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We consider special types of mod-A flows, called odd and even mod-A flows, for directed
graphs, and prove that the numbers of such flows can be interpolated by polynomials in A
with the degree given by the cycle rank of the graph. The proofs involve computation of the
number of integer solutions in a polyhedral region of Euclidean space using theorems due
to Ehrhart. The resulting reciprocity properties of the interpolating polynomials for even
flows are considered. The analogous properties of odd and even mod-A potential differences
and their associated potentials are also developed.

1. Introduction

The role of odd and even mod-A flows in combinatorial approaches to the problems of
directed percolation and vicious walker configurations has been considered in previous
papers [2, 4].

In Section 1 we review the polynomial properties of mod-A flows [12] for undirected
graphs. By restricting to even flows, new results are obtained for directed graphs in Section
2. The corresponding polynomial properties for even mod-A potential differences are
considered in Section 3.

1.1. Unrooted mod-4 flows
Let G = (V, E) be a graph with vertex set V and edge set E. Each edge e E, with vertices
i.,j€ V, can be given the orientation (i, /) or (j, 7). The arc set 4 formed by choosing a given
orientation for each edge of E together with the vertex set V is said to form a directed graph
H = (V, A). The set of all such directed graphs is denoted by 2(G).

Let € =10,1,....A—1},AeZ*. A mod-A flow on He2(G) is a map ¢: A >% that
satisfies the zero mod-A condition

b =i = m;A (L1)
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at each vertex 7 of V. In (1.1), m;e Z is said to be the charge on vertex i, ¢ is the sum of
the ¢5(a) over arcs directed into vertex i, and ¢; is the sum of the ¢(a) over arcs directed out
of vertex i. Flows having zero charge everywhere will be called natural, and are discussed
in [6]. Those flows that satisfy ¢(a) + 0 for every ae 4 are said to be proper [12].

The set of mod-A flows is denoted by #(H), and its cardinality by K(H); the set of
proper mod-A flows is denoted by # ;(H), and its cardinality by F{(H).

Let H. H € 2(G). Then it is easy to obtain a bijection between the sets of flows #,(H) and
#(H"). Specifically, the correspondence between flows ¢ and ¢’ on H, H’ is given by
dla) = ¢'(a’) (respectively ¢p(a) = A—¢’(a’)) when the arcs a and ¢’ obtained from the edge
ce £ are coherently oriented (respectively oppositely oriented) by H and H’. The
correspondence remains one-one when restricted to the subsets of proper flows # ;(H) and
Z# (H’). Thus the functions F(H) and F;(H) can be associated with the graph G, since
they are independent of the orientation H, and hence F,(G) and F;(G) have unambiguous
meanings.

A relation between F(G) and F}(G) can be obtained by noting that every mod-A flow on
G is given uniquely by a proper mod-A flow on some subgraph G’ = (V, E’) of G. Thus the
number of all flows can be written as a sum

E@G) = Y Fi(G). (1.2)
ECcE
Mébius inversion then gives the relation
Fi(G) = Y (=D"FIE@G). (1.3)

E'CE

The set of mod-A flows on G’ is obtained by independently allocating a circulation from
the set %’ to each member of a cycle basis. The circulations are then added mod-A for each
edge of G” to give the flows. Thus the number of flows F(G’) is just A*“? [5, 6], where ¢(G")
is the cycle rank of the subgraph G’. We conclude that the values of both E(G) and F{(G)
may be interpolated by polynomials F(A, G) and F*(A, G), respectively, in the variable A and
of degree equal to the cycle rank ¢(G) of G.

