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Abstract

We study the polyhedral structure of a new model for various bottleneck resource allocation
problems in which the resource consumption is determined by the activity with the maximum
usage. The model, called the mixed vertex packing problem, is a generalization of the ver-
tex packing problem having both binary and bounded continuous variables. We give valid
inequalities and separation algorithms for them. We present computational results that show
the effectiveness of the valid inequalities in solving mixed vertex packing and general mixed 0-1
integer problems.
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1 TIatroduction

We present a new model for various bottleneck resource allocation problems in which the resource
consumption is determined by the activity with the maximum usage. We provide examples arising
in the telecommunications industry, in equipment leasing, and in solving general mixed 0-1 integer
problems. The model, called the mized vertexr packing problem (MVPP), is a generalization of the
vertex packing problem having both binary and bounded continuous variables. Formally, MVPP
is given by

max{cz + dy: (z,y) € MVP},
where
MVP={zeB",yc R":z;4+2; <1, (i,j)€E

a;x; + Yk S Uk, (Zak) EF
0<yr<ux, keM}

We use N to denote the index set of binary variables with n = |N{, and M to denote the index
set of continuous variables with m = |M|. Inequalities over E C {(¢,7) : i, € N} are called
binary edge inequalities, whereas the inequalities over F C {(i,k): ¢ € N,k € M} are called mized
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edge inequalities. We assume uy < oo, for all k € M. In order to eliminate uninteresting cases,
we will also assume that ux > 0, otherwise yx = 0. Furthermore 0 < a;;, < ug, otherwise either
a;xt; + yr < ug is redundant or z; is zero in every feasible solution. Without loss of generality, we
assume that ¢; > 0 for all : € N, and d; > 0 for all K € M, otherwise there is an optimal solution
with z; = 0if ¢; < 0 and y; = 0 if dx < 0. Observe that an arbitrary inequality az; + byr < ¢ with
nonnegative data can be put into the form a;rz; + yx < uk, by writing it as (ux — %)z + yp < uk
after reducing ug to ¢/b, if ux > ¢/b. Similarly, az; + bz; < ¢ can be put into the form z; + z; <1
if a +b > ¢, otherwise it is redundant. Also note that a simple variable upper bound constraint
¥i < wu;z; can be viewed as a special case of the mixed edge inequalities by complementi-g the
binary variable ;.

Since there are two variables in each constraint, MVP can be represented by a graph G =
(NUM,FEUF) and weights on F to denote the conflicts and on M to denote the upper bonnds. G
is called a mized conflict graph because the edges and the weights represent the conflicts between
pairs of variables. In a mixed conflict graph, there are two types of vertices: binary vertices for
binary variables and continuous vertices for continuous variables.

Although the NP-hard vertex packing problem is one of the most studied problems in combi-
natorial optimization ([5, 7, 10, 11, 12, 14] to mention a few), the mixed vertex packing problem
apparently has not been studied in the literature. Johnson 8] shows how to strengthen simple
variable upper bound constraints in the presence of binary edges and gives a special case of the
mixed clique inequalities we derive in the sequel. Qur treatment here is more general and extensive.

MVPP can alternatively be written as

m}z}x;cl-}— kg}\;dk(uk I?e%a,k), (1)
where P is a packing in G(N), the subgraph induced by N. Since the term ), )sdyug in (1) is a
constant, MVPP can be used to model various bottleneck resource allocation problems, in which
the resource consumption is determined by an activity with maximum usage.

A direct application of MVPP comes from the telecommunications industry. Consider a com-
munications company that has a set of transmitters M, each used to provide a different type of
service to a set of possible customers N. The amount of resource used by a transmitter is deter-
mined by the farthest customer that the transmitter serves, since all the customers closer to the
transmitter share the resource used to provide service to this customer. The company is faced with
the problem of deciding which customers to serve so as to maximize the sum of profits from the
customers minus the cost of resources used, which is a linear function of the broadcast diameter.
In Figure 1, the circles denote the customers and the squares denote the transmitters.

Another application arises in equipment leasing. Planning to lease equipment to be used for a set
of alternative projects requires balancing the tradeoff between the leasing cost and the profits from
the projects. Clearly, the capacity of the equipment should satisfy the maximum requirements
by the projects during the leasing horizon. Timing and other constraints may lead to pairwise
conflicts between the projects. Assuming a linear cost for acquiring capacity, this problem can also
be modeled as a mixed vertex packing problem.

Yet another motivation for studying this problem is that one can derive a mixed vertex packing
relaxation for a general mixed 0-1 integer problem (MIP), just as one can derive a vertex packing
relaxation for a pure 0-1 integer problem, see for example [2, 4]. Therefore, valid inequalities for



Figure 1: Telecommunications problem.

MVP are also valid for the original problem. We present a small example illustrating the derivation
of the MVP relaxation.

Example. Consider the mixed 0-1 integer set

S={zeB' yeR}: 3z +6zs 4+ <9
13z3 ~2y1 +2y» +3y3 <6
2z, +5z; +3x3 <6

<9 <10, y3<8 }.
The following logical implications, which can be found by probing [13], are valid for S:
z1=1= z:=0,y1 <6= y2 <9, y3 <6,
zo=1= z;=0, z3=0,
z3=1= 172:0,3/12-;-_/1'4:0,

s=1= y‘§3:>1‘3:0,y256»y3§4

Writing these implications as linear inequalities gives us a packing relaxation of S:

MVP={zeB'yeR: 3z +y1 < 9
6zs +u1 < 9
1z, +y2 < 10
4z +y2 < 10
2z, +ys < 8
4z, +tys < 8
1 +Zo ) S 1
ry +r3 < 1
Z3 +T4 < 1 3

Figure 2 shows the mixed conflict graph for the packing relaxation of S in our example. We use
circles to denote the binary vertices and squares for the continuous vertices. Note that there are
no edges between continuous vertices.

