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Abstract. Westudy the facial structure of a polyhedron associated with
the single node relaxation of network flow problems with additive vari-
able upper bounds. This type of structure arises, for example, in net-
work design/expansion problems and in production planning problems
with setup times. We first derive two classes of valid inequalities for this
polyhedron and give the conditions under which they are facet-defining.
Then we generalize our resuits through sequence independent lifting of
valid inequalities for lower-dimensional projections. Qur computational
experience with large network expansion problems indicates that these
inequalities are very effective in improving the quality of the linear pro-
gramming relaxations.

1 Introduction

The single node fixed-charge flow polyhedron, studied by Padberg et al. [9] and
Van Roy and Wolsey [12], arises as an important relaxation of many 0-1 mixed
integer programming problems with fixed charges, including lot-sizing problems
[4,10] and capacitated facility location problems [1]. The valid inequalities de-
rived for the single node fixed-charge flow polyhedron have proven to be effective
for solving these types of problems. Here we study a generalization of the sin-
gle node fixed-charge flow polyhedron that arises as a relaxation of network flow
problems with additive variable upper bounds, such as network design/expansion
problems and production planning problems with setup times. We derive several
classes of strong valid inequalities for this polvhedron. Qur computational ex-
perience with network expansion problems indicates that these inequalities are
very effective in improving the quality of the linear programming relaxations.
In a network design problem, given a network and demands on the nodes, we
are interested in installing capacities on the edges of the network so that the total
cost of flows and capacitv installation is minimized. If some of the edges already
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have positive capacities. the problem is called a network expansion problem.
In many applications capacity is available in discrete quantities and has a cost
structure that exhibits economies of scale {5,11]. The constraints of the mixed

integer programming formulation of the network expansion problem for a single
node are

Zyi-zyiﬁb (1)

ieM+ 1€EM-
¥i Sup+ Z ai;x;, i € M. (2)
JENG)

Inequality (1) is the balance constraint of a node with inflow (M*) and
outflow (M ~) edges and demand b. The continuous variable y; represents the
flowonedgei, i € M = M*TUM ™. Inequalities (2) are the additive variable upper
bound (AVUB) constraints on the flow variables. N (i) is the index set of binary
variables z; representing the availability of resources that increase the capacity
of edge i that has capacity u;. For muiti-commodity network expansion problems,
it is possible to arrive at this single commodity relaxation by aggregating the
balance constraints and the flow variables over commodities for a single node.

Additive variable upper bounds generalize the simple variable upper bounds
in three respects. First, several binary variables additively increase the upper
bound on the continuous variable. Second. the continuous variable is not neces-
sarily restricted to zero when its additive variable bounds are zero. Third, we
allow an overlap of additive variable upper bound variables, i.e. N(1)NN(k) # 0
for i,k € M. This situation typically occurs when capacities are installed on
subsets of edges such as on cycles of the network (rings). Note that a simple
variable upper bound constraint y; < u,z; is a special case of (2). We also point
out that a variable lower bound constraint /;z; < y; can be put into a simple
form of AVUB, §; < (u; — ;) + l;Z;, after complementing the binary variable z;

and the continuous variable y; assuming that it has a finite upper bound u;.

Multi-item production planning problems with setup times have the following
constraints as part of their MIP formulations

Z Yier = di, Vi, t (3)
tr<t

Doy Su— Y am, vt (4)
1

1

where d;; denotes the demand for item ¢ in period t, u, the total production
capacity in period t and a; the setup time required for item ¢ if the machine is
setup for this item. Aggregating the demand constraints (3) and the production
variables y;, for each period, we arrive at the same structure as in (1)-(2).

In the next section we introduce four classes of valid inequalities for

P = {(z,y) € B" x R : subject to (1) and (2)}
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and give conditions under which these inequalities are facet-defining for conv(P).
In Section 3 we present a summary of computational results on the use of the
new inequalities in a branch-and-cut algorithm for network expansion problems.

2 Valid Inequalities

The proofs of the results given in the sequel are abbreviated or omitted due to
space considerations. For detailed proofs and for further results and explanations,
the reader is referred to Atamtiirk [2].

