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Abstract We survey the problem of enumerating certain types of colourings of graphs
which are dependent on orientation. Specifically, we consider colourings in which each of the ν =
|V | vertices of a directed graph is coloured in one of the integer colours in C = {0, 1, . . . , λ−1}
with the constraint that (cj − ci) mod λ , when chosen as an element of C, must be non-zero
and even for all arcs (i, j), where ci is the colour of vertex i. Similar enumerations can be made
for the case of odd (cj − ci) mod λ and they are distinguished by the parity of λ.

For even λ and a given undirected graph, the number of even colourings is independent of
the directing and the problem is easily related to the standard colouring problem.

The main results concern the enumeration and connectedness properties of even colourings
for odd λ when the colour difference on a particular arc has the fixed value β. There are
corresponding enumerations and properties for mod λ flows. These restricted colourings and
flows are applied in various ways. The key results describe the way in which the connectedness
of directed graphs is derived from even colourings and flows. Thus they have relevance to the
theory of directed percolation. The even flow enumerations have application in the theory of
directed polymer networks. A generating function for the numbers of colourings with even and
odd colour difference is seen as the partition function of a Potts model in which the colours are
the states of spins attached to the vertices of the graph. For odd λ the model exhibits chirality.

Finally, we briefly consider the role of partition functions, and particularly those for the
Potts Model, in producing knot invariants.

1 The chromatic polynomial

If the choice of attaching one of λ colours in C = {0, 1, . . . , λ− 1} to each of the vertices
of a graph G = (V,E) is unrestricted, then the number of such colourings is counted
by the polynomial P (λ,G) = λν , where ν = |V (G)| is the number of vertices of G.
Furthermore, the number of ways in which the vertices of G can be coloured such that
vertices adjacent to a common edge receive different colours, known as the number of
proper colourings, is also well-known to be counted by a polynomial P+(λ,G) in λ,
the chromatic polynomial. The graph G can contain loops but then P+(λ,G) = 0.
Moreover, the number of colourings is not changed if a multiple edge is reduced to
a single edge. Every colouring of a graph G is equivalent to a proper colouring on
a contracted graph G/G′ obtained from G by contracting the edges E′ which have
identical colours on adjacent vertices and so we can write

P (λ,G) =
∑

E′⊆E

P+(λ,G/G′). (1)

Möbius inversion gives the polynomial form of P+(λ,G) due to Whitney [36]:

P+(λ,G) =
∑

E′⊆E

(−1)|E\E′|P (λ,G/G′) (2)

=
∑

E′⊆E

(−1)|E\E′|λν(G/G′). (3)

In the following sections we shall impose further restrictions on the colourings and
proper colourings. Equations (1) and (2) will also apply to these restricted colourings.
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Hence for each type of colouring considered in this paper, it is possible to restrict the
enumeration to those either with or without the proper constraint. Also a proof of a
polynomial property without the proper constraint will imply the same property for
proper colourings and vice-versa.

1.1 Colour difference restrictions

We now consider C with mod λ addition as Zλ, the integers mod λ. Let D(G) be the
set of directed graphs obtained by directing the edge set E of G in all possible ways.
Let c : V → C be a λ-colouring of G and let H ∈ D(G) have arc set A(H). Associated
with c and H is a mod λ colour difference δc : A(H) → Zλ where, if a = (i, j) ∈ A(H),
then δc(a) = cj − ci mod λ ∈ C. Clearly signed colour differences around a cycle sum to
zero and this is also a possible defining property; that is an edge valuation is a colour
difference (i.e. it supports a λ-colouring) iff its signed sum around every cycle is zero
mod λ.

In the next section we pose a number of further colouring problems by imposing
constraints on the image of the colour difference function δc. First of all we note that
the more familiar proper and rooted colourings can be described in this way.

1.1.1 Proper colourings

Note that proper colourings are those for which ci 	= cj for all (i, j) ∈ A(H). Thus a λ-
colouring c on H ∈ D(G) is proper if the colour difference δc satisfies δc(A(H)) ⊆ C\{0}.

1.1.2 Rooted colourings

A directed graphH becomes a rooted graphHā by distinguishing an arc ā. A λ-colouring
c on Hā is said to be rooted if the colour difference δc(ā) equals β, a fixed value in C.
The number of such rooted λ-colourings, Pβ,λ(Hā), is independent of the directing of
H and is again counted by a polynomial in λ which for non-zero β is independent of β
and given by

P (β, λ,Hā) = λν(H)−1ηā(H) (4)

where the cocycle indicator ηā(H) is 1 if H has a cocycle (or cut) containing ā (i.e. ā is
not a loop) and is 0 otherwise.

1.2 The number of colour differences.

For any given colour difference on H ∈ D(G), there are λ different associated colourings
on any given connected component of G. Let the number of mod λ colour differences
be denoted by Dλ(H) then if ω(G) is the number of components in G

Dλ(H) = λ−ω(G)Pλ(H). (5)

This formula applies to all the colouring classes in this paper, in particular the number
of unrestricted colour differences is counted by the polynomial

D(λ,H) = λν(H)−ω(H) = λr(H) (6)
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where r(H) is known as the cocycle rank of H.
Consideration of the number of colour differences rather than the number of colour-

ings brings out the duality relations with the number of flows to be considered later.

2 Colourings with even and odd colour differences

For either the proper or rooted cases described above we can impose further conditions
on the λ-colourings. Given H ∈ D(G), consider those λ-colourings c for which the
colour differences δc(a) are even values of C, a ∈ A(H). The number of such “ even”
λ-colourings is denoted by P even

λ (H). If the allowed values of the colour differences are
taken to be odd or zero, then we have a further enumerator P odd

λ (H). Crucially, for
odd λ, the numbers of even and odd colourings are dependent on the directing of the
underlying graph.