This paper is organized as follows. In Section 2, we study an important special case in which
the binary vertices form an independent set. We show that, in this case, the mixed vertex packing
problem can be polynomially reduced to a vertex packing problem on a comparability graph and
MVPP is solvable in polynomial time. In Section 3, we study the polyhedral structure of the
mixed vertex packing polytope. We derive several classes of valid inequalities for this polytope and



Figure 2: Mixed conflict graph of S.

give separation algorithms for them. Furthermore, we show how to strengthen these inequalities
through coefficient improvement and lifting. In Section 4, we present computational experiments
that indicate the effectiveness of the new valid inequalities in solving the MVPPs and general 0-1
MIPs. Finally, in Section 5, we conclude with some extensions currently under investigation.

The following notation will be used in the remainder of the paper. Forie NUM

Ni)={jeN:(i,j)e EUF}, M(G)=4{keM:(i,k)e F}.

Thus for vertex 4, N(t¢) denotes the set of binary vertices adjacent to i, whereas M(¢) denotes the
set of continuous vertices adjacent to 1.

2 The case of independent binary vertices

Since the vertex packing problem is a special case of MVPP, MVPP is NP-hard, in general. However,
in this section, we will show that when the binary vertices form an independent set, i.e. E =
0, MVPP is polynomially solvable. Recall that this is the situation for the telecommunications
example given in Section 1. Since E = @, the conflict graph is bipartite. We show that, in this case,
MVPP is polynomially solvable by reducing MVPP to a vertex packing problem on a comparability
graph.

The possible values of y;, ©+ € M, in an optimal extreme point of conv(MVP) are u; and
u; — a;;, j € N(7). For simplicity of notation, we assume that for ¢ € M all a;; are distinct. We
construct a graph G’ = ({V,V3,V,,...,V,}, E'), where v; € V if and only if j € N; vy € Vi
if and only if %y is a value y; can take on in an optimal extreme point; and (v;,vik) € E’ if
and only if a;; + gix > u;. We index vk, k£ = 0,1,...,|N(3)| in nondecreasing order of §;x. So,
Yio = u; — maX;en(;) aij and g n(y| = wi. Furthermore, (vix,v;) € E' for all 4, k,1, and (v;,v;) € E’
if and only if (¢, 7) € E. In other words, we represent all possible values y; can take on in an optimal
basic feasible solution with a clique on V;, and we have an edge between a vertex v; in V and a
vertex v representing a value g; for y; if and only if y; cannot have value f;x when z; is one. In
Figure 3, we give a small example to illustrate the reduction. Let w’ : V(G’) — IRy be a weight
function defined as w'(vik) = d;fix, vik € V; and w'(v;) = ¢j, v; € V. Due to the construction of
G’ and the weight function, for every optimal mixed vertex packing on G there is a corresponding
optimal vertex packing on G’ with the same value, and vice versa. Observe that the reduction is
given for the general MVPP.



Figure 3: Reduction to vertex packing problem.

A graph is a comparability graph if its edges can be oriented to obtain a transitive acyclic
directed graph D = (V, A); that is, an acyclic directed graph with the property that if (u,v) € A
and (v,w) € A then (u,w) € A.

Theorem 2.1 If the binary vertices of G are independent, then G’ is a comparability graph.

Proof. G is a comparability graph with edges oriented from N to M. We use the same orientation
for G, i.e. we orient the edges between v; and V; towards V;. Then we orient the edges in clique
G(V}) 'upwards’, thus (v;x,v;1) is a directed arc if and only if §;x < gji-

With this orientation, G’ is a comparability graph. Observe that all edges in the cutset
6(V;), j € M are directed towards V;. Now, suppose (a,b),(b,c) € E’. Since b has an incoming
arc and an outgoing arc,b ¢ V. So b € V}, for some j € M. If (a,b) = (vi, vjk), (vi,v;1) € E' for all
[ > k and therefore (a,c) € E'; else (a,b) = (vjk, v;;) but since V; is a clique, (a,c) € E'. O

Corollary 2.2 The mixed vertex packing problem can be solved in polynomial time if the binary
vertices are independent.

Proof. The weighted vertex packing problem is solvable in polynomial time on comparability
graphs [6]. O

Note that in the proof of Theorem 2.1, we only used the bipartiteness of G. Therefore Theorem
2.1 extends immediately to general bipartite graphs. Hence, we have the following result.

Theorem 2.3 The mixed vertex packing problem can be solved in polynomial time on bipartite
graphs.



3 MYVP polytope

In this section, we study the facial structure of the mixed vertex packing polytope, conv(MVP),
and derive valid inequalities for it. Let LMVP be the linear relaxation of MVP. Thus,

LMVP = { (z,y) € R™*™ :

v +z; <1, (i>j)€E (2)
aikZi + Yp < uk, (3,k)€F (3)
0<z: <1, ie N (4)
0<wye<up, ke M. (5)

Below we summarize some basic results.

Proposition 3.1
1. Conv(MVP) is full-dimensional.
2.2;20,1€ N and yx > 0, k € M are facet-defining for conv(MVP).

3. 2; <1, i € N defines a facet of conv(MVP) if and only if N(i) = § and a;; < uy for all
ke M(i).

4. yk < up, k € M defines a facet of conv(MVP) if and only if M(k) = 0.