2. Odd and even mod-A flows for odd A

We now consider two important subclasses # " H) and Z ¢"**(H) of #(H), known as the
odd and even mod-A flows respectively. #*(H) is obtained by restricting ¢(a), ae H, to
be either 0 or an odd integer in %. Similarly, #¢"**(H) is obtained by restricting ¢(a) to be
an even integer in 4. The numbers of these flows will be denoted by F*“(H) and F:**"(H),
respectively. We can further restrict odd and even flows to those that are proper. These
subsets will be denoted as above, with the addition of a superscript +. The numbers of odd
and even flows are expressible in terms of the numbers of proper odd and even flows (cf.
(1.2)) and vice-versa.

For odd A, simple examples show that the numbers of odd and even flows depend on the
choice of directed graph He %(G). By contrast, for even A, see [8], the bijection given in
(1.1) preserves the parity of the flow in each edge, and the number of flows is, therefore,
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the same for all He Z(G). There is a bijection between the sets of even mod-A and mod-A/2
flows. Hence, the number of even flows, Ft**"(H ) is interpolated by the polynomial (A/2)%%,
A similar result holds for odd flows provided the vertices of the graph are all of even degree,
otherwise there can be no such flow. We now restrict attention to the direction-dependent
case of A odd, see also [2, 7].

Let H” be the graph obtained by reversing the orientation of every edge of the directed
graph H, and consider the bijection of Section 1.1 with H” = H”. For odd A, the above
bijection associates odd mod-A flows on H with even mod-A flows on H”, and vice versa.

Thus
F(H) = Firer(H?). 2.D

Throughout the rest of Section 2 we therefore consider only even flows for odd A.

2.1. Polynomial properties of even mod-4 flows for odd i
The arguments of Section 1.1 do not trivially extend to give the polynomial property for
even flows when A is odd. Although (1.3) holds for F&***(H), there is no correspondingly

simple formula to that of F(G) for the function F&**(H). Instead, we turn to a theorem due
to Ehrhart [9].

Theorem (Ehrhart |9]). Let P, be a d-dimensional polyhedron in R™, (1 < d < m), with integer
vertices, and let P, = {nx|xe P}, then:
(i) the number of points in the relative interior of P, with integer coordinates is a polynomial
i(n) in the variable n, of degree d;
(i) the number of integer points when the boundary of P, is included is also a polynomial j(n)
in the variable n, of degree d, and j0) =1,
(i) there is a reciprocity relation between the polynomials given by

i(n) = (=1)%(—n). (22)

We also need the following theorem of Hoffman and Kruskal [11], which ensures the
existence of the integer vertices required for Ehrhart’s Theorem. A matrix U is said to be
totally unimodular if every square submatrix of U has determinant 41 or 0. Thus U is an
integral matrix.

Theorem (Hoffman and Kruskal [11]). The r x s integer matrix U is totally unimodular if and
only if for any integer r-vectors b and b’ and integer s-vectors a and a’, each face of the convex
polvhedron {xeR*|a < x < a’,b < Ux < b} contains an integer point.

An immediate corollary of the theorem is that the unimodular property of the matrix U
implies that the vertices of the corresponding polyhedron have integer co-ordinates.

Lemma 2.1. For an even mod-A flow on H, the charge on any vertex is even. Furthermore, if

both the in-degree and out-degree of vertex i€V are at most two, then ¢ — ¢, lies between
—(2A—=2) and 2A -2, and hence m, = 0.

We will say that a graph H e 2(G) satisfies condition (A) if H supports a proper flow, and
the in-degree and out-degree of every vertex is either one or two.
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Lemma 2.2. Let He 9(G) satisfy condition (A). Then the function F;***(H) is interpolated by
a polvnomial F**"(A, H) in A of degree equal to the cycle rank ¢(G) of G.

Proof. We have seen that condition (A) implies that the charge on every vertex is zero, and
in this case the set of even mod-A flows is just the set of natural flows with ¢(a,) = 2n,, for
some #, satisfying 0 < n; < n, where A = 2n4 1. The algebraic conditions (1.1) with m, = 0,
for all e}, can be written in the form (see [3]),

Dx =0, 23)

where x e B!, with 0 < x; < n, and D = [d,] is the incidence matrix of the arcs for H. The
matrix D is defined by d,; = 1 or —1 according as there is an arc g, incident into or out of
vertex i and zero otherwise and D is totally unimodular [5]. Thus the set of flows # {**(H)
can be seen as a restricted set of integer solutions of a linear system of equations.