Moreover, the rooted analogues of these even and odd colourings have corresponding
enumerators denoted by P even

β,λ (Hā) and P odd
β,λ (Hā) . The notation for colourings can be

extended to colour differences of rooted graphs by using Deven
β,λ (Hā) and Dodd

β,λ(Hā). The
properties of such functions are considered in detail in [4]. The origin of the problem
addressed here lies in both the study of chiral Potts models and directed percolation [6]
and decompositions of the chromatic polynomial [4].

The relationship (5) extends to rooted colourings and also even and odd colourings.
Thus, for example, Deven

β,λ (Hā) = λ−ω(Hā)P even
β,λ (Hā).

2.1 Odd λ

The enumerators of λ-colourings described in section 1 were independent of the directing
of the underlying graph G. It was shown that these colourings can be counted by
polynomials of degree at most r(G) + 1 and the cocycle indicator can be found by
formally setting β = 0 and λ = 1 in (4) to obtain

P (0, 1, Gā) = ηā(G). (7)

We now describe analogous properties for even λ-colourings which for odd λ are
directing dependent. In this case no explicit polynomial formulae have been found for
a general graph and the proof of the polynomial property is much more difficult and
requires an inductive argument.

We need the following definition. A set of arcs b ⊆ A(H) is a directed cut of the
graph H if the vertex set V has a non-trivial partition [S, S′] such that (i) b is the set
of arcs between S and S′ and (ii) the arcs of b are all directed from S to S′. Let χā(H)
be a directed cut indicator corresponding to ηā(G).

Theorem 1. [4] Let H ∈ D(G) have a rooted arc ā, then the number of colour
differences, Deven

β,λ (Hā), for β = 2m and λ = 2n + 1 with m,n ∈ Z+, may be obtained
by evaluating a polynomial Deven(β, λ,Hā), in β and λ, having joint degree at most
r(H) − 1, where r(H) = ν(H) − ω(H) is the cocycle rank of H, with the property

Deven(0, 1, Hā) = χā(H), (8)
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where χā(H) is the directed cut indicator for root arc ā. There exists a similar poly-
nomial for β odd. Also, the values of Deven

0,λ (Hā) = Deven
λ (Hγ

ā ), where Hγ
ā is the graph

obtained by contracting the arc ā of Hā, are given by a polynomial Deven(λ,Hγ
ā ) of

degree at most r(Hγ
ā ) in λ such that Deven(1, Hγ

ā ) = 1. More generally, for H ∈ D(G),
Deven(λ,H) is a polynomial in λ of degree at most r(H) such that Deven(1, H) = 1.

The proof of Theorem 1 is given in detail in [4]. The essential idea of the proof
is to show by induction that Deven

2m,2n+1(Hā), where m,n ∈ Z+, can be enumerated by
polynomials of degree at most ν(H) − ω(H) in the variables m and n. An inductive
step is set up which relates Deven

2m,2n+1(Hā) and Deven
2m−2,2n+1(Hā). Reversal of arcs on

cuts are used to reduce the value of β from 2m to 2m − 2. Thus the problem of
evaluation of polynomials in the rooted case can be related to that of the unrooted case
where the specific evaluations which give Deven(0, 1, Hā) can be made. The difference
equation obtained together with a reversal-deletion-contraction rule (see Section 4.3.2)
is sufficient to obtain the general polynomial properties given in the theorem.

Lemma 1. (Directed cut reversal) [4] Let b be a directed cut containing the root arc
ā and let Hρ

b be the graph obtained by reversing all arcs of b other than ā. For odd λ,
there exists a bijection between the even mod λ colour differences on Hā and Hρ

b with
difference β and (β + 1) respectively in the root arc ā.

The equivalence is obtained by increasing the colour difference on the arcs of b by
one and then reversing the non-root arcs of b. The resulting correspondence is given by
δc′ = δc on the arc set A(H)\A(b) and for a ∈ A(b), a 	= ā, δc′(aρ) = λ− 1− δc(a) mod
λ where δc ∈ Deven

β,λ (Hā), δc′ ∈ Deven
β+1,λ(H

ρ
b ) and aρ is the arc a with reversed orientation.

Thus
Deven

β,λ (Hā) = Deven
β+1,λ(H

ρ
b ), (9)

where β + 1 is evaluated mod λ.
For odd λ, the various cases of the ’even’ and ’odd’ constraints and the parities of

β are related by the following easy lemma, which shows that the counting polynomials
for rooted colourings with odd colour difference can also be expressed in terms of those
for colourings with even colour difference.

Lemma 2. [4] Let Hā be the rooted directed graph obtained from H ∈ D(G) with
root arc ā. Let Hρ

ā be the rooted directed graph obtained from Hā by reversing the
orientation of every arc of H except for the root arc ā. The graph Hρ is obtained by
reversing the orientation of every arc of H. For λ odd,

(i) P odd
λ (H) = P even

λ (Hρ), (10)

and
(ii) P odd

β,λ (Hā) = P even
β,λ (Hρ

ā). (11)

Moreover, if (Hā)ρ denotes Hā with all arcs reversed, then

(iii) P odd
β,λ (Hā) = P even

λ−β,λ((Hā)ρ), (12)

where λ − β is an element of C by reducing mod λ if necessary.
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2.2 Even λ

The problem of enumerating even and odd colourings is straightforward when λ is
restricted to be even [4]. Given H,H ′ ∈ D(G), a λ-colouring c on H with even colour
difference δc is also even on H ′ since δc is the same on H and H ′ for all coherently
oriented arcs and δc(a) = λ − δc(a′) mod λ, which preserves parity, when the arcs of
the same edge a ∈ A(H) and a′ ∈ A(H ′) are oppositely oriented. The same argument
can be applied for λ colourings with odd colour differences which are also preserved by
arc reversal. The number of colourings is therefore directing independent.