5. 2i+x; <1 defines a facet of conv(MVP) if and only if N(i)NN(7) = 0 and min{a;, a;c} < ux
for all k € M(i)U M(3).

6. aixzi + yx < uk defines a facet of conv(MVP) if and only if N(i)N N(k) = § and a; =
maneN(k) a]‘k.

In the following theorem, we characterize the graphs for which the linear relaxation LMVP is
sufficient to describe conv(MVP).

Theorem 3.2 Inequalities (2), (3), (4), and (5) are sufficient to describe conv(MVP) if and only
if G is bipartite and a;x = ax, for alli € N(k), forall k € M.

Proof. [=] Suppose a;x < aji for some k € M. In Proposition 3.4 we show that (ajk — aix)z; +
aik®; + Yr < ug is valid for conv(MVP) and it dominates a;rz; + yx < ux. Now, suppose a;; = ay,
for all : € N(k) for all k € M but G is not bipartite. In that case, consider the odd cycle given in
Figure 4. It is easily seen that (%, %, %, -li,u — 2) is a fractional basic feasible solution of LMVP if
u is the upper bound of the continuous variable.

[<=] Define y; = yx/ax, and rewrite (3) as z;+y, < ui/ak. Since G is bipartite, the {0, 1} constraint
matrix of (2), (3), (4), and (5) is totally unimodular. Let B be a full-column-rank submatrix given
by the inequalities that define a basic feasible solution. Let b be the right hand side of these
inequalities and define b; to be the integral vector obtained by rounding down the elements of b
and bp = b — b;. Since B! is integral, so is B~1b;. To see that B~1bp has entries equal to zero
for all the z variables, observe that the edge inequalities of B represent a forest. Otherwise there



Figure 4: Fractional basic feasible solution.

is an even cycle and B does not have full column rank. Then, in each connected component, there
is a variable with a tight bound since the number of edge inequalities is one less than the number
of variables. If some z; has a tight bound (either lower or upper) or if some y; is tight at its upper
bound then B~bp has 0 entries for all z; in that component. Variable Y, can be tight at its lower
bound only if £ is an isolated vertex or if ax = uy, in which case B~1br has 0 entries for all z; in
that component as well. Note that if ax < ux and z; + y; < uk/ax is a tight edge inequality of
a component, then y; # 0 in a feasible solution since y; = 0 would imply z; = ux/ax > 1 for all
j € N(7). Therefore, B~'b; + B~ 'bp is integral for all the z variables. [J

3.1 Valid inequalities

There is a natural vertex packing relaxation of MVP, defined on the subgraph induced by the binary
vertices. Valid inequalities for this vertex packing relaxation are valid for MVP as well.

Proposition 3.3 Let MVP(N) denote the projection of MVP onto the space of binary variables.

If
Z oz, < (6)

€S
for some S C N is a valid inequality for MVP(N), then it is valid for MVP as well. If (6) is

facet-defining for MVP(N), then it is also facet-defining for MVP if for all k € M, there exists a
packing P C § satisfying (6) at equality with a;, < uy for all 1 € P, N N (k).

Proof. The inequality is valid for MVP since a;x > 0 for all i and k. If (6) is facet-defining for
MVP(N). there exists n affinely independent points in MVP(N) satisfying (6) at equality. Let e;
be the 7' unit vector. These n points together with 2iep, € T (g — max;ep, aix)ex, for k € M,
make up n + m affinely independent points in {(z,y) € MVP: 3, cbiz; =r}. O

For a vertex k, a subgraph consisting of vertices k and T C N(k) and the edges between k and
T, is said to be a star of vertex k. Now, we give the first class of new valid inequalities for MVP.

Proposition 3.4 Fork € M, let T = {i1,i3,... 4} be a subset of N(k) such that a;,_,x < @i
for j = 2,3,...,t. Then the star inequality

Z ik + Yr < ug (7)
€T



with

ik = Qigk,
dijk =0k — Qi ks = 2,3,...,1,

is valid for conv(MVP).
Proof. Let (z,y) € MVP, § = {t € T : Z; = 1} and j* = maxi<;j<¢{j : ¢; € S}. Then

> @i+ e < Y ik + (uk — Gipuk) < Gk + (Uk — 0ijk) = ug. QED

1T €S
Theorem 3.5 The star inequality (7) is facet-defining for conv(MVP) if a;,x = max;en (k) ajk, and
N@G) =0 forallieT.

Proof. Suppose N(k) = {1,2,...,1} is indexed so that ajx < agx < ... < ai. In order to
show that (7) is facet-defining, we will give n + m linearly independent points in {(z,y) € MV P :
2ieT 2ikT: + Yk = ux}. Consider

Pk = Ur€j.
pi = uper + uie;, 1 € M\ {k},
g = uker+e, 1€ N\N(k),
w;, = Z e; + (ux — aix)ex, i € T,
JEN(k):j<i
5 = Z €; + (uk - aj(i)k)eka t € N(k) \ T’

JEN (k)3 <5 (), 541
where for ¢ € N(k)\ T, j(i) = mini¢;<i{é; € T : aix < ai;x}. Note that j(i) is well defined since
@ik = MAX;eN(k) @yk- Suppose these points satisfy

Zﬁz'$i+ Zmyz‘ = T,. (8)
EN {eM

By comparing pp with p;, we see that m; = 0, i € M \ {k}. Similarly, 8; = 0, i € N\ N(k).
Furthermore, by comparing 2; with w;;), we see that §; = 0, i € N(k)\T. Then, (8) is of the form

> Bixi+ Ty = 7, (9)
€T
From pj. we have 7 ux = 7, and from w; , we have B, + Tk (ur — @i k) = T, = Truk or Bi; = @i kTk.
Now, suppose f;, = (aix — @i,_ k)7 for all b < j — 1, then from w;;, we have mya;,_, + B;, +
Ti(uk — ai,k) = Trug or B = (a;,x — a;,_,k)7k. Then, (9) is of the form

t
Z Tel(@isk = @i,y k)i, + ThYk = Trug
=1

with a;,) defined to be 0. This proves that the points given above define (7) up to a scalar, hence
they are linearly independent. Furthermore, since the origin is a feasible point of MVP and ux > 0,
(7) induces a proper face of conv(MVP). O



Observe that the mixed edge inequalities (3) are dominated by the star inequalities (7). In Sec-
tion 2, we showed that MVPP is solvable in polynomial time if the binary vertices are independent.

