MONOTONE PATHS ON POLYTOPES
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ABSTRACT. We investigate the vertex-connectivity of the graph of f-monotone
paths on a d-polytope P with respect to a generic functional f. The third
author has conjectured that this graph is always (d — 1)-connected. We resolve
this conjecture positively for simple polytopes and show that the graph is 2-
connected for any d-polytope with d > 3. However, we disprove the conjecture

in general by exhibiting counterexamples for each d > 4 in which the graph
has a vertex of degree two.

We also re-examine the Baues problem for cellular strings on polytopes,
solved by Billera, Kapranov and Sturmfels. Our analysis shows that their pos-
itive result is a direct consequence of shellability of polytopes and is therefore
less related to convexity than is at first apparent.

1. INTRODUCTION

Let P be a d-dimensional polytope in R? and f be a linear functional on R¢
which is generic with respect to P, in the sense that f is nonconstant on every edge
of P. An f-monotone path v on P is a sequence of vertices (vg,v1,...,Vm) of P
such that vy and v,, are the unique vertices at which f achieves its minimum and
maximum values on P, respectively, v;—.; and v; lie on an edge of P for each i and
f(vo) < f(v1) < --- < f(vm). Monotone paths have been studied in the context
of the Hirsch Conjecture [13, §3.3] [8], and have recently appeared in a directed
version of Steinitz’s Theorem [9].

The set of all f-monotone paths on P forms the vertex set for a natural graph
structure, which we now describe. Each 2-dimensional face F of P is a polytope in
its own right, in fact a polygon, and has exactly two f-monotone paths, say vr and
vf=. We say that two f-monotone paths v and ~" on P differ by a polygon flip across
F if they agree on vertices not lying on F but differ in that - restricted to the face
F follows the path g, while v’ restricted to F follows v. The graph G(P, f) of
f-monotone paths on P is the graph whose vertices are the f-monotone paths on
P and whose edges join pairs of f-monotone paths which differ by a polygon flip
across some 2-face of P. An example is shown in Figure 1.

The question of connectivity of the graph G(P, f) arises naturally in the work of
Billera and Sturmfels [3] and Billera, Kapranov and Sturmfels [2] on the generalized
Baues problem; see [10] for a survey of this subject. The vertices and edges in
G(P, f) index the elements in the bottom two ranks of the poset of cellular strings
on P. This poset gives rise naturally to a topological space (see Section 5), which
was shown to have the homotopy type of a (d — 2)-dimensional sphere in [2]. It can
be deduced from this (see [10, Section 3, p. 20]) that the graph G(P, f) is connected.
Furthermore, there is a subset of the vertex set of G(P, f) which is geometrically
distinguished, namely the subset of f-monotone paths which are coherent (see [3,
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FIGURE 1. (a) A 3-dimensional polytope P and a generic linear
functional f. (b) The graph G(P, f) of f-monotone paths on P.

p. 544/, [2, p. 552], [10, p. 12] for definitions). Under mild genericity assumptions
on P and f, the induced subgraph of G(P, f) on these vertices is the 1-skeleton of
a (d — 1)-dimensional polytope, called the monotone path polytope, whose existence
is a special case of the general theory of fiber polytopes [3]. Recall that Balinski’s
Theorem [13, §3.5] states that the 1-skeleton of a d-dimensional polytope is d-
connected, meaning that any subgraph obtained by removing a set of at most d —1
vertices and their incident edges is connected and contains at least two vertices.
As a consequence, the subgraph of coherent f-monotone paths on P is (d — 1)-
connected.

The preceding results led the third author to conjecture [10, Conjecture 15]
that the entire graph G(P, f) is always (d — 1)-connected. In Section 3 we exhibit
counterexamples which disprove this conjecture for d > 4. Specifically, for each
d > 3 we exhibit a d-polytope P, linear functional f and f-monotone path v on P
such that + has degree two in the graph G(P, f).

On the other hand, Sections 2 and 4 contain proofs of the following positive

results. Recall that a d-polytope P is simple if each vertex is incident to exactly d
edges of P.

Theorem 1.1. If P is a simple d-polytope and f is a generic linear functional on
P then the graph G(P, f) is (d — 1)-connected.

Theorem 1.2. If P is any d-polytope with d > 3 and f is a generic linear func-
tional on P then the graph G(P, f) is 2-connected.