Let N = {1,2...., n} be the index set of binary variables and N(S) be
the subset of NV appearing in the additive variable upper bound constraints
associated with § C M = {1,2,...,m}. For notational simplicity we use N(1)

for N({i}). We define u(S) = ¥, ¢ (ui + 2 ent) aij> for $ C M and q;(S) =

Y .esai; for j € N(S). Again for notational simplicity we use u(z) for u({i}).
Throughout we make the following assumptions on the data of the model:

(Al a,;>0forallie M, j € N(i).
(A2)u(i)>0foralli e M.

(A3) b+ u(M~) > 0.

(Ad) u(i) —ay; >0 for all i € M, j € N(i).
(AB) b+u(M~)—a;(M~)>0forall je N.

Assumptions (A.2-A.5) are made without loss of generality. If u(i) < 0 or
b+u(M™) <0, then P =0.Ifu(i) = 0 (b+u(M~) = 0), then y; = 0 (yi=0,1t¢
M) in every feasible solution and can be eliminated. Similarly if u(z) —a:; <0
or b+ u(M~) —a;(M~) <0, then z; = 1 in every feasible solution and can be
eliminated. Note that given (A.1), if N(i) # 0 for all i € M, then (A.4) implies
(A.2) and (A.5) implies (A.3). Assumption (A.1) is made for convenience. Results
presented in the sequel can easily be generalized to the case with a;; < 0. Note
that, for a particular j € N if ai; <Oforalli e M, then z; can be complemented
to satisfy (A.1). If there is no overlap of additive variable upper bounds, i.e.
N()NN(k) = 0 for all i,k € M, then M(j) is singleton for all j € N and (A.1)
can be satisfied by complementing the binary variables when a:; <0.

Proposition 1. Conv(P) is full-dimensional.

2.1 Additive Flow Cover Inequalities

For C* C M* and C~ C M~, (C*,C™) is said to be a flow cover if XA =
u(C*) —b—u(C~) > 0. For a flow cover (C*.C7),let L= C M~ \ C~ be such
that~ =3 ., uwi<Xdand K = M~ \ (C- UL™). Then. the additive flow cover
tnequality is

dowm+ oy (@;(CT) = A+ )T (1 —z,)—

1€Ct JEN(CH)
> min{a, (L) A -7} - Y g <b+u(C) 4. (5)
JEN(L-) iEK
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Proposition 2. The additive flow cover inequality (5) is valid for P.

Proof. Let (Z,5) € Pand T = {j € N : ; = 0}. Also define N(C*)™ = {j €
-+

) £
N{(C*) 1 aj(C™) >/\—‘~} N(L™ 1’—{jGN(L‘):aj(L‘)>/\—'y}, and
N(L7)Y" =N(L7)\ N¥(L7)*. For (Z.7) the left hand side of (5), lhs. equals
Z Ui + Z (a;(CTY=A+v)" — Z min{aj(L_)./\—'y}—Zgi.
1€CT JEN(CHINT JEN(L-N\T €K

If (N(CH)™ NT)U(N(L~)* \ T) = 0. then

hs< 3 gi— Y. gL -3 m<b+ulC)+

ieCc+ JEN(L=)-\T €K

To see that the second inequality is valid. observe that 3. ccv ¥i — 2 icp- Ui —
2iek ¥i S b+u(CT)isvalidfor Pand 3, cp - 4 S u(L7) =2 jenr-y+ a5(L7)—
2 jen(L-1-nr @5(L7) is valid for (Z,§) since N(L™)* C T. Adding these two
inequalities gives the resuit. Now, suppose (N(CH)*T NT) U (N(L™)T\T) # 0.
Then

lhs <u(CH)— > ai(CT)+ Y e(CH)+
JEN(CHNT JEN(CHY+NT
D CZ DY E D S ) B YON P10 2
JEN(CH)+NT JEN(L-)\T JEN(L-)~\T
SuCH) = A+ = A =NINCH NT|+|NL7)"\T| -1
<b+u(C)+~. O

-

Remark 1. For the single node fixed-charge flow model, where (2) is replaced
with y; < w;z;, the additive flow cover inequality reduces to the flow cover
inequality [12]

Zy1+z ; (1 —-z;) - Zmin{ui,/\}xi—Zyisb%-Zui.