3 Mod λ flows

The concept which is dual to mod λ colour differences is that of mod λ flows [35]. A
mod λ flow on the directed graph H = (V,A) ∈ D(G) is a map φ : A → Zλ such that∑

a∈A+
v

φ(a) =
∑

a∈A−
v

φ(a) (13)

in Zλ, for every vertex v, where the sets A+
v , A−

v are respectively the arcs oriented in
and out of the vertex v. The number of such flows is given by a polynomial F (λ,G)
and depends only on the underlying graph G and not the directing H. Rooted flows on
the directed graph Hā have the extra requirement that φ(ā) = α, a fixed value.

Furthermore, the structure dual to a directed cut is a circuit and is defined to be a
directed cycle in which the arcs are coherently oriented. This includes the case of an
oriented loop. The directed cut indicator can be related to the indicator for circuits
πā(H) which has value 1 if there is a circuit in H containing ā and 0 otherwise. The
existence of a directed cut containing ā is equivalent to the non-existence of a circuit
containing ā and so χā = 1 − πā.

We have the following theorem for flows which is dual to Theorem 1.

Theorem 2. [4] LetH ∈ D(G) have a rooted arc ā, then the number of flows F even
α,λ (Hā),

for α = 2m, λ = 2n+ 1 with m,n ∈ Z+, may be obtained by evaluating a polynomial,
F even(α, λ,Hā), in α and λ having joint degree at most c(H) − 1, where c(H) is the
cycle rank of H, with the property

F even(0, 1, Hā) = πā(H). (14)

There also exists a similar polynomial for α odd. Also, the values of F even
0,λ (Hā) =

F even
λ (Hδ

ā) are given by a polynomial F even(λ,Hδ
ā) of degree at most c(Hδ

ā) in λ such
that F even(1, Hδ

ā) = 1. More generally, for H ∈ D(G), F even(λ,H) is a polynomial in λ
of degree at most c(H) such that F even(1, H) = 1.

Remark It should be noted that the particular evaluations in Theorems 1 and 2 of the
interpolating functions Deven and F even with β = 0, λ = 1 and α = 0, λ = 1 respectively,
which give the connectivity properties of a graph, are not the same as the combinatorial
evaluations Deven

0,1 (H) and F even
0,1 (H) which are both identically 1.
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4 Applications

4.1 Connectedness of graphs and directed percolation

Percolation theory was introduced by Broadbent and Hammersley [14]. Suppose that
each arc of a directed graph H has probability p of being “open” and 1 − p of being
“closed”. The central problem in directed percolation theory is to discuss the properties
of the random set of vertices D which can be reached from a given vertex i by at least
one directed path of open arcs. The main interest is in the case of infinite graphs in
which case D has a positive probability, the percolation probability, of being infinite at
or above a certain value of p, the critical probability. If we ignore the directings of the
arcs of the path then we have the corresponding undirected percolation problem.

Another property which shows critical behaviour is the expected size Si(p,H) of D,
known as the mean cluster size. Si(p,H) increases with p and becomes infinite at a
critical value pc of p depending on the graph. The value of pc may be estimated by
expanding Si(p,H) as a power series in p and using Padé approximant methods. To
determine such an expansion we use the relation

Si(p,H) =
∑
j∈V

Cij(p,H) (15)

where the pair connectedness Cij(p,H) is the probability of an open path from i to j.
This may be expanded as a polynomial in p as follows.

By inclusion-exclusion we have the following expansion [1], [2],

Cij(p,H) =
∑

S⊆Sij(H)

pr(S)(−1)|S|+1 (16)

where Sij(H) is the collection of directed paths from i to j and pr(S) is the probability
that at least the paths in the subset S are open. By noting that pr(S) = p|AS |, where
AS is the union of the arc sets of the paths in S, and collecting together the terms of
the above sum for which AS = A′ ⊂ A, we obtain a subgraph expansion which takes
the form

Cij(p,H) =
∑
A′⊆A

"dij(H ′)p|A′| (17)

where H ′ = (V,A′) and the corresponding coefficient "dij(H ′) is solely a function of the
subgraph H ′, known in the literature as the “d-weight”, [6], of H ′. By taking p = 1,
and using Möbius inversion we have

"dij(H) =
∑
A′⊆A

(−1)|A\A′|πij(H ′), (18)

where πij(H ′) = Cij(1, H ′) is 1 if there a directed path in H ′ from i to j and zero
otherwise.

For percolation on an undirected graph G = (V,E) the “d-weight” in the expansion
corresponding to (17) is denoted by dij(G′) and is given by

dij(G) =
∑

E′⊆E

(−1)|E\E′|γij(G′). (19)
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where the undirected connectedness indicator γij(G′) is 1 if there a path in G′ from i
to j and zero otherwise. Thus the connectedness of the subgraphs plays a major part
in the calculation of the d-weights required to obtain the pair-connectedness.

Let H+
ā be the graph obtained from H by adding the “external” arc ā = [j, i] then

from theorem 2
πij(H) = πā(H+

ā ) = F even(0, 1, H+
ā ). (20)

If G+
ā is the undirected graph obtained by ignoring the directing of the arcs of H+

ā then
the number of undirected mod λ flows F (α, λ,G+

ā ), with a non-zero flow of α on ā is
independent of α and is given by λc(G)γij(G), where c(G) is the cycle rank of G. It
follows that

γij(G) = F (0, 1, G+
ā ) (21)

which is directly analogous to (20).
Equation (15) may be generalised to give the expected number S(m)

i (p,H) of vertices
which are m-connected to u

S
(m)
i (p,H) =

∑
j

C
(m)
ij (p,H), (22)

where C(m)
ij (p,H) is the probability that vertex j is m-connected from i. For the asymp-

totics of S(m)
i (p,H) a generalisation of the d-weight is needed together with simplifying

rules, see [1]. The critical probability p
(m)
c for this function on an infinite graph gives

the onset of the existence of infinite clusters of vertices which are m-connected to i.