In Section 5 we re-examine the role played by convexity in the positive answer
to the Baues problem for cellular strings, given by Billera, Kapranov and Sturmfels
[2]. Specifically, we show that for every shelling of a regular CW-sphere X, there is
an associated Baues problem for cellular strings on the sphere X* which is the polar
dual of X and that the shelling of X leads to a positive answer to this problem.
This gives a common generalization for the results of [2] and of Bjérner [4].
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2. G(P, f) 1s (d — 1)-CONNECTED FOR SIMPLE d-POLYTOPES

The goal of this section is to prove Theorem 1.1, namely that for a generic
functional f on a simple d-polytope P, the graph G(P, f) is (d — 1)-connected.

We prove this in a slightly more general form. Let P be a finite, 2-dimensional
regular CW-complex (see [6, §4.7], [5] for definitions and background on regular
CW-complexes). Let G be the 1-skeleton of P and O be an acyclic orientation of
G. In the motivating special case, P is the 2-skeleton of a simple d-polytope and
O is the acyclic orientation induced by a generic linear functional f. Motivated by
this special case, we further assume the following:

(i) the entire graph G has a unique source Upm;n and sink vy, with respect to
O, as does its restriction to every 2-face of P (such acyclic orientations O are
called facial in Section 5),

(ii) the degree of vy, in G is at least d,

(iii) any two faces of P intersect in a unique common face of each; in particular,
the 1-skeleton of P is a graph with no multiple edges and different 2-faces can
share at most one edge, and

(iv) any two directed edges of G having common initial vertex u span a 2-face
whose 1-skeleton has source u with respect to O.

We refer to the 2-faces of P as the polygons of P. Let G(P, O) be the graph on
the vertex set of all directed paths in G from vy, t0 Upez, With adjacency defined
by the flips across the polygons of P. The following theorem is the main result of
this section.

Theorem 2.1. If P and O are as before then the graph G(P, O) is (d—1)-connected.

Given two vertices 71,72 of G(P, O), we first construct a path v *v2 in G(P, O)
from v, to v as follows. Let u be the first vertex of either path from which v, and
v leave through distinct edges e; and ep, respectively. We proceed by induction
on the position of u with respect to the partial order on the vertices of G induced
by O. Let F be the polygon of P spanned by e; and ez, v be the unique sink of
the boundary of F' and p be a directed path in G from v to vyne,. We choose p as
the part of v, from v t0 Umgg if v is a vertex of 7,. For i = 1,2 we let 7 be the
path in G which follows v; and v, up to u, then follows the boundary of F' through
e; up to v, and finally follows the path p up to Umag. The paths ¥ and 44 differ
by a flip across F. We define 7; * 72 to be the path in G(P, Q) whose successive
vertices are the ones of ; 7§, followed by those of 7§ *v,. Note that each vertex
of v * 2 is a path in G whose initial edge is that of v, or ~».

Lemma 2.2. If v,v1 and 7] are vertices of G(P, Q) with pairwise distinct initial
edges then the paths y*v; and yx~y in G(P, O) are vertez-disjoint, except for their
initial vertex ~y.

Proof. Let e, €] be the initial edges of v;1,7] and 72,75 be vertices of the paths
v * v, and 7 * vy other than v, respectively. To prove that 42 # 5 we show that
ey # €h, where es and €}, are the first edges of v2,v, which are not edges of v,
respectively. Indeed, by construction of v * 41, there is an alternating sequence
(eo, F1. €1, Fa, ..., Fr € ) of edges ¢; of G through vertices v; of v and polygons F;
of P such that €y = €1, €, = ey and that F; contains €;_1, €;, as well as the part of v
between v;_; and v;. Similarly, there is an analogous sequence with initial edge e}
and terminal edge 5. By our assumption (iii) on P, the two sequences are uniquely



4 CHRISTOS A. ATHANASIADIS, PAUL H. EDELMAN, AND VICTOR REINER

determined by 7 and ez, or v and €}, respectively. Since e; # e}, we should also
have ey # 5. a

We now prove Theorem 2.1.

Proof of Theorem 2.1. Let T be a subset of the vertex set of G(P, O) with at most
d — 2 elements. We will show that G(P,0) — T is connected. Let E be the set of
initial edges of the elements of I" and let A be the set of vertices of G(P, O) (that is,
paths in G) with initial edge not in E. Note that the induced subgraph of G(P, O)
on A is connected since if 1,72 are in A, so is every vertex of the path 1 * 7.