Let P, be the set of points {xe R#/|0 < x < 1, Dx = 0}, where 1 is the vector with every
component 1. The solution set P, is a subset of a linear space of dimension
|E|—rank (D) = |E| —r(G) = ¢(G), the cycle rank of G [5]. We now use condition (A) to show
P, is also a polyhedron of dimension ¢(G), see [4]. Clearly, the linear hull of P,
Lin(P) = ixe R | Dx = 0}.

Conversely, by condition (A), let ye{x e R¥'|Dx = 0} be a proper solution vector of the
equations such that each of its components is positive. It follows that there exists a basis
1¥1s ... ¥, ) where & = ¢(G), of the space Ker (D) consisting of vectors with entries 0 or 1.
These basis vectors represent unit natural flows on directed cycles of the graph H. Thus
yeLin(F), and hence {xe R* |Dx = 0} = Lin(P), and hence P, is ¢(G) dimensional.

Moreover, it follows from the theorem of Hoffman and Kruskal that P, has integer
vertices. The polynomial dependence of the number of even flows on A follows from the
observation that

F(H) = j(n), 24
together with Ehrhart’s Theorem. O

It should also be noted that for H satisfying the conditions of Lemma 2.2, the number
of proper even flows is given by the number of integer solutions of (2.3) with 1 < x, <n,
and hence

Feent(H) = i(n+1). 2.5)

Note. If the graph H fails to have a proper flow required for condition (A), Lemma 2.2 can
be modified to accommodate this more general case. The degree of the polynomial will not
be ¢(H), but ¢(H’), where H’ is the maximal subgraph of H that supports a proper flow.
Such a subgraph exists from the observation that if two natural proper flows exist on two
subgraphs on H, then, by adding these flows, a proper natural flow is obtained on the
subgraph obtained by taking the union of the arcs of the two subgraphs. Clearly, the
maximal subgraph is found by taking the union of all the subgraphs that support proper
flows. In this situation, there is a bijection between the flows on H’ and the flows on H,
because every flow on H is zero on those arcs not in H'.
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We now extend Lemma 2.2 to include all directed graphs. This will be done in two stages,
the first of which allows for some of the arcs to have a fixed flow of 2x.

Lemma 2.3. Let He A(G) satisfy condition (A) and let A" be a subset of the arc set A(H), the
complement of which contains a spanning forest. The number of even mod-X flows ( proper or
otherwise) in which the flow in the ares corresponding to A’ is fixed at 2n is a polynomial in
A of degree o(G)—|A’

Proof. In the proof of the previous theorem we must impose the further condition n; = #,
for ;e 4’. which may be accommodated by setting x; = 1 in the definition of P,. This is the
same as replacing the lower limit of zero on x; by one, and Hoffman and Kruskal’s
Theorem still applies. Since the arcs of A belong to a cotree, the additional constraint
reduces the dimension of the solution space by |4"], so P, is a polyhedron of dimension
(G) —]A4’| and the result follows from Ehrhart’s Theorem as before. O

Theorem 2.1. Ler He Z(G) support a proper even mod-A flow. Then the function F{""(H) is
interpolated by a polynomial F*™"(A, H) in the variable A of degree equal to the cycle rank
¢(H) of H.