4.2 Vicious walkers and polymer networks on a lattice

Fisher, in his Boltzmann medal award lecture, [18], considered the problem of m lock-
step walkers who start from distinct points on the real line having even integer co-
ordinates and at each time step simultaneously, but independently, move a unit distance
to the left or right with equal probability. Vicious walkers shoot one another if they
arrive at the same point. The problem Fisher addressed was the determination of the
survival probability PS(t) that m vicious walkers all stay alive for at least t steps. He
also considered the reunion probability PR(t) that they survive and end up at distance
two apart.

The space-time trajectories of the walkers are paths on a directed square lattice the
sites of which are the points of the plane having integer co-ordinates the sum of which
is even. These paths may be pictured as the embeddings of directed polymer chains of
length t no pair of which intersect [17].

To make the problem specific let us suppose that the ith walker has initial position
xi = 2(i − 1), then

PS(t) = St(m)/2mt (23)

where St(m) is the number of possible t-step paths of the m walkers which are non-
intersecting and end anywhere. In polymer terminology this is the number of star
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configurations. To obtain the reunion probability further suppose that after t steps,
xi = 2(i−1)+2q− t, where q is the number of positive steps made by each walker, then

PR(t, q) = wt(m, q)/2mt, (24)

where wt(m, q) is the number of non-intersecting path configurations subject to the
above initial and final conditions. Again in polymer terminology this is the number of
watermelon configurations.

In [7], we formulated the reunion problem in terms of even flows on the directed
square lattice. This is made possible by the following bijection between the paths of
m-vicious walkers and flows.

Consider the configuration of the m walkers in the x, t-coordinate plane. The as-
sumption of non-intersection means that if we translate the path of the i-th walker by
2(i − 1) in the negative x-direction we then have m paths all beginning at the point
(0, 0) and terminating at (k, t) where k = 2q − t. Moreover, the translated paths taken
pairwise do not cross over although they might share common arcs or vertices. If a unit
flow is attached to each walk, the above translation of paths then provides an essentially
rooted and directed integer flow from root (0, 0) to root (k, t) with a flow of m through
the “root” vertices. Note that this is a Z-flow in the sense that the Kirchhoff constraint
at each vertex is zero over the integers. This is equivalent to considering an even mod
λ flow, for odd λ > 2m, with root flow 2m obtained by attaching a flow of 2 to each
walker. The odd mod λ Kirchhoff constraint for an even flow at a grid vertex with two
edges oriented in and out forces a Z-flow.

Conversely, a 2m rooted even flow of the type described above can be uniquely
unfolded to produce m parallel walks with a flow of 2 for each walk.

It follows from Theorem 2 that these walk configurations are enumerated by a poly-
nomial in m, see also [7,17]. This is not apparent in the Fisher approach where m
appears as the dimension of a matrix.

A direct argument which shows that the number of the above Z-flows may be counted
by a polynomial in m is as follows. We let P be the set of all possible walker paths
from source (x, t) = (0, 0) to sink (k, t). They can be given the structure of a partially
ordered set where two given paths φ, φ′ satisfy φ < φ′ if the path φ′ is to the right of
φ in the x, t-plane. The number of flows is then obtained by distributing the flow m
among the paths in any totally ordered set of P. If we denote the family of non-empty
totally ordered subsets of P by Θ, the number of vicious walker configurations [7] is

wt(m, q) =
∑
θ∈Θ

(m − |θ| + 1)|θ|−1

(|θ| − 1)!
(25)

where we have used the Pochhammer symbol (a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1) for
k > 0 and (a)0 = 1. The RHS of (25) is clearly polynomial in m.

For 0 ≤ q ≤ 1
2 t we have the explicit product form of the polynomial,

wt(m, q) =
q∏

j=1

(m+ j)t−2j+1

(j)t−2j+1
(26)
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This formula was conjectured in [7] and proved in [17]. An equivalent formula, valid for
0 ≤ q ≤ t but not explicitly of polynomial form in m, is

wt(m, q) =
m−1∏
i=0

(t − q + i+ 1)q
(i+ 1)q

=
m−1∏
i=0

[
i!

(t+ i+ 1)i

(
t+ 2i
q + i

)]
. (27)

A Gaussian approximation to the binomial coefficient in (27) gives the asymptotic
form as t → ∞

wt(m, q) ∼=
(
m−1∏
i=1

i!

)
[(2π)−1/22m+tt−m/2 exp(−x2

1/2t)]
m. (28)

In [17] it was shown that equation (26) can be generalised to the case when the ith

walker makes qi positive steps and qi ≥ qi−1. The number of t-step configurations is
given by

wt(m, q1, q2, . . . , qm) =
∏

1≤i<j≤m

(qj − qi + j − i)
m∏
j=1

(t+m − j)!
(qj + j − 1)!(t − qj +m − j)!

. (29)

The number of m vicious walker configurations St(m) which finish anywhere after t
steps may be obtained by summing (29) over the values of qi subject to 0 ≤ q1 ≤ q2 ≤
. . . ≤ qm ≤ t. In [7] it was conjectured that

St(m) =
	(t+1)/2
∏

j=1

(m+ 2j − 1)2t−4j+3

(2j − 1)2t−4j+3
(30)

where � � is the floor function. The asymptotic form of St(m) as t → ∞ is

St(m) ∼=

2e(m−e/2)/2

πe/4

e/2∏
k=1

(m − 2k)!


 2mtt−m(m−1)/4 (31)

where e = 2�m/2� . This result was also obtained by Fisher [18] using a continuum
approximation.