It thus suffices to show that any path v not in I with initial edge e € E can be
connected in G(P,©) ~ T to some element of A. Let k be the number of elements
of T with initial edge e. Since T' has at most d — 2 elements and because of the
assumption (ii) on P, there are at least k 4+ 1 edges of G through vmsn not in E.
Hence we may choose elements «; of A, for 1 < ¢ < k + 1, with pairwise distinct
initial edges. By Lemma 2.2, the paths y x v; are k + 1 vertex-disjoint paths in
G(P, ), except for their initial vertex, which connect v to paths in A. At least
one of them avoids all k elements of I with initial edge e, and hence connects v to
A in G(P,0) — T, as desired. |

The following corollary is an immediate consequence of Theorem 2.1 and gener-
alizes Theorem 1.1.

Corollary 2.3. If P is a simple polytope, f is a generic linear functional on P and
v is a vertex of P with f-outdegree j then the graph of partial f-monotone paths on
P from v t0 Umas and polygon flips among them is (j — 1)-connected.

3. A MONOTONE PATH ON A d-POLYTOPE WITH ONLY 2 FLIPS

The goal of this section is to prove the following theorem.

Theorem 3.1. For each d > 3 there is a d-polytope P, linear functional f and
f-monotone path ~y on P such that vy has degree two in the graph G(P, f).

Proof. To construct P, start with a (d — 2)-simplex in R%~2. Form the (d - 1)-
polytope which is the prism over this simplex, that is, its Cartesian product with
the line segment [—1,1], and then let P be the d-polytope which is the pyramid
over this prism.

To be somewhat more explicit, choose real numbers t; <tz < --- <t4—1 sym-
metrically about 0, i.e. so that t4_; = —t;. Thenfori=1,...,d -1 let

a; = (ti, t2, ..., t&3 1, 0),
b = (ti, t2, ..., t&F -1, 0),
¢c = (0, 0, ..., 0, 0, 1)

and let P be the convex hull of {ai,...,a4-1,b1,-..,ba-1,¢}.
Our requirement on the functional f is that it is generic and that it orders the
vertices so that

f(bl) < f(b2)7 BERE} f(bd—2)’ f(al) < f(C) < f(bd—l)v f(a'2)) vy f(ad—Z) < f(ad—l)‘

One can achieve this by choosing an f of the form f(x) = az; + fr4—1 for some
real constants a, 3. To see that such a choice is possible, note that the projection of
the vertices a;, b;, ¢ onto the (x1, z4-1)-plane will look as in Figure 2 and one need
only choose the constants a, 8 so that the level set f = 0 is as the line depicted
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FIGURE 2. The functional f(x) = az; + Bz4—1 should be chosen
so that the level set f = 0 looks as shown.

there and f increases to the northeast. For example, the polytope and functional
shown in Figure 1(a) are the case d = 3 of our construction.

With P and f as described, the f-monotone path v is the sequence of vertices
(b1,a1,¢,by—1,a4-1). It is straightforward to check that the only two polygon flips
applicable to v are across the triangular 2-face having vertices b1,a;,c and its
symmetric partner having vertices ¢, bg—1, ag—1. In checking that these are the only
flips, one uses the fact that the 2-faces of P can be listed as

triangles:{a;, aj, @k }i<icj<k<d-1
{bi, bj, b }1<icj<k<d-1
{C, ai,aj}lgiqsd—l
{e,bi,bi}i<ici<d-1
{e,a:s,bi}1<i<d-1,
quadrangles:{a;, aj, b;, b }1<icj<d-1-
This completes the proof. O

We conclude this section with a series of remarks about the counterexample just
constructed.

Remark 3.2. The fact that our counterexample is a d-polytope with 2d—1 vertices
raises the following question.

Question 3.3. For a given dimension d, what is the minimum number of vertices
required to construct a d-polytope and generic functional f having an f-monotone
path with fewer than d — 1 flips? What about two flips? Is either of these two
numbers less than 2d — 19

For d = 4, the counterexample of Theorem 3.1 achieves the minimum number of
vertices possible, which is 7. Indeed, a 4-polytope with five vertices is a 4-simplex
and all its f-monotone paths have exactly three flips, while if P is a 4-polytope
with six vertices, then a quick enumeration of Gale diagrams (see, e.g., [13, §6.5])
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shows that there are only four possibilities for the combinatorial type of P. For
each of these four types, one can check by computer that no matter how f orders
the vertices, every f-monotone path on P has at least three flips.