In this case, the star inequalities together with the upper and lower bound inequalities give the
convex hull of MVP.

Theorem 3.6 If E = (), inequalities (4), (5), and (7) are sufficient to describe conv(MVP).

Proof. Given an arbitrary objective function (c,d) # (0,0), let (Z',7'), | € O be the optimal
solutions to MVPP. V"> will prove the theorem by showing that there exists an inequality among
(4), (5), and (7) that s satisfied at equality for all I € O. If ¢; < 0 for some j € N then x =0
for all l € O. Therefore, in the following we assume ¢; > 0. Similarly, if dy < 0 for some k eEM
then yk = 0 for all I € O. Furthermore, we can remove k € M such that d; = 0 and j € N such
that ¢; = 0 from the graph and restrict our analysis to the remaining subgraph. In this subgraph,
if there is an isolated vertex, the result follows, since the upper bound constraint is satisfied at
equality for all of the optimal solutions for that vertex. So, for the rest of the discussion, we can
assume cj,dy > 0 and N(7) # 0 for all € N U M. To simplify the argument, we will also assume
that for k € M, a;i,j € N(k) are distinct.
We define S' = {j € N : :ié = 1}, 1 € O and for an arbitrary t € M, let §{ = S'N N(2). I
S{ =0 for all [ € O, we are done since 7! = u, for all | € ©. Otherwise, let T = {7eN@):j=
ATEMAX) e g1kt for I € O}. Furthermore, we define 77 = T U argmaxye n(4)@kt- We claim that the
star mequahtV

Z g+ < Uy (10)
keT’

is satisfied at equality for all [ € O. Consider some p € O and let j = argmaxyesray:. Inequality
(10) is satisfied at equality by (z?, §?) if and only if

Z Gkt = Qj¢

k€T :a<ayt

since d; > 0 and 3] = u; — aj;. Therefore, (10) has positive slack for (zP, yP) if and only if there
exists 1 € T such that a;; < aj; and ¢ ¢ ST. Suppose there is such an ¢ € T. By definition of T
there is an optimal solution (&9, ?) such that i = argmaXe g1 t-

In order to arrne at a contradiction, we construct a solution with a larger objective value then of
(zP,5F). Let 2(8) = ¥ gk — ZreM(’ maxies akr for § € N. We show that z(5P U 57) > z(S7).
Let A = §Pn S" M? = {r € M : maxkess akr > maxgesr Ak}, MP = M \ M. Then, we have

2(SPUS?) = ch—deaxak,+ E ck—Zd max Gk,

ax.
kesp  reMr kesn\k  reMo FEST\K
= 2(87)+ E ci — Z dr( max ak,—maxakr)
SI\K keSp
kE€SI\K reMa
> 2(87)+ Z ck — Z d. (inaéxakr —m:ﬁ(ak,)
q
kESI\K reMs €



However,

Z cr — Z d, (maxakT - ma;i(ak,») > Z cr — Z d (maxakr —maxakr)

keSI\K reMq keSI\K reM
= 2(5%) - 2(K)
> 0.

The strict inequality holds because maxiegs akr > maxkek axr for all 7 € M (K C §9), and
di(maxiese Gk — Maxkex axe) > 0. Note that t € MP? since, by assumption, a;; < aj;. Also, since
59 is optimal, 2(S57) > 2(K'). Therdfore it must be the case that 2(5?US?) > SP, which contradicts
the optimality of 57. O

The next two classes of inequelities are generalizations of the clique and odd cycle inequalities
(11, 12] for the vertex packing problem, respectively.

Theorem 3.7 If K C N(k), k € M induces a cliqgue then the mized clique inequality

> aikzi+ oy < u (11)
€N
is valid for conv(MVP). It is facet-defining for conv(MVP) if and only if for all j € N(k)\ K, there
is1€ K\ N(j) such that aj; < a;.

Proof. The validity of (11) is obvious since at most one of the variables in K can have value one.
[=] Suppose for some j € N(k)\ K, ajx > ajx for i € K\ N(j). Then ek Giki + (ajk —
maX;e K\N(;j) @ik)T; + Yk < Ug is valid and dominates (11).

[«] Let i(j) = argmax;e g\ n(j)@ik for j € N(k)\ K. Then e; + (ux — aix)ex, i € K, ey + (v~
a)kek+ €5, 7€ N(k)\ K, ej + urex, j € N\ N(k) and uger + uie;, ¢ € M\ {k}, urex are n+m
linearly independent points of {(z,y) € MVP : 37, 1 aix; 4+ yp = ux}. O

Theorem 3.8 Let C C E U F be the set of edges of an odd cycle in G, Cg be the set of binary
vertices on the cycle, and Cc the set of continuous vertices on the cycle. The mized odd cycle
inequality

S+ Y % k)%+ S wfal < (50~ [Ceh + Y /el (12)

JECE keEM, keCe keCe

is valid for conv(MVP), where a}., a2 are the weights of the incident edges to k € C¢ in C, with
ap < a? and M; = {k € M(j)NCc :a? = a;}.