1€C+ 1€C+ ieL- ieK 1eC-

Proposition 3. The additive flow cover inequality (5) is facet-defining for
conu(P) if the following five conditions are satisfied.

- =0,
. maxjeN(Cﬂaj(C"') > A -7,

a;(L™) > A —~ for some j € N(i) for alli € L™ withu; =0,
u;, >0 forallie L™,

 N(LYNN(M\ L~) = 0.

D1 o o

Note that if there is no overlap of additive variable upper bounds among
continuous variables. then Condition 5 is trivially satisfied.
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and give conditions under which these inequalities are facet-defining for conv( P).
In Section 3 we present a summary of computational results on the use of the
new inequalities in a branch-and-cut algorithm for network expansion problems.

2 Valid Inequalities

The proofs of the results given in the sequel are abbreviated or omitted due to
space considerations. For detailed proofs and for further results and explanations.
the reader is referred to Atamtirk [2].

Let N = {l.2..... n} be the index set of binary variables and N(S) be
the subset of N appearing in the additive variable upper bound constraints
associated with S C M = {1,2,...,m}. For notational simplicity we use N (i)
for N({i}). We define u(S) = T,es (w + Zen a1 ) for § C M and a;(S) =
>_iesaij for 3 € N(S). Again for notational simplicity we use u(i) for u({i}).
Throughout we make the following assumptions on the data of the model:

(Al) ai; > Oforall:c M, JjE N(’L)

{A2) u(1) >0 foralli e M.

(A3) b+u(M™) > 0.

(Ad) u(i)—a;; >0forallie M, j € N().

(AB) b+u(M™) —a;(M~)>0forall j € N.

Assumptions (A.2-A.5) are made without loss of generality. If u(i) < 0 or
b+u(M™) <0,then P=0.Ifu(i) =0 (b+u(M~) =0),theny; =0 (y; =0, i €
M™) in every feasible solution and can be eliminated. Similarly if u(i) — ai; <0
or b+ u(M~) —a;(M~) <0, then z; = 1 in every feasible solution and can be
eliminated. Note that given (A.1), if N(i) # 0 for all i € M, then (A.4) implies
(A.2) and (A.5) implies (A.3). Assumption (A.1) is made for convenience. Results
presented in the sequel can easily be generalized to the case with a;; < 0. Note
that, for a particular j € N if a;; < Ofor all i € M, then z; can be complemented
to satisfy (A.l). If there is no overlap of additive variable upper bounds, i.e.
N(i)NN(k) = 0 for all 4,k € M, then M(j) is singleton for all j € N and (A.1)
can be satisfied by complementing the binary variables when a;; <0.

Proposition 1. Conv(P) is full-dimensional.

2.1 Additive Flow Cover Inequalities
For C* C M* and C~ T M~, (C*,C™) is said to be a flow cover if A =
u(C*) ~b=u(C7) > 0. For a flow cover (C*+,C~), let L~ C M~ \ C~ be such

that ~ =3 ;- u; < Aand K = M~ \(C~UL™). Then. the additive flow cover
inequality is

Sw+ Y (a(CT) = A+ NT(A—zy)—

1€C+ JEN(CH)
Y min{e, (L) A=A}z, = Y w < b+u(C )+ (5)
JEN(L-) €K
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2.2 Additive Flow Packing Inequalities

Next we give the second class of valid inequalities for P. For C~ S M*tandC~ C
M7 (C*,C7) is said to be a flow packing if p = —\ = b+u(C™)—u(C*H) > 0.

For a flow packing (C*.C7). let L~ € M*\ C* be such that ~ = L~ Ui < U
and A" = M~ \ C~. Then the additive flow packing inequality is
> w— > min{a; (L), 4~ v}z;+
teCHuL- JEN(L*)
D (@(CT) —ut T -g) - Ty <ulCt) £4. (6)
JEN(C) 1574

Proposition 4. The additive flow packing wnequality (6) is valid for P.