The counterexample of Theorem 3.1 for d = 4 is tight in another sense, in
connection to Theorem 1.1. It has a single vertex (the apex c) of degree 6 and the
rest of its vertices simple, i.e. of degree 4.

Remark 3.4. In light of Theorem 1.1, it would be interesting to investigate the
question of connectivity of G(P, f) within other natural classes of polytopes.

For example, one might ask whether there exist monotone paths on simplicial
polytopes having few polygon flips. Starting with the counterexample in Theorem
3.1 for d = 4, one can produce a simplicial counterexample by pulling (see [6, p.
410]) the vertices b; and a3 of P in either order, and using the same functional f
and f-monotone path v. We do not know if this technique can be used to produce
simplicial counterexamples in higher dimensions.

A class of particular interest with regard to monotone paths is that of zonotopes;
see [6, §2.2]. It is possible to construct a 4-zonotope Z with 6 zones and a vertex
v such that the vertex figure of Z at v is a prism over a 2-simplex, as in the d = 4
case of our polytopal counterexample P. Furthermore, it is also possible to choose
a functional f and an f-monotone path on Z having only two flips. However, the
analogous construction for d = 5 fails to give any paths with fewer than four flips.
These observations suggest the following questions.

Question 3.5. If Z is a d-zonotope and d > 5, is G(Z, f) always (d—1)-connected?
If Z is a d-zonotope with at least 7 zones, is G(Z, f) always (d — 1)-connected?

4. PROOF OF THEOREM 1.2

The goal of this section is to prove Theorem 1.2, which states that the graph
G(P, f) is 2-connected for d > 3. We use ideas analogous to those in the first
proof of homotopy-sphericity of the poset of cellular strings on P, given in [2,
Theorem 1.2]. We construct the graph G(P, f) as a certain inverse limit in the
category of graphs and simplicial maps. This construction is an iteration of a
simpler “pullback” construction, which will be shown to behave sufficiently well
with respect to connectivity and 2-connectivity.

Let Uiy and Umaz be the vertices of P at which f achieves its minimum and
maximum on P, respectively, and

f(vmin)=00<cl<"'<cm—1 <cm:f(vma:c)

be the set of values of f taken at the vertices of P. The fiber P; := f~1(c;) is
a (d - 1)-polytope for 1 < i < m — 1. We denote by G; the 1-skeleton of F;.
Similarly, for each 0 < 7 < m — 1 we denote by G; ;41 the 1-skeleton of the fiber
P;i+1:= f~!(c) for some value ¢ with ¢; < ¢ < ¢;41. The facial structure of P; ;11,
and hence the graph G, ;11, are independent of the choice of ¢; see Figure 3.

Since every vertex or edge in P; ;11 degenerates to some vertex or edge of P; as
c approaches c;, there is a map 3; : G; ;41 — G; for each i. Similarly, there is a
map o; : Gi—1,;, — G;. Thus one obtains a diagram of graphs and maps as follows:

Qe Bon—
(1)  Gox1 =H Gy N Gia =5 G Ly g, e Gmm-1.
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F1GURE 3. The fibers P; ;11 over intermediate values of f.

If we consider graphs as 1-dimensional simplicial complexes, then the maps in
(1) are all simplicial, meaning that they send vertices to vertices and edges to
either edges or vertices. We define the inverse limit G of a diagram of graphs and
simplicial maps, such as (1), to be a graph whose vertices and edges are certain
ordered m-tuples

F=(F1,Fi12 ..., Fn-1,m),

where Fj ;11 is a vertex or an edge of G; ;1 for each i, F;_;; and F; ;41 have the
same image in G; under the maps «; and §;, respectively, and moreover, this image
is an edge of G; if both F;_;; and F; ;41 are edges. We call F' a verter of G if
each F; ;1 is a vertex of the graph G; ;41 and an edge of G if the set of indices i
for which F; ;1; is an edge of G; ;41 forms a sequence of consecutive integers. The
vertex F of G is defined to be incident to the edge F' = (Fy 1, Fl o, .-+, Fpuo1.m)
if Fiit1 C F],,, for each i. One can check that each edge of G has exactly two
vertices incident to it, so that G indeed defines a graph with no loops or multiple
edges, that is, a 1-dimensional simplicial complex.