Proof. We will partition the flows by charge distribution and establish the polynomial
property for each class separately. The case where the charge at every vertex is zero is
proved in the same way as for Lemma 2.2. So we now consider a non-trivial charge
distribution of the m,’s that supports at least one flow on the directed graph H. Let
B n1, be the set of positive charges at the vertices x,. ..., x, respectively and m;,...,m,
be the set of negative charges at the vertices y,, ..., y,. Note that for each flow defined by
(1.1). m; A and m; A, must be even, since they are the sums of the flows at x; and y,, which
are even. Also we are assuming that A is odd, and hence m, and m; must be even. Let M
be the sum of the positive charges. Then there is a net outflow of MA from the vertices with
positive charge that is equal to the net inflow at the vertices with negative charge. This
follows by summing the signed flows over all vertices of the graph H.

Consider the extension of H by the addition of vertices v and v and m,/2 parallel arcs
directed from u to x;,i€{l,..., k}, and |m;|/2 parallel arcs directed from y,,jeil,.... [}, to
r. Now impose the condition that the flow in each of the added arcs be 24, and the flow
in each arc of H be at most A—1. The flows on H with the given charge distribution
correspond to the natural flows on the extended graph K with a flow in of MA at u and a
flow out of MA at v. Every cutset of the graph K separating » and v contains at least
MA/2)\ = M/2 arcs oriented from u to v (at least M if the cut is in H). It follows from
Menger’s theorem that there exist M/2 arc-disjoint paths from u to v. This is also the
number of arcs added to each of the vertices « and v and therefore the paths use all of these
arcs. Thus there is a natural one-one correspondence between the arcs adjacent to v and v
respectively. By removing the vertices u and v and identifying these arcs by the above
correspondence, we create a new directed graph K’, which has M/2 arc-disjoint cycles, each
containing one of the new arcs. Subtraction of A+ 1 from the flow in each of these cycles
reduces the flow from 2A in each of the added arcs to 2n, and the range of the flow variables
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on the arcs of H that belong to one of the new cycles becomes { —(A—1), —(A—3),..., =2}
instead of :2,4,...,A—1}. Thus the required flows are in one-one correspondence with the
even flows on K’, with a fixed flow of 2n on the added arcs, and where those arcs of H
contained in the cycles defined above are reversed. We now apply Lemma 2.3 to K’, with
A" = A(K")\A(H), noting that «(K") = «(H)+ M /2 and |4"| = M/2. O

2.2. Ehrhart reciprocity for even flows

It is straightforward to obtain implications from applying the reciprocity relation (2.2) to
(2.4) and (2.5).

Lemma 2.4. Let He Z(G) be a directed graph satisfving condition (A). Then
(i) F (A H) = (= 1" F (=), H),
(i) |[Fen (=1, H)| = 1, and
(tif) |F* "' (=3, H)| is the total number of subgraphs of H that are directed cycles, including
the trivial cycle on the null subgraph.

In the above lemma, a directed cycle is a subgraph of H with an equal number of arcs
oriented into and out of each of its vertices.

Proof.
(i) Condition (A) implies that every even flow on H is a natural flow and from (2.5),
Ferrrt2n+ 1, H) = i(n+ 1), and from (2.4), F**(2n+1,H) = j(n). Result (i) then
follows by using the reciprocity rule (2.2) to obtain

FortQn+1, H) = i(n+1) = (= D)%(~(n+1))
= (= D)UFn(—2(n+1)+1,H)
= (= 1) F™™(=2n+ 1), H), (2.6)

where d = ¢(H), the dimension of the polyhedron P, in the proof of Lemma 2.2.
(i1) For A = —1, we obtain

Feve7z+(_ 1, H) — (_ 1)C(H)Feven(1, H), (27)

and F**(1, H) = 1 by part (ii} of Ehrhart’s Theorem. Thus Fe**"*(—1,H) = (— 1),
(i) For A = —3, we obtain

Feven+(_3,H) — (_ l)c(H)Feren(:)’,H)- (28)

Every non-trivial flow ¢ e F5“*(H) is, by condition (A), a proper natural flow on some
non-null subgraph H’ of H such that ¢(a) =2 for all ae A(H’). The algebraic
condition at each vertex implies that each vertex of the graph H' has the same number
of arcs oriented in and out. Thus the arcs of H’ form a directed cycle. The null directed
cycle H” = (¥ is given by the zero flow.