Proof. Let (z,§) € Pand T = {j € N : , = 0}. Also let N(C—)* = {j ¢

N(CH) 1 a(C7) > p— v}, N(L*)* = {j € N(C*) : a;(L*) > p— 4}, and

N(L*)™ = N(L*)\ N(L*)*. For (Z,7) the left hand side of (6), lhs, equals
> k- Y min{e(LY)u-vj+ 3 @;(CT) —u+7) = > 7.

weCruL- JEN(LH\T JEN(C-)+NT tEK

If(N(L*)* \T)U(N(C~)* N T) = 0, then

lhs = Ztec+uL+ v — Z;eN(L*)-\T aj(L+) - Z;‘GK Ui < U(C+) +7.
Otherwise,

s <b+u(C)~ 3 aC)- Y (u-n)

JEN(CHUT JEN(LH)Yt\T
Y alN+ Y (a(CT) - pt)
JEN(L+)-\T JEN(CH)Yy+NT
SO+ uCT) =~ pty = (u=NINILH*\T|+ [N(C™)* A T| - 1
<u(CH)++. O

Remark 2. For the single node fixed-charge flow model, the additive flow packing
inequality reduces to the flow packing inequality [3]

Z i — Z min{u;, u}zx; + Z (wi =) (1 —z;) - Zyi < Z Us.

1€CHUL* €L+ 1€eC- €K i€CH

Proposition 5. The additive flow packing inequality (6) is facet-defining for
conv(P) if the following five conditions are satisfied.
1. C* =10,
- u(M7T) +b>a;(C7) > pu—~ for some j € N(C™),
- a;(L*) > p—~ for some j € N(i) for alli € L+ with u; =0,
u; 20 forallie LT,
CN(LT)ANMNLY) = N(CT)NN(K) = 0.

Wi Wt
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2.3 Generalized Additive Flow Cover Inequalities

In order to derive more general classes of valid inequalities for P, we fix a subset
of the binary variables to zero. derive a valid inequality for the resulting projec-
tion. and then lift this inequality with the variables that are fixed to zero. More
precisely, let F C N and consider the projection

Pr={(zy) e B xRT: > y- > w<h

teEM* 1IEM—
yi S uy+ Z aij Ty, ’LEM}
JEN(\F

of P obtained by fixing z; = 0 for all j € F. We assume that conv(Pr) is
full-dimensional.

For § € M. let 4(S) = 3 c5(ui + X jennr ij)- Let CF € MT and
C™ C M~ such that A =a(C*)—b—4(C~) >0and L~ C M~ \ C~ such that
¥ =3 icr- %t < A Then, from Section 2.1 we have the following valid additive
flow cover inequality for Pr

Sowt > (@(CH) = A+ )T - z5)-

ieCc+ JEN(CH)\F
> min{a;(L7), A= v}z; — Yy <b+aC)+7.  (7)
JEN(L-N\F ieK

Note that inequality (7) is not necessarily valid for P. We assume that
the conditions of Proposition 3 are satisfied and hence (7) is facet-defining for
conv(Pr). In order to derive a generalized additive flow cover inequality for
P, we lift (7) in two phases. In the first phase we lift the inequality with the
variables in N(L~ UC~)NF. Then in the second phase we lift the resulting in-
equality with the variables in N(C*) N F. When lifting the variables in phases,
for convenience, we make the following assumption:

(AB) (N[CHYNF)N(N(L-UC™)NF)=0.