More recently it has been brought to our attention [26] that (30) is a special case of
the Bender-Knuth conjecture [11] on plane partitions which was first proved by Gordon
[19]. The first published proof was by Andrews [10]. For a more general discussion
between plane partitions and parallel walks, see [31], [32] and [20]. To see the connection
with plane partitions for the above case of vicious walkers, number the steps of each
walk from 1 to t and let ni,j be the number of the jth positive step of the (m− i+ 1)th

walk, counting from the end of the walk, nij is zero for i > m or if j > t. Clearly
nij > ni,j+1 and the mutual avoidance condition is expressed by nij ≥ ni+1,j . Such a
matrix subject to

∑
ij nij = n is known by Bender and Knuth as an m-rowed strict plane

partition of n with no part exceeding t. They conjectured ([11] eq. 8) that the number
of such partitions is the coefficient of zn in the expansion of the generating function
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t∏
i=1

t∏
j=i

1 − zm+i+j−1

1 − zi+j−1 . (32)

The number of star polymer configurations is the number of different matrices satisfying
all of the above conditions except

∑
ij nij = n and is therefore obtained by taking the

limit z → 1 in (32) with the result

St(m) =
t∏

i=1

t∏
j=i

m+ i+ j − 1
i+ j − 1

=
t∏

i=1

(m+ 2i − 1)t−i+1

(2i − 1)t−i+1
(33)

which may be rearranged to give (30).
The result corresponding to equation (27) for plane partitions is found in [28] where

wt(m, q) counts tableaux, or plane partitions, of rectangular shape with bounded entries.
The more general enumeration in equation (29) counts tableaux of a given arbitrary
shape. This, in turn, can be interpreted in terms of dimension formula for the irreducible
representation of SL(n) given in [27].

4.3 Potts models

It is possible to extend the simple counting of proper colourings on a graph to more
refined weighted enumerations. Enumerations in this broader class are often referred to
as interaction models, see [13] for a general discussion. Here we consider a subclass of
these models, originally introduced by Potts in [30], called Potts models.

Let A(G) be the arc set of some arbitrarily chosen directing of the graph G. The
standard Potts model partition function is defined by

Zλ(G, u, v) =
∑
c

∏
a∈A(G)

w(δc(a)), (34)

where the sum is over all vertex colourings and the arc weight function w is given by

w(α) =

{
u if α 	= 0 modλ,
v if α = 0 modλ.

(35)

Here u, v ∈ C, or more generally these weights can take values in a given ring. The
partition function so defined is independent of the chosen directing and we call this the
undirected Potts model.

The origin of these models is in physics where macroscopic properties of many par-
ticle structures, e.g. magnetization of materials, need to be explained in terms of local
interactions between neighbouring atoms. In these physical applications the summation
Zλ(G) is called the partition function and determines the thermodynamic properties of
the system being modelled.

Partitioning the colourings in (34) according to the edge subset E′ on which the
colour difference is zero gives

Zλ(G, u, v) =
∑

E′⊆E

P+
λ (G/G′)v|E′|u|E\E′| (36)

11



which evaluates to the chromatic polynomial of G when we make the substitutions u = 1
and v = 0. This result together with (3) shows that Zλ(G, u, v) is a polynomial in λ of
degree at most r(G) + 1 as well as being polynomial in the variables u and v.

In this section we consider, for odd λ, chiral Potts models which have partition
functions which do depend on the chosen directing of G. These partition functions can
be expressed in terms of the directed polynomials discussed in this survey, see [3]. We
also present here, for the first time, ‘reversal-deletion-contraction’ rules for chiral models
which generalise those previously obtained for the directed chromatic polynomials in [4].
Finally, the partition functions described here will be used to develop knot invariants
in the next section.

4.3.1 Polynomial form of the λ-state chiral Potts model partition function

The arc weights for the chiral Potts model are given by

w(α) =




u if α modλ ∈ Ce,
ū if α modλ ∈ Co,
v if α = 0 modλ,

(37)

where Ce ⊂ C is the set of non-zero even integers and Co ⊂ C is the set of odd integers.
For H ∈ D(G) define the partition function "Z by

"Zλ(H,u, ū, v) =
∑
c

∏
a∈A(H)

w(δc(a)) (38)

which reduces to the standard undirected Potts model partition function when ū = u
but if ū 	= u it will depend on the chosen directing H of G.

The formula for the chiral Potts model given in equation (38) has an explicit poly-
nomial form in the variables u, ū, v. To show that the partition function "Z also has
polynomial dependence on λ our approach is to expand "Z with coefficients which are
generated by enumerations of even λ colourings.

For H,H ′ ∈ D(G) define εH,H′ : E → {0, 1} by εH,H′(e) is zero or one according as
the orientations of e in H,H ′ are respectively the same or opposite.

Consider "Z on the directed graph H = (V,A) of D(G) and firstly suppose that v = 0
so that the defining sum (34) becomes a sum over proper colourings.

"Zλ(H,u, ū, 0) =
∑

c∈C\{0}

∏
a∈A

w(δc(a)). (39)

The proper colourings may be enumerated by considering only colourings with even
colour difference on some directing H ′ ∈ D(G) and then summing over all such direct-
ings, thus

"Zλ(H,u, ū, 0) =
∑

H′∈D(G)

∑
c∈Ce

∏
e∈E(G)

u1−εH,H′ (e)ūεH,H′ (e) (40)

=
∑

H′∈D(G)

u|A|
(
ū

u

)ρ(H,H′)
P even+
λ (H ′), (41)
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where ρ(H,H ′) is the number of arcs which must be reversed to obtain H ′ from H and
P even+
λ (H ′) is the number of proper even colourings of H ′. Together with Theorem 1

this shows that the values of "Zλ(H,u, ū, 0) for odd λ may be found by evaluating a
polynomial of degree at most r(G) + 1 which is also a property of "Zλ(H,u, ū, v) since

"Zλ(H,u, ū, v) =
∑
A′⊆A

v|A′| "Zλ(H/H ′, u, ū, 0). (42)

The function "Zλ(H,u, ū, v) may also be written as a sum over directings of G. Since
the summand in (42) is independent of the directing of the arcs in A′ and there are 2|A′|

such directings, using (41) we find

"Zλ(H,u, ū, v) =
∑

H′∈D(G)

∑
A′′⊆A′

(
v

2

)|A′′|
u|A′\A′′|

(
ū

u

)ρ(H,H′,H′′)
P even+
λ (H ′/H ′′) (43)

where ρ(H,H ′, H ′′) is the number of edges of H/H ′′ which must be reversed to obtain
H ′/H ′′.