Conversely, assigning ¢(a) = 2 to every arc of a directed cycle subgraph of H and
¢(a) = 0 to arcs not in the cycle gives a unique flow in F¢°*(H). It follows that
|Feeen(—3, H)| gives the number of subgraphs of H, including the null graph, whose
arc sets form a directed cycle. O
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We now consider the rooted version of the flows described in Section 1.1. Let 1 and 2 be
distinguished vertices (or roots) of the directed graph H. An external arc (2, 1) is added to
the graph H to form the extended graph H*. For integers A > 1, let #, (H) be the set of
mod-A flows (satisfying (1.1)) on the extended graph H* such that the ‘external flow’ in
{2.1) 1s fixed to be 2€%.

A set of flows that are of particular interest in percolation theory [4] are constructed on
condition (A) rooted graphs H that are unions of directed paths from root I to root 2. Each
of these natural flows can be expressed as a sum of circulations in each circuit formed by
a directed path from root | to root 2 and the arc (2, 1). Thus, the maximum flow occurs
in the external arc (2, 1), and hence the number of flows Fi:/(H) is independent of A for
A > 2m and constrained only by the maximum flow 2m.

Lemma 2.5. Let He %(G) be a directed rooted graph that is the union of directed paths from
root 1 10 root 2, and let H be the extended graph of H. Also, let f*(m, H) = F5'"*(H) and
fim. HY = Fge' (H) for A > 2m. If H satisfies condition (A), then
(i) the number of rooted flows f*(m, H) and f{im, H) are polynomials in the variable m and
satisfy the reciprocity relation

SHm H) = (= 1) fi—m, H), (2.9)
(”) /“(OH) — (__ 1)<<(H),.
(tiiy |f~(=1, H)| is the number of directed paths from 1 to 2 in H;

(iv) let H have a unique minimal proper flow with external flow 2m’, then f has symmetry
about m =3m’, ie.

Sm—m' H) = (=)D —m, H). (2.10)
Proof.

(1) The maximal flow property of arc (2,1) implies F22" (H) = F L (HO\F L (HY).
Thus, we have

fim, H) = F*"Qm+ 1, HY) — F***"(Qm—1, H")
= (= D EO[Fee (= 2m— 1, HY) — Fo*"(=2m+ 1, H")]
= (=D (—m, H)
= (= 1)"f(—m, H), 2.11)

where we have used Lemma 2.4(i).

(i) and (iii) have proofs similar to the corresponding arguments in Lemma 2.4.

(iv) an arbitrary proper flow on H is formed uniquely by the superposition of the minimum
proper flow with source strength 2m’ and an arbitrary flow of source strength
2(m—m"). Thus f*(m, H) = fm—m’, H), which combined with (2.9) gives (2.10). []

Note. The above properties for the polynomials f and f* can also be obtained by
considering the subset of natural even mod-A flows on a rooted graph H consisting of
directed paths, but which is not necessarily of type (A). There is a bijection of such natural
even flows with the natural mod-(n+ 1) flows, where A = 2n+ 1. Polynomial and reciprocity
properties then arise by using results from [3] (see [4] also).
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3. J-potentials and even mod-1 potential differences for odd 2

For a graph G, a A-potential ¢ is simply a colouring of the vertices of G, using A colours,
and can be described by a map ¢: V(G)-»>%. The number of unconstrained colourings is,
therefore, A9, where 1(G) =|V(G)|. The number of proper colourings P;(G), where
adjacent vertices have distinct colours, is given by Whitney’s formula [13]

Pi(G)= ) (—1)Fe, (3.1
E'cE
where «(G") 1s the number of connected components of the graph G’, which is a polynomial
in A of degree v(G).