Even if (A.6) is not satisfied, the lifted inequality is still valid for P, but it
may not be facet-defining for conv(P). Now, let (7) be lifted first with variable
zi, | € N(L= UC~)N F. Then the lifting coefficient associated with z; is equal
to

LTuCT) =b+u(C~ - ’
fla( ) UCT) 4y -  max {,-e%y +

PN CH (aas EPERILII TR R mn{a;-(L-),A—v}xj—Zyi}.
JEN(CHN\F JEN(L-)\F €K

Since (7) satisfies the conditions of Proposition 3, it follows that z(C*) >
A —~ or equivalently b+ %(C~ )+~ > 0. Then the lifting problem has an optimal
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solution such that y, = 0 forali: € (M+\C*)UK. Let (%. ) be such an optimal
solutionandlet S = {j € N(C*\F :%, =0} and T = {JENL-N\F:z, =1}
Clearly. we may assume that S C {j ¢ NICF)NF @ a;(CY) > XA — 4} and
TC{eNL I\ Fia(L7)>A- v}: otherwise we can obtain a solution with
the same or better objective value by considering a subset of S or T satisfving
these conditions. There are two cases to consider when determining the value of
flai(L~2C™)) depending on how > icc- Yi is bounded in an optimal solution.
We analvze f(a)(L~uC™)) separately for each case.

Case I: A — v < > " a;(C*) ~ > a; (L) +a (L~ UCT).

JES JET
fla(L™ L C) =b+a(CT) +v = [a(C*) = T ay(C*) +
JES
D_(a;(CT) =+ = S (A= )]
JES jET

=(SUTI- 1A —-n).

Case 2: A — v > > a;(C*) + > aj(L7) +a(L-UCT).

JES J€T

fall”CCT)) =b+a(CT)+ v — b+ a(C~) + v+ > ai (L) +

JjEeT
a(L™UCT) + ) (a;(C*) = A+4) - > (=)
jes JET
=ISUTIO =) =D as(C*) = 3 ay(L7) —a(L™ U C).

JES JET
Observe that in Case 2, i.e. if the balance constraint is tight, S = 7 = {
since a;(L~ JC~) > 0 and by assumption a;j(C*) > A—~vforall j € S and
a;(L7) > A—~forall j € T. Also in Case 1, f(ai(L=UC™)) is minimized when
S =T = 0. Then. we conclude that fla(L~uC™)) = — min{a;(L~UC™), A—~}.
It is easy to see that f is superadditive on IR_, which implies that the lifting
is sequence independent, that is the lifting function f remains unchanged as

the projected variables in N(L~ U C~) N F are introduced to inequality (7)
sequentially 17.13]. Therefore.

S i+ > (@;(CT)Y = A+ )" (1 —z,)—

1eCH+ JEN(CHW\F

> minfa,(L7UCT) A~z - (8)

JEN(L-UC-)NF

> min{a;(L7).A =}z, - DU <b+aCT) +4
JEN(L-)\F €K

is a valid inequality for Py csng.
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In the second phase. »
coefficient of z; equals

9(al(CT)) = b+ a(C™

ST (a(CH) = A

JEN(CHN\F

Z min{a

JEN(L-UC-)NF

The lifting problem !
(MY\CH)UK, z; =11
forall je N(L-UC™)r
Jj € N(L™)\F such that .
Let R={je N(L-uC-
T={je NILT)\F:1Z
the value of g(a;(CT)) d
solution.

Case 1: A —v < Zaj(C
jES
g(a(CH)) =b+a(C™) -

Z aj(C+)

JES
=(RUSUT

Case 2: A — v > Zaj(C
J€S

g(a(CH) =b+a(C™) +

Zaj(L_) -

jET
=|RUSUTI

G
v; =4 ¢
[

Now, let
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-et (Z. %) be such an optimal
={je NIL-\F:z, =1}
Fia;(CT) > A -~} and
e can obtain a solution with
subset of S or T satisfying
en determining the value of
1ded in an optimal solution.

C.