4.3.2 The reversal-deletion-contraction rule for λ-state chiral Potts models

The RDC rule with respect to an arc ā ∈ A(H) takes the form

"Zλ(H,u, ū, v)+ "Zλ(H
ρ
ā , u, ū, v) = (u+ū)"Zλ(Hδ

ā , u, ū, v)+(2v−u−ū)"Zλ(H
γ
ā , u, ū, v) (44)

whereHρ
ā , Hδ

ā andHγ
ā are the directed graphs obtained fromH by respectively reversing,

deleting, contracting the arc ā ∈ A. Let the arc ā = [i, j], then the rule can be shown
using the following observations.

"Zλ(H,u, ū, v) =
∑
ci=cj

∏
+

∑
cj−ci∈Ce

∏
+

∑
cj−ci∈Co

∏

= v
∑
ci=cj

∏ ′ + u
∑

cj−ci∈Ce

∏ ′ + ū
∑

cj−ci∈Co

∏ ′,

where
∏

abbreviates the usual product of weights over all arcs and where
∏ ′ is the

product over the arcs of the graph H ′ obtained by deleting the arc ā. Similarly,

"Zλ(H
ρ
ā , u, ū, v) =

∑
ci=cj

∏
+

∑
cj−ci∈Ce

∏
+

∑
cj−ci∈Co

∏

= v
∑
ci=cj

∏ ′ + ū
∑

cj−ci∈Ce

∏ ′ + u
∑

cj−ci∈Co

∏ ′.

Thus

"Zλ(H,u, ū, v) + "Zλ(H
ρ
ā , u, ū, v) = 2v

∑
ci=cj

∏ ′ + (u+ ū)


 ∑
cj−ci∈Ce

∏ ′ +
∑

cj−ci∈Co

∏ ′


(45)
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Finally, ∑
cj−ci∈Ce

∏ ′ +
∑

cj−ci∈Co

∏ ′

=


 ∑
cj−ci∈Ce

∏ ′ +
∑

cj−ci∈Co

∏ ′ +
∑

cj−ci=0

∏ ′

−

∑
cj−ci=0

∏ ′

= "Zλ(Hδ
ā , u, ū, v) − "Zλ(H

γ
ā , u, ū, v).

Note that the number of proper even- and odd- colourings can be evaluated from
"Zλ(H,u, ū, v).

Lemma 3. Let H = (V,A) be a planar directed graph, then the chiral partition func-
tion "Zλ(H,u, ū, v) satisfies

"Zλ(H, 1, 0, 0) = P even+
λ (H), "Zλ(H, 1, 0, 1) = P even

λ (H), (46)

the proper and improper even colour difference chromatic polynomials respectively, and

"Zλ(H, 0, 1, 0) = P odd+
λ (H), Z∗

λ(H, 0, 1, 1) = P odd
λ (H), (47)

the proper and improper odd colour difference chromatic polynomials respectively.

Clearly, the RDC rule for the chiral Potts partition function generalises the deletion-
contraction rule for the partition function defined in (34), which can be obtained by
identifying G = H = Hρ and u = ū, to give with Zλ(G, u, v) = "Zλ(H,u, u, v)

Zλ(G, u, v) = uZλ(Gδ
a, u, v) + (v − u)Zλ(Gγ

a, u, v). (48)

The partition functions given by equations (34,38) can be extended to correspond
to the rooted case of the colouring polynomials [3]. Essentially, a particular arc ā of H
is distinguished and the colour difference δc(ā) = β is prescribed. The RDC rule for
proper even difference potentials used for the inductive proof of Theorem 1 is derived
from (44) with the substitutions u = 1, ū = v = 0 and u = v = 1, ū = 0 to give
respectively

P even+
λ (H) + P even+

λ (Hρ
ā) = P even+

λ (Hδ
ā) − P even+

λ (Hγ
ā ) (49)

and
P even
λ (H) + P even

λ (Hρ
ā) = P even

λ (Hδ
ā) + P even

λ (Hγ
ā ) (50)

Finally, consider the correlation function

U even(β, λ,H, u) =
"Z12
λ (H,u, 0, 1)
"Zλ(H,u, 0, 1)

(51)

where "Z12
λ (.) is defined by (38) with the sum restricted to states for which the colour

difference between vertices 1 and 2 has the fixed value β. Let H+
ā be the graph obtained

from H by adding the arc ā = {1, 2}. Then, [3], [8],using theorem 1,

U even(0, 1, H, u) =
∑
A′⊆A

χā(H+
ā /H ′)(1 − u)|A

′|u|A\A′| (52)
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and so (cf. equation (15)) we have

U even(0, 1, H, u) = C̄12(1 − u,H) (53)

where C̄12(p,H) is the probability of no open path from 2 to 1 in the dual directed
percolation model of Dhar et al [15] for which there is probability p of an arc being open
in both directions and probability 1 − p of being open only in the direction of the arc.

Very recent progress by Tsuchiya and Katori in the further use of chiral Potts models
in walk problems and directed percolation is reported in [34].