Each f-monotone path v on P corresponds to a vertex in the inverse limit G,
namely the vertex F = (Fyp1,F1,2,..., Fm—1,m) for which F; ;41 is the intersection
of the fiber P; ;1 of f with the union of the edges of P which «y traverses. This cor-
respondence is in fact a bijection. Similarly, a polygon flip between two f-monotone
paths 71,2 corresponds to an edge of G, namely the edge (Fg 1, F{ 2, .., Fyy_1.m)
for which F; ;41 is the intersection of the fiber P; ;41 of f with the union of the
edges of P which the paths traverse and the 2-face where the flip occurs. Hence we
can deduce the following proposition.

Proposition 4.1. (cf. [2, Lemma 1.3]) If diagram (1) comes from the family of
graphs {Gi, G;;11} of fibers of f on P, then the inverse limit G is isomorphic to
the graph G(P, f) of f-monotone paths on P. O

A special case of the inverse limit construction, called the pullback, occurs when

m = 2. In this case we have a diagram of simplicial maps of graphs A—%CﬁB whose
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inverse limit G has the following simpler description. Vertices of G are ordered pairs
(a,b), where a,b are vertices of A, B, respectively, and a(a) = B(b). The vertices
(a,b) and (a',b’) are connected by an edge in G if either
e a=a'and {b,b'} is an edge of B or
e b=V and {a,a’} is an edge of A or
e {a,a’} and {b,b'} are edges of A and B, respectively, which both map home-
omorphically onto the same edge of C.

In this case, we have the following commutative diagram of simplicial maps

G 2, B

(2) TA l B l

A—2-cC
where m4(a,b) = a and wp(a,b) = b are the usual projections. We call such a
diagram a pullback diagram and G the pullback of a, 8 1. For future use, we denote
by 7 : G — C the composite map aomy = fonpg.

The pullback is a simpler construction than that of the general inverse limit of
diagram (1). However, the inverse limit can be recovered by iterating pullbacks as
follows. Let H; denote the inverse limit of the subdiagram of (1) which consists of all
graphs and maps weakly to the left of G; ;11, so that Hy = Go,1, H; is the pullback
of the diagram Go; — G; + G2 and Hp,—; is the full inverse limit G. There
is a natural map H,_; — G; obtained by first projecting a tuple (Fy1,..., Fi_1,)
in H;_; onto its last entry Fj_; ;, which lies in G;_1,;, and then applying the map
G;_1: — G;. The following proposition is straightforward to verify.

Proposition 4.2. We have a pullback diagram

H — Gi,i+1

g -

H,'_l —i—-) Gi.
O

If the graphs G; and G, i+ are the l-skeleta of the corresponding fibers of f
on the polytope P, it is natural to think of H; as the graph of partial f-monotone
paths ending in fiber P; ;11.

Next we collect for future use a few propositions about pullbacks, whose proofs
are completely straightforward. We use the following convention throughout: if
B : B — C is a simplicial map of graphs, then for any vertex ¢ in C, 8~ 1(c) refers
to the vertex-induced subgraph of B on the set of vertices of B which are mapped
to ¢ by B. The simplicial map 8 is surjective if any vertex or edge in C is the image
of some vertex or edge, respectively, of B. The special case of a pullback in which
C is a single vertex is called the Cartesian product A x B (see, e.g., [12, p. 175]).

Proposition 4.3. If (2) is a pullback diagram then:

1Note that what we are calling inverse limits and pullbacks do not satisfy the usual universal
existence and uniqueness properties in the category of graphs and simplicial maps. For example,
if A, B are both graphs consisting of a single edge and map to a graph C which is a single vertex
then the pullback, as we have defined it, is a cycle of length 4, while the categorical pullback is a
complete graph on 4 vertices.
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(i) the subgraph m5'(b) of G is isomorphic to the subgraph a~'(B(b)) of A for
any verter b of B,
(ii) the subgraph m=1(c) of G is isomorphic to the Cartesian product a~!(c) x
B~ (c) for any verter c of C and
(iii) surjectivity of a implies surjectivity of 7. O
Proposition 4.4. If (2) is a pullback diagram and
(i) B is nonempty and connected,
(ii) « is surjective and
(iii) the fiber a~1(c) is connected for every verter ¢ in C
then G is nonempty and connected. O

Proposition 4.5. The Cartesian product G x H of 1-connected graphs G, H is
2-connected. O

Remark 4.6. Although we will not need this fact here, the previous proposition
generalizes to the statement that if G is k-connected and H is [-connected, then
G x H is (k + l)-connected.