=Y L7+

jET

=)= (A=)

JET
»ay(L7) —a(L”UCT).
=T

traint is tight, S = T = {
> A—yforal j €S and
"UC™)) is minimized when
—min{a;(L~UC"), A—~v}.
ich implies that the lifting
a f remains unchanged as
troduced to inequality (7)
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In the second phase. we lift inequality (8) with z;.1 € N(C* )N F. The lifting
coefficient of z; equals

9(@(C™)) = b+ a(C™) +~ - Ty

max
(T WEPy crymrv =1 i€C~

Yo (@(C =A+TU -z~ > min{a;(L7),A - v}zs-

JEN(CHI\F JEN(L-N\F
Z min{a;(L™ UCT), A — v}z; - Z y,} .
JEN(L-UC-)NF €K

The lifting problem has an optimal solution such that y; = 0 for all i €
(MT*\C*)UK, z; =1forall j € N(C*)\ F such that ¢;(C*) < A—v,z; =0
forall j € N(L=UC™)NF such that a;(L-UC™) < A—~,and z; =0 for' all
J € N(L™)\ F such that a;(L~) < A~+~. Let (Z, ) be such an optimal solution.
Let R={j e N(LTUC™)NF):%;=1},S={j € N(CH)\ F: z, =O},'a:nd
T ={j€ N(L")\ F:z; =1}. Again, there are two cases when determlpmg
the value of g(a;(C*)) depending on how 3", .+ ¥: is bounded in an optimal
solution.

Case i A =7 <D a;(C*)+ 3 aj(L7UCT)+ Y a;(L7) —a(CH).
jES JER JET
9(a(CT)) =b+wC~) +~ - [a(C*) -
D4 (CH) +a(Ch) + Y (a(CT) = A+ = D (A=)

JjES JjES iERUT
=(RUSUT|~-1)(A —v) = a(CY).

Case 2: A — v > Zaj(C"') + Z a;(L-UC™) + Z aij(L™) — ai(CT).
JES jER jET

9(a(CT) =b+a(CT)+y—b+aCT) +7+ I _ay(L7UCT) +

JER
Yo a L)+ (@ (CH) A+ = S (A=)
JET jE€S JERUT
=|RUSUTI(A-7) Za] Cc*t) - ZO‘JL ucC- Za] -).
jE€S JER JET

Now, let

a;(L-UC),ifje N(L-UC~)NF

a;(C*), if j € N(CH)\ F,
Y {a,(L-), if j € N(L™)\ F,




6 Alper Atamturk. George L. Nemhauser. and Martin W. P, Savelsbergh

_[1-z.ijeNICH\F.
T s if j € N(L™) U(N(C~) N F).
and {j1, gz, .. .. Jrt={1 e (NICTHY\FYUN(L™)U(N(C™)NF) v; > A=~}
such that v, > v, | for k = 1.2....r — 1. We also define the partial sums
wo =0, wy = Zle vy, for k=1.2...., r.

It is not hard to show that there is a monotone optimal solution to the

lifting problem. That is. there exists an optimal solution such that z, >
fork=1.2..... r — 1. Therefore g{a;(C*)) can be expressed in a closed form as
follows:
k(A=) —ai(CH) wk < ai(CF) < wryy — A+ 7,
+ k=0,1,....r—1,
galCm)) = k(A —~) - wg, we —A+y<a(CH) <we, k=1,2,....r,

(A — ) — wy. wy < ai(CH).

It can be shown that g is superadditive on IR_. which implies that the lifting
function g remains unchanged as the projected variables in N(C+) N F are
introduced to inequality (8) sequentially (7,13]. Hence we have the following

result.

Proposition 6. The generalized additive flow cover inequality

Sy > (@(CT) = A+ )T~ 1j)+

1eCH JEN(CHN\F
> ayz, - > min{a;(L~ UC™), A — v}z; — (9)
JEN(CHINF JEN(L-UC-)AF
> min{a;(L7), A = 7y}z; — >y <b+a(C™) +
JEN(L\F i€k

with

k(X —v) —a;(CH), wg < a;(CF) < wgqr — A+, k=0,1,....,r—1.
a; =< k(A ~v) —wy, W — A+ <a;(CH) <w, k= 1,2,...,r

r(A —~) — w,, wye < a;(CH).

15 valid for P.

Proposition 7. The generalized additive flow cover inequality (9) is facet-defi-
ning for conv(P) if (7) is facet-defining for conv(Pp).