4.4 Invariants for knots

One of the standard ways of representing a knot K is to project its 3-dimensional form
onto a planar knot diagram DK which records the over and under- crossings. As we see
below a graph can be associated with the knot diagram and a partition function can be
attached to the graph. Clearly, there are many knot diagrams and therefore different
partition functions, that can be produced depending on the different projections of K.
The different knot diagrams of K are related by the ‘Reidemeister’ rules. Thus an
invariant for the knot K can be found if the various weights can be chosen so that the
resulting partition function remains identical over all knot diagrams of the knot K. This
means that the partition function has to be left unchanged under the effect of each of
the Reidemeister rules on graphs. Such invariants can be found by this approach and
one of the simplest is the bracket polynomial.

4.4.1 Bracket polynomial

The following construction is developed by Kauffman in [22]. There are minor modifi-
cations to reflect the notation developed earlier in this paper. Given a planar graph G
we can associate a knot universe M(G) by the method of introducing a cross at the mid
point of each edge e ∈ E and then joining adjacent arms of the crosses.

G M(G)

Figure 1. The construction of the knot universe M(G) from a graph G.

Now consider K(G), one of the two knots obtained by introducing alternating cross-
ings to the planar universe M(G) to convert it to the knot diagram DK . Note that
one is a reflection of the other. Thus K(G) is a knot associated with the graph G. We
define the bracket polynomial {K} of a knot K to satisfy:

1. { } = u{ } + (v − u)λ− 1
2 { };
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2. {© ∪ K} = λ
1
2 {K};

3. {©} = λ
1
2 .

These properties should be compared with those of the following partition function
on the graph G = (V,E) with λ-colourings denoted by c : V → Zλ. Consider a new
partition function modified from (34)

Ẑλ(G, u, v) = λ− ν
2Zλ(G, u, v). (54)

The standard Potts partition function has weights given by

we(ci, cj) = u+ (v − u)δci,cj (55)

where e = [i, j] ∈ E and δ.,. is the delta-function. This gives only two values, u and v.
The deletion-contraction rule for Ẑ (cf. 48) is given by

Ẑλ(G, u, v) = uẐλ(G\e, u, v) + (v − u)λ− 1
2 Ẑλ(G/e, u, v), (56)

where G\e and G/e denote respectively the graph G with the edge e deleted and con-
tracted. This is rule 1 for the Kauffman bracket. Rules 2 and 3 for the partition
function, correspond to

1. the disjoint union of a single vertex and a graph G is given by

Ẑλ(• ∪ G, u, v) = λ
1
2 Ẑλ(G, u, v), (57)

and,

2. for a single vertex
Ẑλ(•, u, v) = λ

1
2 . (58)

It can now be seen that the multiplicative factor in the definition of Ẑλ(G, u, v) is used
the ensure the value λ

1
2 for the trivial graph of a single vertex.

Proposition 1 [22] Let G = (V,E) be a planar graph and let K(G) be an associated
alternating knot, then

{K(G)} = λ− ν
2Zλ(G, u, v). (59)

Hence the knot bracket {K(G)} can be written in the Potts formalism by using (34)
to obtain

{K(G)} = λ− ν
2
∑
c

∏
e=[i,j]∈E

(u+ (v − u)δci,cj ). (60)

Furthermore, if we simplify the coefficients of the Kauffman bracket and introduce
[K] = [K] (A,B, d), defined by

1. [ ] = A [ ] +B [ ];

2. [© ∪ K] = d [K];
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3. [©] = d,

is an invariant, [24], for reduced alternating knots for all A,B and d. Thus we have a
knot invariant [K] (A,B, d) = {K(G)} which is given explicitly in terms of the Potts
model partition function Zλ(H,u, v) by choosing

λ = d2, u = B, v = Ad2 +B. (61)

The bracket [·] is enumerated in an integer ring Z[A,B, d]. This follows from the induc-
tive nature of the definition of the bracket where rule 1 gives the bracket of a knot with
n-crossings in terms of the bracket for knots with fewer crossings.

D D1 2

Figure 2. A knot K is reduced if its diagram DK does not divide into subsets D1 and
D2 connected by a two-strand bridge.

The reason that the bracket [·] is an invariant of reduced alternating knots for all
A,B, d is that there is an alternative equivalence for alternating knots. The Reidemeister
rules RII and RIII can be replaced by imposing invariance under ‘flyping moves’, [24].
The property was originally conjectured by Tait in [33] and was recently proven in [29].

Tait’s Third Conjecture. Any two reduced knot diagrams DK and D′
Kof an alter-

nating knot K are equivalent by performing a finite number of flypes.

A flype is a rotation of a (2,2)-tangle in a knot as indicated in Figure 3. The flype
leaves the class of reduced alternating knots invariant and hence allows their equivalence
to be addressed within the class of alternating knots.

A AB B

C CD D

Figure 3. The flype construction on a (2,2)-tangle of a knot K. The subknot denoted
by ‘�’ is rotated by a half-turn, keeping the points A,B,C and D fixed, to form ‘⊥’ and
the rest of the knot outside the elliptical boundary is left unchanged.

The important feature of a flype is that the associated Potts models remain un-
changed for all choices of the triple λ, u, v and thus the knot bracket [K] (A,B, d) is a
regular isotopy knot invariant of an alternating knot K for all choices of A,B and d.
For non-alternating knots, the invariance requires further constraints on A,B and d to
ensure invariance under RII and RIII.
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4.4.2 Dichromatic polynomial

It should also be noted that if we take u = 1 and introduce v̄ = (v − 1) in the deletion-
contraction rule (48) for Z , we obtain

Zλ(G, v̄) = Zλ(Gδ
a, v̄) + v̄Zλ(Gγ

a, v̄) (62)

The partition function Z = λ
ν
2 Ẑ is the dichromatic polynomial [25] which satisfies

Zλ(•, v̄) = λ for a single vertex and Zλ(• ∪ G, v̄) = λZλ(G, v̄). The standard chromatic
polynomial can be recovered from the dichromatic polynomial by choosing v̄ = −1, i.e.
v = 0 so that

Zλ(G,−1) = λ
ν
2 Ẑλ(G,−1) = λ

ν
2 {K(G)}|u=1,v=0. (63)

We conclude that the chromatic polynomial for the graph G can be found by evaluating
the knot bracket of the associated knot diagram of K(G).