Proof. We claim that the left hand side value of (12) is maximized by maximizing the number
binary variables with value one on the cycle. To see this, consider k¥ € C¢ and its adjacent vertices
on the cycle, k; and k; with edge weights aj, az, respectively. We analyze the maximum value £

a?-a
of yr/a) + a5, + (1 + —Eal—}‘)zb. There are four cases:
k
Case 1: (24, =0, 24, =0) L =%

k

. —al
Case 2: (zg, = 1, 24, = 0) L:_’il.lz‘it+1=%11:

10



. ug—a? a?—al
Case 3: (zk, =0, z, = 1) E:kT}c&+1+_EE}TE=§§

u ‘(12 ﬂ.2—“(l]
Case 4: (21, =1, 2, =1) L = Jﬁ—h+2+—h{h:%§+l'
Note that £ is constant in all cases except when zy, = g, = 1. Therefore, the left hand side of
the inequality is maximized by maximizing the number of binary variables at value one on the cycle.
Observe that at most JQ|2—_1 binary variables can take value one on the cycle and we may assume

that every continuous vertex is incident to at least one binary vertex having value one. Moreover,

2_ 1
for cases 2, 3, and 4, we have the maximum value of y/a} + “s5kg,, = “ — 1. Therefore
» Yy Y k al 2 a} b)

2 1 2 _ .1
Z(1+ Z akaiak)xjﬁ- Z ye/ay = Z T+ Z z (aka ak)mj-i- Z yr/ak

1
j€CB keM, keCe J€Cp k€Ce j:keM; k keCe
1
< SiCt=-1+ Y w/al - |Col
keCce

1
= 5CBl = 1Ccl = 1) + > w/aj,
keCc

which is equal to the right hand side of (12) since in an odd cycle |Cg| — |C¢| is always positive
and odd. O

The odd cycle in Figure 5 has a single binary edge. In this example, 1+ %xz +2z3+ %yl +y < g
is a mixed odd cycle inequality.

Ii

I3 y153

Figure 5: Odd cycle of a mixed conflict graph.

Proposition 3.9 The mixed odd cycle inequality (12) is facet-defining if G is a chordless odd
cycle.

The proof is similar to the one for the chordless odd cycle inequality for the vertex packing problem
and is given in [1].

Example (continued). In our example the valid star inequalities for MVP (hence for §) are

3z, +3x4 4y <9
bzs +y1 <9
Ty +3z4 4y < 10
4z +y2 < 10
2z +2r4 +y, < 8
4rs +y. <8



and the valid mixed odd cycle inequalities are

Ty +r2 +r3 224 +%yl < 4
zy Hxy +r3 +4ry 4y, < 11
Ty +xro Hr3 +3z4 +%y3 < 5.
Although MVP is a relaxation of §, some of the basic {easible solutions of the linear relaxation of S,
SL, may not be feasible for the linear relaxation of MVP, MVPL. For example (%, 1,0, %, 7,10,0) is
a basic feasible solution of SL but is not in MVPL. It is cutoff by the edge inequalities z1 + 2, < 1,
1+ y2 < 10, and 4z4 + yo < 10. (14—9, %, 14—9,0, %‘:’, 10,0) is a2 Dasic feasible solution of SL N MVPL
and is cutoff by 21 + 29+ 23+ 424+ y2 <11 and by 27 + x4+ 32 < 10. O

3.2 Separation

In this section, we discuss the separation problems for the inequalities derived in the previous
section. Given a point (z,y) € R™™, we are interested in finding a valid inequality violated by
this point.

Theorem 3.10 The separation problem for star inequalities (7) can be solved in polynomial time.

Proof. For k € M, without loss of generality, suppose N(k) = {1,2,...,} is indexed so that
a1p < azp < ... < aip. We will reduce the separation problem to a longest path problem on an
acyclic directed graph with /4 1 layers. The graph has a layer for each variable z;,i € N(k) and an
additional layer “0”. The vertices in layer 4, 1 < ¢ < [, represent all possible sums of coefficients of
r1 to x; in a star inequality. Layer 0 has a single vertex and represents the “zero” coefficient. Since
the sum of all the coefficients in a star inequality is equal to ajx, layer [ has a single vertex as well
representing coefficient aj;. Arcs from layer i — 1 to 7 represent possible coefficients for variable z;.
From a vertex representing sum s at layer ¢ — 1 there are exactly two arcs to layer ¢. The first one
is to the vertex representing sum s at layer ¢, the second one is to the vertex representing sum a;.
The first arc is for coefficient 0 and the second arc is for coefficient a;; — s.

With this construction, if all a;; are distinct, there are 7 + 1 vertices in layer i, 0 < i < { and
a single vertex in layer I, which gives a total of I(l 4+ 1)/2 + 1 vertices and {2 arcs. Furthermore,
there are exactly 2/~1 different directed paths from layer 0 to layer [, each representing a particular
inequality given by (7). If a;—1x = a;, the number of vertices in layers i — 1 and ¢ are equal; hence
the number of arcs from layer ¢ — 1 to layer ¢ is one less than otherwise.

Given (Z,7y) € R™ ™, we assign a weight of ¢Z; to an arc representing coefficient ¢ of variable

z; in (7), and a longest path from layer 0 to layer [ corresponds to the inequality with the largest
left hand side for (7). O

Example. Consider

S= {(z,y)eB xRy : 1lz;+y<10, 225 +y < 10,
S5z34+y <10, Tes+y <10 }.