2.4 Generalized Additive Flow Packing Inequalities

Here we generalize the additive flow packing inequalities with the same approach
taken in Section 2.3 for the additive flow cover inequalities. Consider the projec-
tion Pr of P introduced in Section 2.3. Let C* C M+ and C— C M~ such that
p=>b+u(C7)~a(C*)>0and L* C M*\ C* such that ~ = Diers Ui < AL

Valid Inequalities

Then from Section 2.2 »
ity for Pr

Z Yi — E

1€CHULT JEN(

> (ay

JEN(CN\F
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(10), we lift (10) in two
N(CY*UL*)NF. Then
variables in N(C™)NF

convenience, we assume
(A.7) (N(L* UCH)

The lifting of inequalit;
Therefore, we only give

Proposition 8. The g«

Z Yi— Z

i€eCtul+ JEN(L+
>
JEN(C+UL+)NF
jeEN(C
with
k(u —v) —a;(C
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r(p — ) — wr,

is valid for P.

Proposition 9. The ¢
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In this section, we pre:
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Then from Section 2.2 we have the following valid additive flow packing inequal-
ity for Pr

Z Vi — Z min{a;(L*), u — v}z;+

t€C+UL+ JEN(L+\F

S (@i (CT) -+ —zy) =Y w<uCH)+y.  (10)

JEN(C-)\F ieK

We assume that the conditions of Proposition 5 are satisfied and hence (10)
is facet-defining for conv(Pr). To introduce the variables in F into inequality
(10), we lift (10) in two phases. First we lift the inequality with the variables in
N(C*UL*)N F. Then in the second phase we lift the resulting inequality with
variables in V(C~) N F. When employing this two phase lifting procedure, for
convenience, we assume that

(A7) (N(L* UC*) N F)N(N(C™)N F) =

The lifting of inequality (10) proceeds similar to the lifting of inequality (7).
Therefore, we only give the final result here.

Proposition 8. The generalized additive flow packing inequality

Y wi— oy min{a;(L),p—v}z;—

i€CtuL+ JEN(LYN\F
Z min{a;(C*T UL*%),u — v}z, + Z ajz; —  (11)
JEN(C+UL*)NF jEN(C-)NF
Z (@j —p+v) (1 —=z;) — Zy;SuC*
JEN(CN\F €K

with

k(u—v)—aj(C_),wk<a,~(C‘)ka...l p+v7,k=01,...,r—1,
a; = k(u—’y)—wk, ’U)k—/J.+’Y<Gj(C )kaa k=1,2,...,r,

T(/.l, - 7) - Wy, wy < aj(C_)a

s valid for P.

Proposition 9. The generalized additive flow packing inequality (11) is facet-
defining for conv(P) if (10) is facet-defining for conv(Pr).

3 Computational Resuits

In this section, we present our computational results on solving network ex-
pansion problems with a branch-and-cut algorithm. We implemented heuristic
separation algorithms for the generalized additive flow cover and flow packing
inequalities for the single node relaxation of the problem. We also used the lifted
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cover inequalities (6] for surrogate 0-1 knapsack relaxations of the single node
relaxation. where the continuous flow variables are replaced with either their
0-1 additive variable upper bound variables or with their lower bounds. The
branch-and-cut algorithm was implemented with MINTO (8] (version 3.0) using
CPLEX as LP solver (version 6.0). All of the experiments were performed on a
SUN Ultra 10 workstation with a one hour CPU time limit and a 100.000 nodes
search tree size limit.

We present a summary of two experiments. The first experiment is performed
to test the effectiveness of the cuts in solving a set of randomly generated net-
work expansion problems with 20 vertices and 70% edge density. The instances
were solved using MINTO first with its default settings and then with the above
mentioned cutting planes generated throughout the search tree. In Table 1, we
report the number of AVUB variables per flow variable (avubs) and the average
values for the LP relaxation at the root node of the search tree (zroot), the
best lower bound (z1b) and the best upper bound (zub) on the optimal value at
termination, the percentage gap between z1b and zub (endgap), the number of
generalized additive flow cover cuts (gafcov), generalized additive flow packing
cuts (gafpack), surrogate knapsack cover cuts (skcov) added, the number of
nodes evaluated (nodes), and the CPU time elapsed in seconds (time) for five
random instances. While none of the problems could be solved to optimality
without adding the cuts within 100,000 nodes, all of the problems were solved
easily when the cuts were added. We note that MINTO does not generate any
flow cover inequalities for these problem, since it does not recognize that ad-
ditive variable upper bounds can be relaxed to simple variable upper bounds.
Observe that the addition of the cuts improves the lower bounds as well as the
upper bounds significantly, which leads to much smaller search trees and overall
solution times. Table 1 clearly shows the effectiveness of the cuts.