We recall that an even A-colouring or potential ¢ [2] is one for which the potential
difference dc(i,j) = c(j)—c(iye €, when reduced mod-A, is even on each arc (i,j). Let
2" "(H) and 2"*(H) denote the sets of even and proper even respectively, A-colourings
of the directed graph H. Let the corresponding cardinalities be P{""(H) and P{"*"*(H).

Foreven A, the sets 2¢"*(H) and #{""*(H) correspond to ordinary colourings of H with
A/2 colours, and the corresponding enumerators may therefore be interpolated by
polynomials of degree v(H). A similar enumeration can be carried out for PJ**(H),
provided the graph H is bipartite.

3.1. Polynomial properties of A-potentials with even potential difference for odd 2

For odd A, the numbers of even A-colourings are equal to the corresponding numbers of
odd A-colourings on the reversed di-graph, for if 8¢(i, j) is an even element of %, then dc¢(J, i)
is odd. To establish the polynomial property for both types of colourings for odd A, it is
therefore sufficient to prove the following theorem for even colourings.

Theorem 3.1. Let He Z(G) support a A-potential for which the potential difference is both
proper and even mod-A. For odd A, the number of A-potentials (colourings), P{""(H), for
which the potential difference is even on every edge of H may be interpolated by a polynomial
PrM(A, HY in A of degree v(G) such that P¢**(1, H) = 1.

The polynomial property for proper colourings then follows from Mé&bius inversion of
the formula

PE(H) = ) Py (H/H). (3.2)

A'CA
Note that to obtain (3.2), the A-colourings of H are subdivided according to the subgraph
H’ on which they are improperly coloured. The A-colourings that are improper on H’

correspond to proper colourings on the directed graphs H/H’ obtained by contracting the
arcs of H'.

Proof of Theorem 3.1. Let A = 2n+ 1, where » is a non-negative integer, and write the
potential (colour) of vertex i as ¢, = 2n,(mod A)e¥. If we allow each n, to range over
0 < n, < 2n, all possible A-potentials will be generated exactly once. In the space of the
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n-variables. the even values of ¢, are contiguous, as are the odd values, the latter
corresponding to the range n+1,...,2r of the n,. The potentials for which the potential
differences are even come from the bands (I) 0 < n,—n, < n, and (II) —2n < n;—n, < —n.
The first range corresponds to algebraically even values of the potential difference ¢;,—c; on
the arc (i.j). and the second corresponds to even values when reduced mod-A. We can
therefore write

PU(H) = T py(Ay). (33)
A, 4
where s ,(A,) is the number of integer points in the hypercube [0, 2n]“® such that #,—n, lies
in the second range (IT) above if (i,/)e A, = 4, and in the range (I) for (i,/)e 4, = A\A4,.
When 4, #+ Zf the Ehrhart Theorem cannot be applied directly to find y,(A,). The theorem
does not apply to constraints with strict inequality at the upper limit of (II). So the
approach is to consider the set of potentials that satisfy constraint (I) on the arc set 4,, and
constraint (1) on the arc set 4,\4’, where 4" = 4, and n,—n, = —n on A’. An inclusion—
exclusion argument is then used on the subsets of A4,.
Define P(A,.A4"), A" = A,, in Ehrhart’s Theorem by

P(A,,4) = {xeR[0<x <2 b<Ux < b,

where 0 and 2 are vectors with all components equal to 0 and 2, respectively, and b, b’ e R,
The components of b,b’ are chosen such that for ae 4’, b, = b, = —1, for ae 4,\4’,
b, =—2.b,=-—1 and thirdly for ae 4,, b, = 0 and b, = 1. The | 4| x (G) matrix U is the
transpose of the incidence matrix D (defined in the proof of Lemma 2.2) and has rank equal
to the cocycle rank r(H) (see Biggs [5], Propositions 4.3 and 5.3). The same is therefore true
of U, and if P,(A4,,A4") is non-empty, it is a convex polyhedron with integer vertices, by
Hoffman and Kruskal’s Theorem. Thus, by Ehrhart’s Theorem, j, ,(n), the number of
integer points in P,(A4,, A’), is a polynomial in #n of degree v(G). )

