph H with @ deleted.

An “odd-flow model” was defined in (Arrowsmith &
Essam 1990) in a similar manner to the odd-PD model by
restricting the flow ¢ on any arc to be zero or odd. As in
the case of PDs, more general constraints are possible and
we again denote the constraint by x.

Formulae which parallel those for PDs may be obtained
but in general H/H’ is replaced by H' since setting a PD
to zero is equivalent to contracting an arc whereas zero
flow corresponds to arc deletion. Thus if for any flow, H'
is the subgraph on which the flow is positive we may write

NoatH) = 30 F(HEDD) ] ta (47)
A'CA ag A’
and hence N ,(H) is the generating function for the num-
bers of restricted proper flows on the subgraphs of H which
satisfy the constraint .

An interpretation in terms of percolation theory is again
possible by assuming that all non-zero flows satisfying *
have the same transmissivity. Thus the flow analogue of
(32) is

ta(¢) = tae™(9) + (1 — ta)A($). (48)
Substituting (48) in (46) and carrying out an analysis sim-
ilar to that for Ug , we find that

N =Y Fa(HEYDY T te TI (1-t) (49)

A'CA a€A’  a€A\A’
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where F(:Y,\((H’);) is the number of restricted a-flows on
(H).

Using (14) in the case of unrestricted flows shows that
for fixed @ > 0, N, »(H) is a polynomial in A which is
independent of a. In the special case a = 0, Fo\(H) =
F\(H) and (8) gives a second polynomial. Putting these
together we find for a > 0 the transmissivity is the rational
function (Essam & Tsallis 1986)

Yaca 2G5 (G Moca ta Hacarar(l = ta)

T{a, A, G) = 7
L arca X e pr taTlae ayar(l — ta)
(50)
Setting A = 1 in this formula leads to
T(a,1,G) = Cy2(t,G) (51)

which is the pair connectedness for undirected percolation
with p, = t,.

In the case of even flows theorem 2 shows that the
transmissivity T, A(H) for odd A > 3 and even a > 2
is interpolated by a rational function T{a, A, H). Setting
a = 0 and A = 1 in this function gives a formula similar
to (50) with XA = 1 but now (G’) is now the indicator for
a directed path from 1 to 2 in H'. Equation (51) is still
valid with C 2(t, H) as the pair connectedness for directed
percolation.

We now consider the case of even A in a more general
form which allows both odd and even flows to occur but
with different weight.

4.4 Mixed Parity Flows and Polychromatic per-
colation

The standard Potts model (Redner 1981) is from a vector
spin model. An n-dimensional unit spin vector s; is located
at cach vertex i of G and the vertex states are the allowed
directions of this vector. These are the position vectors of
the A = n + 1 corners of a generalised tetrahedron relative
to its centre. The interaction energy associated with the
arc a = (7,7) is Ko(1 — s;.s;) where the additive constant
is chosen so that the energy is zero when the spins are
parallel. Because of the symmetry, the scalar product has
the same value whenever the spins are not parallel and
hence for the standard Potts model

Potts _J1 for o = 0,
wa " (@) = { w, otherwise (52)

where w, = cxp(%l).

4.4.1 The n-component cubic model

Now suppose instead that the vectors point to one of the
A = 2n centres of the faces of an n-dimensional hyper-

cube. The scalar product has three values depending on
whether the spins are parallel, anti-parallel or orthogonal.
In the cubic model an additional interaction parameter L,
is introduced in the case that the vectors are orthogonal
and the interaction energy associated with the arc a is
Ko(1 —si.85) + La(1 — (s.-.sj)z). Thus positive K, favours
the ferromagnetic state in which the spins are parallel and
positive L, gives equal enhancement to the probability of
finding the spins aligned parallel or antiparallel. We choose
the potential ¢; to have values 0,1,...n — 1 when the spin
vector is parallel to the cartesian axes 1,2,...n respec-
tively and suppose that the values n,n+1,...2n—1 corre-
spond to the reversed vectors. The Boltzmann factor may
then be written

) 1 for a =0,
w(a) = { w, for a = n, (53)
wau, otherwise.

where w, = exp(—2K,) and u, = exp(K, - L,). Thus
when K, = L, we have the standard 2n-state Potts model
and if L, — oo we have a two state Potts model which is
the Ising model.