Table 1. Effectiveness of cuts: 20 vertices.

avubs|zroot zlb zub endgap gafcov gafpack skcov nodes time
without| 2 9.49 10.22 16.80 39.00 O 0 0 100,000 1386
cuts 4 12.74 16.99 25.60 33.86 0 0 0 100,000 1018
8 2.77 11.51 58.40 79.15 0 0 0 100,000 1859

with 2 15.30 15.40 15.40 0.00 46 42 15 6 1
cuts 4 23.73 25.20 25.20 0.00 55 33 47 73 5
8 36.36 38.40 38.40 0.00 47 34 41 121 9

In the next experiment, we solved larger instances of the network expansion
problem with 20% edge density to find out the sizes of instances that can be
solved with the branch-and-cut algorithm. The results of this experiment are
summarized in Table 2, where we present the number of AVUB variables per
flow variable (avubs), the average values for the percentage difference between
the initial LP relaxation and zub (initgap), the percentage difference between
the LP relaxation after the cuts are added at the root node and zub (rootgap),
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in addition to endgap, gafcov, gafpack. skcov. nodes. and time for five random
instances with 50. 100 and 150 vertices. We note that these problems are much
larger than ones for which computations are provided in the literature [5,11].
Although all of the instances with 50 vertices could be solved to optimality, for
the larger instances the gap between the best lower bound and the best upper
bound could not be completely closed for most of the problems with 4 or 8 avubs
within an hour of CPU time. Nevertheless, the improvement in LP relaxations
is significant. ranging between 50% and 98%.

Table 2. Performance of the branch-and-cut algorithm.

vertices|avubs|initgap rootgap endgap gafcov gafpack skcov nodes time
1 25.09 1.05 0.00 48 56 16 24 2

50 2 20.12 220 0.00 115 102 38 110 11
4 36.34 331 0.00 192 139 106 721 49

8 92.06 3.72 0.00 416 216 164 7712 960

1 14.80 094 0.00 182 148 41 4 39

100 2 12.27 444 000 590 324 191 1236 961
4 38.04 3.74 237 707 382 448 2437 2171

8 92.75 9.15 8.75 828 408 509 1717 3600

1 16.56 0.29 0.00 480 307 57 346 586

150 2 10.81 539 434 586 395 318 813 2965
4 43.69 12.22 1222 862 527 672 711 3600

8 93.08 15.02 15.02 659 449 503 477 3600

For most of the unsolved problems, the best lower bound and the best upper
bound were found at the root node in a few minutes: no improvement in the gap
was observed later in the search tree. For instance nexp.100.8.5 the value of
the initial LP relaxation was 18.23. After adding 916 cuts in 42 rounds the root
LP relaxation improved to 220.81, which was in fact the best lower bound found
in the search tree, in 617 seconds. The best upper bound 259 was again found at
the root node by a simple heuristic which installs the least cost integral capacity
feasible for the flow on each edge provided by the LP relaxation. Therefore, for
the unsolved problems it is likely that the actual duality gaps of the improved
LP relaxations are much smaller.

More detailed experiments to compare the relative effectiveness of the differ-
ent classes of cuts revealed that the generalized additive flow cover inequalities
were the most effective, and that the lifted surrogate knapsack inequalities were
more effective than the generalized additive flow packing inequalities. However,
the use of all three classes of cuts delivered the best performance in most cases.
From these computational results, we conclude that the valid inequalities derived
from the single node relaxations are very effective in improving the LP bounds
for network design/expansion problems.
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