For A, # . j, »(n) overcounts y,(A4,), since P, (A4,. ) includes n,—n, = —n for arcs of
4,. Applying an inclusion—exclusion argument gives

mlA)y = X (=D, (). (3.4)
gedcd,

This formula is also valid for 4, = ¢, and it follows that y,(4,), and hence P{*"(H), is a
polynomial in n, and therefore also in A. From (ii) of Ehrhart’s Theorem, it follows that

J (P =1and for 4, = &
n(d) = Y (=D*=0. (3.5)

gaA A,

and hence P{""(H) = 1. This is consistent with the fact that when A = |, we must have
¢, = 0 for all i, and this is a valid 1-potential with even potential difference. O

3.2. Ehrhart reciprocity for even mod-4 potential differences

The mod-A potential difference de: A(H) ~% associated with the A-potential ¢ on the
directed graph He %(G) is unchanged by adding a constant to the potential on any
component of H. Thus there are A“Y" potentials that give rise to a given potential

difference. and therefore
Pf{l‘('n(H) — /\{’7””1);”'”([-1), (36)
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where D\"“*(H) is the number of distinct even mod-A potential differences, and w(H) is the
number of connected components of H. The relation (3.6) also restricts to proper even
potentials and potential differences, so it follows that the numbers of odd and even mod-A
potential differences for odd A may be interpolated by polynomials of degree at most
HH) =1(H)—w(H), the cocycle rank of H. All mod-A potential differences have the
defining property that they sum to zero when evaluated mod-A on cycles of H. Natural
potential differences are those that sum to zero in the integers on cycles of H.

The graph He 2(G) is said to satisfy condition (B) if H supports a proper potential
difference, and if it has a cycle basis such that each cycle contains at most 4 edges and has
either one or two edges of each orientation.

Lemma 3.1. Let He2(G) satisfy condition (B), then a mod-A potential difference on
dce Z"(H) is a natural potential difference.

Proof. Let o, be an element of a cycle basis satisfying condition (B). Consider the case when
o, has two arcs a,,a,. We have two even potential differences dc(a,), dc(a,) €% such that
dc(a,) —de(a,) = 0 (mod A). This implies dc(a,) = dc(a,), and we see that dc(a,) —dc(a,) =
OeZ. The same reductions can be made for cycles of 3 or 4 edges by using the even
constraint on the potential differences, together with condition (B). More generally, let &
be a cycle of H. By condition (B), we can write ¢ = ) ¥ m, o, where {7, ..., o} is the special
basis and m,e Z. Then 8c(c) = Y ¥ m, dc(s;), and hence dc(o) sums to zero over Z. O

Lemma 3.2. Let He 9(G) be a directed graph satisfying condition (B), then
(i) D™ (A H) = (=1)""D™"(— A, H),
(iy \D"(—1,H)| = 1, and
(iiiy | D" (—3, H)| is the number of subgraphs H’ of H for which the arc set of H/H' forms
a directed cocycle of H.

A cocycle subgraph of H is formed from a partition of the vertex set [S, S’] with the
property that each cocycle arc has an incident vertex in both S and S’ and all other arcs
have both incident vertices in either S or S’. The cocycle is directed if every directed cycle
of H has equal number of arcs oriented from S to S’ and S’ to S.

Proof.