12



0 1 2 3 4
0 0 0 0
I%I 1
2 2
5

7

Figure 6: Layered directed graph of S.

We show the layered directed graph of S in Figure 6. Each path from layer 0 to layer 4 represents
one of the star inequalities below:

Ty 429 +3r3 +2z4 4y <10
2z +3x3 +2z4 +y <10

T +4r3 +2r4 +y <10
2z4 +bzy +y <10

dr3 42z4 +y <10
Tzy +y <10

Exploiting the fact that arcs representing coefficient zero have weight zero, we have the following
simple ©(I?) algorithm to separate star inequalities (7).

Algorithm 1 Separation for star inequalities

1: 7g — 0

2: for j =1to!/do

3 Moy — MaXia <oy, Tay + (@jk — Qik)T;

end for

5 if m4, + yx > ui then

6:  star inequality, defined by a longest path, is violated
{

8

9

A

4:

. else

:  no star inequality is violated
. end if

Theorem 3.10 together with Theorem 3.6 provide an alternative proof of polynomial solvability
of MVPP for the independent case. Therefore, the separation algorithm leads to an alternative
polynomial time algorithm based on linear programming for the problem in this case.

The separation problem for mixed clique inequalities is equivalent to solving a weighted maxi-
mum clique problem for each k € M on the subgraph induced by N (k) and therefore is NP-hard.
Given (Z,7) € IR™™ a most violated mixed clique inequality can be found by solving

keM | KCN(k) *

max max kT + Yk
JEK
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where G(K) is a clique. It may be feasible to solve this separation problem by enumeration for
small graphs since the search for cliques is restricted to adjacent vertices of a cingle continuous
vertex.

Theorem 3.11 Suppose a;j; = ay, for all j € N(k), for all k € M. Then the separation problem
for the mixed odd cycle inequalities (12) can be solved in polynomial time.

Proof. Consider inequality (12) when weights of all the edges incident to a continuous vertex k
are the same, say a;,

Y wit Y wlae < 50081 1Col - 1)+ Y uk/a (13)

jECB kECc kECC

We can rewrite (13) as

Sa-2p+ Y (@%;—3”“—)—1)21. (14)

J€Cp keCc

Then, given (z,y), finding a most violated mixed odd cycle inequality is equivalent to finding a
minimum weight odd cycle on a graph with edge weights

. l_j-i_;ik’ if’i,k‘EN,
Wk) = wsB g ifie Nke M.

ak

Observe that for a point (Z,7) € LMVP, w(i,k) > 0 for all (i,k) € EU F. Since there is a
polynomial time algorithm to find a minimum weight odd cycle on a graph with nonnegative edge
weights [7], the separation problem is solvable in polynomial time. O

3.3 Strengthening star inequalities

In this section, we present a procedure for strengthening star inequalities when the binary variables
appearing in the inequality are not independent. A strengthened star inequality has the form
ZjeT a;kT; + yr < ug with @jx > @i for j € T. The procedure begins with a star inequality (7),
and then the coeflicients are increased iteratively in increasing order of a;;,7 € T.

Proposition 3.12 Let ZJ-GT a;kT; + yr < ug be a strengthened star inequality such that for some
1€ T, a;r = ak for j € T with ajp > Qi and &jk > Gk for j € T with a;r < Q. Then the
coefficient of variable x; can be increased by

(k= Y )"
j€S
where § = {j € T\ N(7): ajr < a;x} and at = max(a,0).

Proof. Let §; denote the increase in the coefficient of z;. For the inequality to remain valid for
MVP, we need

6 < wuyp — max @il + . 5
e (z,y)EMVPr=1 JEZT jkTj T Yk (15)
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Let U C T be the binary variables that have value one in an optimal solution to the right hand
side of (15). Furthermore, let @ = max;ey ajr. Then

max E a;.T; + Uk < E a i+ E a;r + ug — a.
(ea)EMVPa=1 | & FEI T Y A ?
JET JES JEUN\S

Since EjeU\S a;k < @— a;k, the result follows. O

Example. Consider the mixed conflict graph given in Figure 7. One of the star inequalities is
1+ 20+ 323+ 224+ y < 10.
Increasing the coefficients of the star inequality in the order 1, 2, 3, 4 we obtain

21+ 220+ 323+ 424+ y £ 10,

Figure 7: Strengthening star inequalities.

3.4 Sequential lifting

When the inequalities described previously are not facet-defining, we can make them stronger
through lifting. We start with examining the lifting of a continuous variable. Let

E ax; <7
€S

be a valid inequality for MVP(N) and consider lifting a continuous variable y;. Let a; be the
coefficient of y; in the lifted inequality. In order for the inequality to be valid, we need

- Eies QT

ar < min{r " :(:c,y)EMVP,yk>O}.
k

Proposition 3.13 Let ) ;. so;z; < r be a valid inequality for MVP(N). If S is a subset of N (k)
such that a;;, = uj for all 1 € S then

; T
E T+ —yr <1
et U
1€ES

is a valid inequality for MVP.
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Next, given a valid inequality of the form, Y .. s 0iz; + yx < ug, § C N(k), we consider lifting
the binary variables in N(k)\S. For S C N(k)and j € N(k)\S,let P be the collection of packings
that contain j in the graph induced by the vertex set S U {j}. Let

Z Q:Ti + Yk < Uk
€S

be a valid inequality for MVP and consider lifting binary variable z; € N(k)\ §. Let a; be the
coefficient of z; in the lifted inequality. In order for the inequality to be valid, we need

a; < oug - max E ;T + Yr
(z,y)EMVPz;=1 oy
1

or equivalently

a; < up ~ max _S_ a; + mln{u;C — aik}
PeP
1€Pi#;

= min { maxa;; — E «;
PeP | i€P ‘.
1€EPi#]

Proposition 3.14

1. If S € N(j) then the maximum lifting coefficient of z;, minpep {ma,x,ep aik — EieP,i;ﬁj ai}
is equal to ajy.

2. Forj € N(k)\S,ifa; < aji for alli € S then aj; — maxpep Zlepz;éj a; gives the maximum
lifting coefficient.

Now we give a class of mired odd wheel inequalities that can be obtained by lifting a mixed odd

cycle inequality. The proof of the next proposition is a simple application of the previous results
on lifting.