One property of the polytopal degeneration maps in diagram (1) which will be
used repeatedly is the following.

Proposition 4.7. (cf. [2, Lemma 1.4]) The maps

a;:Gim1,i = Gi
Bi: Giiv1 — Gy

are surjective. Moreover, for any vertex v of G; the fibers o (v) and 8] '(v) are
connected.

Proof. The normal fan of the polytope P;_; ; refines the normal fan of P;. Further-
more, the adjacency graph for the full-dimensional cones in the normal fan of P;_y ;
is exactly Gi—1,. For each vertex v of G;, the subgraph o 1(v) is the adjacency
graph for the subset of cones which refine the unique cone corresponding to v in
the normal fan of P;. The assertions of the proposition for a; follow from this
description. The case of the map §; is analogous. O

Theorem 1.2 will be deduced from the following proposition.

Proposition 4.8. If (2) is a pullback diagram and
(i) A, B are both 2-connected,
(ii) «, B are both surjective and
(iii) the fibers a~1(c), B~ (c) are connected for every vertex ¢ in C

then the maps 4,7 are both surjective and G is 2-connected.

Proof. Surjectivity of 74 and 7p is immediate from Proposition 4.3 (iii). Note
also that since wg is surjective and B has at least three vertices, by virtue of its
2-connectivity, G must have at least three vertices. Hence removing at most one
vertex from G leaves at least 2 vertices. It remains to show that if u,u’ and v are
distinct vertices of G then there exists a path from u to v’ in G —v. We distinguish
three cases.

Case 1: w4(v) # ma(u), ma(u’). By 2-connectivity of A, there exists a path 7 from
ma(u) to ma(u') in A+ m4(v). Since w4 is surjective, we can lift each edge of 7y to
an edge in G. By Proposition 4.3 (i), the fibers of 74 are connected since so are
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the fibers of 3. Hence we can “sew” together the previously lifted edges to form
a path ¥ from u to ¥’ in G, whose image under 74 is v. This path ¥ must lie in
G — v, since 7 lies in A — w4(v).

Case 2: wg(v) # ng(u),7p(v'). This is symmetric to the previous case, inter-
changing A and B.

Case 3: m4(v) € {ma(u),7a(u)} and wp(v) € {mp(u), 7B(u’)}. Since u,v’ and v
are distinct and any vertex of G is determined by its two projections under 74 and
mg, We may assume that

wa(v) = walu),
ng(v) = mp(u').

It follows that n(v) = w(u) = w(u’) =: ¢, so all three vertices u,u’ and v lie
in 7=1(c). By Proposition 4.3 (ii), #~!(c) is isomorphic to the Cartesian product
a~Y(c)xB1(c). Since a~!(c) and B71(c) are connected by hypothesis, they are also
1-connected as they have at least two vertices (e.g. a~1(c) contains 74(v) = ma(u)
and 74 (u')). Hence w~1(c) is 2-connected by Proposition 4.5, so there exists a path
from u to v’ in m~t(c) which avoids v. O

In order to apply Proposition 4.8 to the pullback diagram of Proposition 4.2, we
need to identify the fibers of the map H;_ 2 G;. For a fixed vertex v of G, the
fiber a~}(v) is, by definition, the induced subgraph H, of H;_; on the vertex set
of partial f-monotone paths which end in fiber P;_; ; and whose last entries map
to v under a; : G;_1; — G;. One should think of this subgraph H, of H;_) as the
graph of partial f-monotone paths from vy to v.

We will need to show that H, is connected, so we construct it as an iteration of
pullbacks. For j < i, start with the inverse limit of the subdiagram of (1) containing
G;.j+1, Gi—1,: and all graphs and maps lying between them. Then take the vertex-
induced subgraph H; , of this graph on the vertices whose G..1 ;-coordinate maps
to v under a; : Gi—1,; — G;. Note that H;_, , is the fiber a{l(v). One might think
of the graph Hj , as the graph of partial f-monotone paths which start in P; ;1
and end in v. The following proposition should be clear.

Proposition 4.9. We have a pullback diagram

Hj_ 10 —— Hjy

(4 Ll

a;
Gj-1,; —— G
and HU,’U = H—U.