4.4.3 Signed graphs

The Potts model can be extended to a signed graph Gs of G where s : E → {−,+}
denotes an edge-signing of G. This enables us to distinguish different types of crossing
(see Fig. 4). Note that in the case of alternating knots, all crossings are of the same
type, i.e. either all − or all +.

Figure 4. The signing of knot crossings and edges (dashed) in a knot diagram.

With the above notation define

Ẑλ(Gs,u,v) = λ− ν
2
∑
c

∏
e=[i,j]∈E

ws(e)
e (ci, cj) (64)

where u = (u−, u+), v = (v−, v+) and

w)
e(ci, cj) = u) + (v) − u))δci,cj (65)

for 9 = ±. We are now able to associate weights dependent on signing of the edges. The
signing also gives the partition function a ‘deletion-contraction’ rule for the edge e) as

Ẑλ(Gs,u,v) = u)Ẑλ(Gs\e),u,v) + (v) − u))λ− 1
2 Ẑλ(Gs/e),u,v). (66)

To complete the analogous three rules to those of the knot bracket, the partition
function of the disjoint union of a single vertex and a graph G is given by

Ẑλ(• ∪ Gs,u,v) = λ
1
2 Ẑλ(Gs,u,v), (67)
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and for a single vertex
Ẑλ(•,u,v) = λ

1
2 . (68)

Comparison of coefficients between the reduction formulae for [K] and Ẑλ(Gs,u,v)
gives

Lemma 4. [24] For a knot K, the bracket [K] (A,B, d) and the partition function
Ẑλ(Gs

K ,u,v) are identical when the equations

u− = (v+ − u+)λ− 1
2 = A, u+ = (v− − u−)λ− 1

2 = B, λ
1
2 = d (69)

are satisfied.

Remark. To ensure that [K] is a regular knot invariant we require the further conditions,
namely AB = 1 and A2 + B2 + d = 0, cf. equation (61) and [24],[25]. This, of
course, imposes further constraints on the weights u±, v± of the Potts model. The
more typical approach is to produce an invariant which reduces the number of variables
in the partition function. A classical example of this is the Jones polynomial which is
obtained as a special case of the Kaufmann bracket, and hence of the partition function,
for oriented knots, cf. Lemma 4 and [24].

For the case of an alternating knot K, we have observed that the signings are either
all + or all −. Thus, if required, we can use one of the two signings to replace the
variables u, v with either the pair u+, v+ or the pair u−, v− respectively. Further-
more, the reduction rules for the bracket [K] (respectively the Potts partition function
Zλ(Gs

K , u, v)) leave the crossing types(signed edges) all of one sign. Finally the flype
does not change the type of crossings as the new knot is still alternating. In the fol-
lowing, the weights we(c) attached to each edge e = [i, j] can be either all w+

e (ci, cj) or
all w−

e (ci, cj). We will denote this choice by 9 and assume therefore that the substition
9 ≡ + or 9 ≡ − is made.

Lemma 5. Let the knots K and K ′ differ by a single flype, then the Potts partition
functions Zλ(G)

K , u, v) and Zλ(G)
K′ , u, v) are identical.

Remark The flype construction does not change either the sign of crossings or their
number and so the same Potts models arise from two equivalent alternating knots with
the same number of crossings. We therefore conclude from the theorem that two alter-
nating knots with the same number of crossings are not equivalent if they have different
Potts models.

4.4.4 Chiral partition functions and alternating knot invariants

The idea from the previous section can now be extended to the set of directings D(GK)
of the undirected graph GK = (V,E). Typically, HK = (V,A) ∈ D(GK), where A is
an arc set obtained by directing E. Furthermore, define Ze

λ(Z
o
λ) ⊂ Zλ to be the image

of the even integers (odd integers) in the integer interval [1, λ − 1] under the natural
projection p : Z → Zλ. A chiral partition function is given in [3]. Here we discuss a
normalised version given by

"̂Zλ(HK ,u, ū,v) = λ− ν
2
∑
c

∏
a=[i,j]∈A

wa(c). (70)
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For a given signing s of the directed graph HK , we consider the partition function

"̂Zλ(Hs,u, ū,v) = λ− ν
2
∑
c

∏
a=[i,j]∈A

ws(a)
a (c), (71)

where u = (u−, u+), ū = (ū−, ū+), v = (v−, v+) and the weight w)
a, where the arc

a = [i, j] and 9 = ±, is defined by

w)
a(c) =



v) cj − ci = 0
u) cj − ci = Ze

λ

ū) cj − ci = Zo
λ

. (72)

Note that for an alternating knot the signing is the same for all crossings in the knot
diagram of K.

Lemma 6. Let G)
K and G)

K′ be as in Lemma 5, then given a directing HK of GK ,
there exists a unique directing HK′ of GK′ such that

"̂Zλ(H)
K ,u, ū,v) = "̂Zλ(H)

K′ ,u, ū,v). (73)

The existence of a bijection of the directed graphs HK′ and HK can be used to
obtain an invariant for knots by considering the totality of directings of GK and GK′ .
Given an alternating knot K, define

DK = { "̂Zλ(HK ,u, ū,v)|HK ∈ D(GK)}

to denote the class of chiral partition functions obtained from all directings of GK .

Proposition 2 If K and K ′ are equivalent alternating knots then DK = DK′.

Finally, we observe that the standard Potts partition function, and therefore the Jones
polynomial, can be obtained from the chiral version.

Proposition 3 For a given knot K, the Potts partition function can be obtained from
the chiral Potts model of a unique directing HK of GK by the relation

Ẑλ(GK ,u,v) = "̂Zλ(HK ,u,u,v). (74)
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