(i) Condition (B) implies that every even potential difference on H is a natural potential
difference. Thus, using the notation of the proof of Theorem 3.1, the only contribution
in (3.3) is given by A4,=. Hence P*"2n+1,H)=j, ,(n) =jn) and
P (2n+1, H) = iy ,(n) = i(n+1). The result then follows by using the reciprocity
relation (2.2) for j(n) and i(n), with d = v(H), to obtain
P 2n+ 1, H) =i(n+1) = (= 1Y®Fj(—(n+1))

= (=D pren(_2n+ 1)+ 1, H) = (= 1) P —(2n+1), H).
(3.7
Property (i) is then obtained for potential differences by (3.6).
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(it) For A = -1, we obtain

(1i1)
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(10]
(11]
[12]

(13]

P (=1, H) = (= 1) Pon(L, H), (3.8)

and P*"(H) = 1 by part (ii) of Ehrhart’s Theorem. Thus P*“"*(—1,H) = (—1)"*".
For A = —3, we obtain

Deven+(~3’H) — (_ 1)!’(H)D€1Wﬂ(3,H)' (39)

Consider a non-trivial potential difference dce 2¢*"(H). Let H' be the subgraph of
H formed by the edges on which the potential difference dc is zero. If H/H'’ is the graph
obtained from H by contracting the arcs of H’, then dc(a) = 2 for all arcs of H/H'.
The potential difference §c sums to 0e Z on cycles of H/H’ by Lemma 3.1, so any cycle
of H/H' has equal numbers of arcs of positive and negative orientation. Thus the
cycles of H/H' are all of even length, so H/H’ is bipartite. Let [S,S’] be the
corresponding partition of the vertices of H/H’, then [, %] forms a cocycle of H

such that any directed cycle of H has equal numbers of its arcs oriented from both &
to ¥ and ¥ to &.

Conversely, let [%, %] be a directed cocycle of H, and let ¢ be the function that
assigns the value two to the arcs of [, '] and zero to the remaining arcs. The signed
sum of 8¢ on any cycle of H is zero, since either it contains no arcs of [¢, &'} or it has
equal numbers of arcs directed from ¥ to & and &’ to . Hence dce 23(H). (]

References

Arrowsmith, D. K. and Essam, J. W. (1977) Percolation Theory on Directed Graphs. J. Math.
Phys. 18 (2) 234-238.

Arrowsmith, D. K. and Essam, J. W. (1990) An extension of the Kasteleyn—Fortuin formulae.
Phys. Rev. Lert. 65 3068-3071.

Arrowsmith, D. K. and Jaeger, F. (1982) Enumeration of Regular Chain Groups. J. Comb.
Thy. B 32 (1), 75-89.

Arrowsmith, D. K., Essam, J. W. and Mason, P. H. (1991) Vicious walkers, flows and directed
percolation. Physica A177 267-272.

Biggs, N. L. (1974) Algebraic graph theory, Cambridge University Press.

Bondy, J. A. and Murty, U. S. R. (1976) Graph Theory with Applications, Macmillan.

de Magalhdes, A. C. N. and Essam, J. W. (1989) Z(A) model and flows: subgraph break-
collapse method. J. Phys. A: Math. Gen. 22, 2549-2566.

de Magalhdes, A. C. N. and Essam, J. W. (1990) n-component cubic model and flows-subgraph
break-collapse method. J. Stat. Phys. 58 1059-1082.

Ehrhart, E. (1967) Demonstration de la loi de réciprocité pour un polyédre entier. C.R. Acad.
Sec. Paris, 1.265.

Essam, J. W. and Tsallis, C. (1986) The Potts Model and Flows I: The pair correlation function.
J. Phys. A: Math. Gen. 409-422.

Hoffman, A. J. and Kruskal, J. B. (1970) Integral Boundary Points of Convex Polyhedra. Ann.
of Math. Studies 38, p. 223, Princeton Univ. Press, Princeton, N.J.

Tutte. W. (1954) A contribution to the theory of chromatic polynomials. Canadian Jnl. Math.
5 80-91.

Whitney. H. (1932) The colouring of graphs. Ann. Math. 33 (2) 688-718.