The interest of this model in the present context is that
its arc transmissivity for non-zero flow depends only on the
parity of the flow. Thus

1 for ¢ = 0,
b (g) = ¢t for ¢ odd, (54)
tf,z) for ¢ even.
where
1—w
O a 55
@ 14+ we + 2(n — 1)wau, (55)
and
¢ = 1 = 2waus + wa (56)

14w, +2(n — Dwau,

When K, = 0, the odd transmissivity variable is zero
and we have the even flow model discussed in the previous
section. This is just an n-state Potts model.

4.4.2 The general mized flow model

Equation (54) may be taken as the definition of a general
mixed flow model and may be extended to odd X as dis-
cussed below. Again we have an expansion in terms of
proper flows, thus

NOSed(H)y= 3" 3 FIEed((H))f, Hlyen)x.
A'CA AL CA’

Mo 1 &
a€A\ALyen  9€ALuen
(57)
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The formulation as a percolation problem is achieved using
the identity

ta(8) = tMe1 (8) + tPea(9) + (1
which leads to

Nz = Y
A'CA AL, CA'

4 I & I a-d8 -,

ag AN\ ALyen a€ALyen acA\AY

— ) —tP)A(). (58)

Yo EIEUHNT Heven)

(59)

) is the number of flows which

where F"”ud(

,)a ) I{e(:ve:n
are even on the subgraph H/ . and odd elsewhere. For
even X this is given by (20) which shows that N:”“d(ll)
has polynomial dependence on A. There are three different
polynomials depending on whether a is even, odd or zero.
The sum (59) is the expected value of FI\™*!(H', H,,,,)
in a polychromatic bond percolation problem (Zallen 1977)
in which the open arcs may be of two different types which
occur independently with probabilities tgl) and t.(f)A In the
more general k-chromatic percolation problem there are k
different values of tf,a) for ¢ > 0 where 1 < k < A which is

the percolation formulation of the general Z(X) model.

4.4.3 Mized flow models for odd A

Suppose now that X is odd so that the number of flows is
directing dependent. In this case

Frruzed(}{ Heven) — even HIHodd (60)

where Hoqq = H\Heyen and HIH’ is the graph H with the
arcs of the subgraph H' reversed. It is therefore possible
to write equation (59) in the form

YY FM(HNIIH")x

A'CA AYC A

I 1@ T1 0= =)

a€d”  a€AN\A"  a€A\A’

NSEeUH) =

(61)

which is the expected value of F2™((H")#|H") in an ori-
ented percolation model (Redner '1982) where the arcs are
present with probability t(l) +tf,2) and are reversed relative
to H with probability tg ). From theorem 2 it follows that
N;"‘;“d(H), for even a > 2 and odd A > 3 is interpolated
by a polynomial in @ and A which when evaluated at O
and 1 gives the pair connectedness Cm(t(l),t(’)) for this
oriented model.

These results have an obvious extension to mixed PD
models where a different Boltzmann factor is attached to
arcs of odd and even PD. In the odd X case, setting 8 =0
and A = 1 in the interpolated correlation function gives
the blocking probability in an extension of the Dhar et

al, 1981 dual directed percolation model (Redner 1982).
Every edge in this model is open in one direction or the
other or in both directions simultaneously with different
probabilities.

We note that the mixed flow model can also be con-
sidered as a mixed PD model. If we normalize w,(8) for
this model so that w,(0) = 1 thenfor §=1,...,A~1and
n=(A—1)/2

1
1+ n(te ) )
1- —(t“ +t@) - Q(rﬁ,” — t®Ytan (%)} .
(62)

The mixed PD model may also be considered as a flow
model with transmissivity given by ¢(0) = 1 and

we(B) =

1
to(@) = ————5 ¥
1 +n(w(1) L(lz))

i g
1- 5(1051) +uw?) + E(W‘(’l) —w)tan (—)—\—)]
, (63)
forpg=1,...,A~— 1.
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