Proposition 3.15 Let C = (CB,C’C) be a mixed odd cycle. Then the mized odd-wheel inequality

Z 1+ Z ‘TJ+ Z yk/ak-{-awzw < L@_%_l_cilj_{_ Z uk/a}: (16)

i€Ch keM, a keCe keCe

is valid for conv(MVP), where a},a? are the weights of the incident edges to k € C¢ in.C, with
ap <af and M; = {k € M(j)NCc : d} = a;;},

L[ e 4 S S ifw e N, € C N(w)U M(w),
’ LC—Bl:&J ifweM, Cg C N(w), aj; = u,for all j € Cp.
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The lifting coefficient in the mixed wheel inequality could be computed exactly due to the
special structure of an odd cycle. In general, computing a lifting coefficient is hard. Therefore, we
consider approximate lifting coefficients.

+
Proposition 3.16 Let P be defined as before. Then (ajk — maxpep ZieP,i;éj a,-) is an approx-
imation for the exact lifting coefficient.
Proof. Decomposing the minimization problem of the lifting function we have
+

min { maxa;; — Z o;
PEP | ieP

v

pipna oo~ ey O
i€Pi#i €r e ©F iepazs
+
= | a;x — max o;
ik T Pep Z Y
1€EPi#]
Equality follows since j € P for all P € P by definition of P. O

Proposition (3.16) suggests an easy way of generating valid inequalities by sequentially lifting
Yx < up with x;, © € N(k). Let iy,15,...,4 be an arbitrary ordering of N (k). Then
[
G2+ ye < ug

iy

J

is a valid inequality for conv(MVP) where the coefficients o, are calculated as follows:

+
()7’] = (ai]k - Z ah> (17)

hes

where § = {#1,4,...,4;_1}\ N(7;). We call inequalities generated this way lifted bound inequalities.
Note that both star and mixed clique inequalities are special cases of the lifted bound inequalities.
We obtain a star inequality when we assume N (i) = @ for all i € N(k) and we obtain a mixed
clique inequality when S = §. Lifted bound inequalities may be stronger than star and mixed clique
inequalities in case the star and mixed clique inequalities are not facet-defining. Also, observe that
a strengthened star inequality is a lifted bound inequality.

By exploiting the structure of G(S5), one can clearly, derive stronger lifted bound inequalities.
For example, if G(.5) is a clique, then @;; = @ik — MaXpes op. A simple modification to (17) allows
us not only to derive stronger lifted bound inequalities, but also to generate lifted mixed clique
inequalities. Let G(K') be a clique of G(S), then

+

@ip = |agx— Y ap —maxay | . (18)
heS\K

Note that if K is a singleton, the inequality is a regular lifted bound inequality.
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4 Computational experiments

In order to test the effectiveness of the valid inequalities derived in the previous section, we im-
plemented a branch-and-cut algorithm using MINTO (9] (version 3.0). MINTO is a customizable
software system that solves mixed-integer linear programs by a branch-and-bound algorithm with
linear programming relaxations. We performed computational experiments on two data sets. The
first set consists of randomly generated mixed vertex packing problems. The second set consists
of mixed integer problems from MIPLIB [3] for which violated star inequalities are generated. All
experiments were done on an IBM RS/6000 Model 590 workstation with one hour CPU time limit.

Our results on the mixed vertex packing problems are summarized in Table 1. Clique inequalities
on binary variables are certainly valid for MVP and MINTO generates them automatically. To
see the effect of the new inequalities, we compared the performance of a branch-and-cut algorithm
with clique, star and lifted bound inequalities against one with only clique inequalities on randomly
generated graphs with varying edge density and fraction of continuous vertices. We used the
algorithm given in Section 3.2 to separate the star inequalities. Once a violated star inequality is
found, it is strengthened as explained in Section 3.3. Given a fractional solution (Z,7), for each
continuous variable y, the lifted bound inequalities are generated by lifting its adjacent binary
variables z; in nonincreasing order of a;;Z;. If the resulting inequality is violated by the fractional
solution, it is added to the formulation. In Table 1, for each case we give the average duality gap
{(LPgap = 100 x _r%qp_) at the root node after all the valid inequalities are added, the number of
inequalities generated, the number of nodes explored, and the total CPU time elapsed in seconds
of five instances with 100 and 150 vertices. Observe that as the fraction of continuous variables
increases, MVPPs become easier to solve. Problems with 20% continuous vertices could not be
solved to optimality for densities 0.2 and 0.4 and 150 vertices by either algorithm. However, the
duality gap is reduced considerably with the addition of the new inequalities. For these problems,
since optimal solutions are not known, we use the best incumbent solution to report the duality gap
at the root node. We remark that in both cases the best incumbent solutions are found when star
and lifted bound inequalities are added. From these results, we conclude that the star inequalities
and the lifted bound inequalities are effective in strengthening the LP relaxations and in reducing
the number of nodes explored and the overall solution times.

vertices | density cont | LPgap «clqs nodes time | LPgap clgs stars Ift bnds nodes time
0.1 0.2 9.66 66 135 32 4.90 59 113 1 28 27

0.1 0.4 9.59 38 327 38 2.29 28 148 3 8 16

100 0.2 0.2 26.13 693 1380 277 16.57 299 530 14 152 170
0.2 0.4 13.39 69 77 26 0.47 35 160 24 2 8

0.4 0.2 46.86 1012 978 476 | 21.96 462 482 109 105 307

0.4 0.4 6.23 64 26 25 0.00 20 29 40 1 5

0.1 0.2 22.28 1009 5970 2811 16.47 502 480 16 1950 2365

0.1 0.4 11.25 166 1308 492 2.41 56 378 9 13 65

150 0.2 0.2 50.66 3481 5120 3600 { 3242 1652 2964 51 1384 3600
0.2 0.4 7.52 78 43 49 0.00 30 76 44 1 8

0.4 0.2 61.54 3161 1610 3600 | 30.47 1154 1184 308 255 3600

0.4 0.4 4.76 92 55 91 0.00 20 46 64 1 21

Table 1: Performance measures for MVPPs.
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Results on the second data set are presented in Table 2. In this table, we report the number
of star cuts generated, the duality gap at the root node, the percentage gap between the best
upper bound and the best lower bound at termination (endgap = 100 x 24=2Iby the number of
nodes explored in the search tree and the total CPU time elapsed in seconds. The addition of
the star cuts reduces the duality gap for the majority of the problems and decreases the number
of nodes explored for almost all the problems. Note that even for problems where there is no or
modest reduction in the duality gap, the performance of the algorithm improves after adding cuts.
For a few problems, even though the number of nodes explored decreased, the overall solution
time increased. This is because the addition of new constraints yields longer LP solution times.
Five problems could not be solved within an hour of CPU time; however for the hardest two of
those, mod011 and setich, the gap between upper and lower bounds at termination is reduced
significantly. For setich, we use the already known optimal value to report the endgap, because
no feasible solution was found by either of the algorithms within one hour of CPU time. We note
that no violated lifted bound inequalities were found for the MIPLIB problems.

without star cuts with star cuts
problem LPgap endgap nodes time | cuts LPgap endgap nodes time
bell3a 1.40 0.00 50347 531 4 1.39 0.00 38683 361
blend2 8.99 0.00 5535 105 | 112 8.99 0.00 4790 110
demulti 1.92 0.00 6569 127 36 1.46 - 0.00 5045 125
egout 9.94 0.00 205 1| 124 5.64 0.00 21 1
fixnet4 13.79 0.00 1056 44 7T 13.68 0.00 642 40
gen 0.04 0.00 529 24 26 0.04 0.00 182 13
gesa2 1.11 0.99 47137 3600 3 1.11 1.24 44855 3600
gesa2. o 1.12 1.25 41752 3600 9 1.12 1.18 35004 3600
gesa3 0.52 0.00 3409 308 6 0.52 0.00 3860 413
gesa3.o 0.52 0.00 7962 705 7 0.52 0.00 2049 267
Khb05250 10.31 0.00 3605 109 98 0.81 0.00 13 3
mod011 13.86 12.52 1126 3600 | 2200 7.35 6.06 766 3600
gneti 10.95 0.00 205 48 11 10.95 0.00 173 48
gneti_o 19.48 0.00 449 61 9 15.69 0.00 119 31
rentacar 5.11 0.00 131 338 67 5.11 0.00 107 399
rgn 40.63 0.00 2655 16 20 38.81 0.00 2661 18
rout 8.88 8.65 73702 3600 31 8.88 8.83 38419 3600
setich 35.61 33.19 25957 3600 | 148 2545 25.45 18600 3600
vpm2 18.11 0.00 195577 2815 16 16.96 0.00 1844387 3110

Table 2: Performance measures for the MIPLIB problems.
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5 Extensions

The reduction given in Section 2 does not preserve perfection, in general. A graph is said to be
chordal if every cycle of length greater than or equal to four has a chord, that is, an edge incident
to two nonconsecutive vertices of the cycle. A graph is perfect if the size of the largest clique (clique
number) is equal to the smallest number of vertex packings needed to cover the vertices (chromatic
number) for all induced subgraphs of the graph. Both chordal graphs and comparability graphs
are subclasses of perfect graphs [6]. Perfect graphs are one of the largest classes of graphs, on
wh, "h the vertex packing problem is known to be solvable in polynomial time [7]. However, neither
chcrdal nor comparability graphs are mapped to perfect graphs by the reduction. In Figure 8, G
is a chordal as well as a comparability graph, but G’ is not perfect since it has an odd hole (drawn
with dashed edges). Nevertheless, we conjecture that the mixed vertex packing problem is solvable
in polynomial time on these graphs and possibly on all classes of perfect graphs. We are currently
working on a primal-dual algorithm for the case of independent binary vertices.

Figure 8: Chordal and comparability graphs.

With the insights we gained from studying MVPP, we are also investigating how to use the
mixed vertex packing relaxation together with a single mixed integer knapsack inequality to obtain
stronger relaxations for general 0-1 MIP problems. It is well-known that any mixed integer inequal-
ity can be relaxed to one with only continuous variables. Since a variable upper bound constraint is
a special case of a mixed edge inequality, we can derive generalizations of the flow cover inequalities
[15] in this manner. To be more precise, we are interested in deriving strong valid inequalities for

E?Jz‘* ZyiSb

ieM+ iEM-
aikxi + yp < ug, (i,k)€ F.
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