Corollary 4.10. For any vertez v in G;, the graph H, of partial f-monotone paths
ending at v is nonempty and connected.

Proof. We wish to apply Proposition 4.4 to the pullback diagram (4), in order to
show H;, is nonempty and connected by descending induction on j for j < i.
At the base of the induction, we know that H;_;, is nonempty and connected
by Proposition 4.7. For the inductive step, we must check that the hypotheses of
Proposition 4.4 are satisfied. Indeed, we know that Hj ,, is nonempty and connected,
by induction, and that a; is surjective with connected fibers, by Proposition 4.7. [
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We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We wish to apply Proposition 4.8 to the pullback diagram
(3), in order to show that H; is 2-connected by induction on i. This will suffice,
since G(P, f) = Hp—1. Note that, at the base of the induction, Hy = Gy is
2-connected by Balinski’s Theorem, since it is the graph of a (d — 1)-polytope and
d>3.

To apply Proposition 4.8, we must check that H;_; and G; ;41 are both 2-
connected, that the maps «, 3; are surjective and that their fibers are connected.
The graph H;_; is 2-connected by the inductive hypothesis. The graph G; ;4 is
2-connected by Balinski’s Theorem. Surjectivity of 3; and connectivity of its fibers
follow from Proposition 4.7. Surjectivity of « follows from the fact that it is the
composition of two maps

Qi
Hi_1 — G — Gy,

the first of which is surjective by Proposition 4.3 (iii) applied inductively to diagram
(3), and the second being surjective by Proposition 4.7. For any vertex v in G;, the
fiber a~!(v) is the graph H, which was shown to be connected in Corollary 4.10.
O

5. CELLULAR STRINGS AND SHELLABLE SPHERES

In this section we consider a Baues problem associated with cellular strings on the
duals of shellable CW-spheres and show that shellability suffices to give a positive
answer to this problem. This generalizes the main results of [2, 4]. Theorem 5.3,
which is the main result of this section, shows that convexity is not absolutely
essential in this special case of the Baues problem, as was hinted by the context
and methods of Bjorner [4], and that it plays a crucial role only in so far as it
implies shellability.

We assume some familiarity with the notions of a regular CW-complex, shella-
bility and a recursive (co)atom ordering. An excellent reference for this material is
[6, §4.7]; see also [5].

We begin by defining a general context in which monotone paths and cellular
strings make sense. Let P be a finite, graded poset with minimum and maximum
elements Op and 1p, and rank function r. Our motivation comes from the special
case in which P is the (augmented) face poset of a regular CW-sphere X, so that 0p
and 1p correspond to the “empty face” and the “interior” of the sphere, respectively,
and r(z) — 1 is the dimension of z for each cell z in X.

We say that P has a 1-skeleton if every lower interval [0, z] with r(z) = 2 has
exactly four elements, namely 0, z and two atoms a,a’. In this situation we say
that the 1-skeleton or graph G(P) is the graph (with no loops but multiple edges
allowed) which has the set of atoms of P as its vertex set and an edge with endpoints
a,a’ for each element x with r(z) = 2, covering a and a’. If P has a 1-skeleton,
then any linear ordering of the atoms of P gives rise to an acyclic orientation O of
the graph G(P) which orients the edge corresponding to x from a toward o, if a
comes earlier than ¢’ in the ordering.

We call an acyclic orientation © of G(P) facial if for every z in P with r(z) > 2,
the restriction of O to the vertex-induced subgraph of G(P) on the atoms of [0, z]
has a unique source @min(z) and a unique sink amec(z). We fix the notation
Amin = amm(ip) and ey = amam(ip). Given a facial acyclic orientation O of
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G(P), a cellular string on P (with respect to O) is a sequence x = (1,...,Z,) of
elements of P with r(x;) > 2, such that ¢min(Z1) = @min, Gmaz(Tr) = CGmer and
for each i we have amaz(Z;) = amin(ziy1). We partially order the set of cellular
strings on P by defining

x=(T1,.., %) SY = (Y1, -, ¥s)

if for each ¢ < r there exists some j < s with z; <p y;. We denote by w(P,O)
this partial order on the set of cellular strings on P with respect to O. Note that
w(P, ©) has a maximum element 1, given by the cellular string (1p).

The next proposition records a few properties of cellular strings. All of them
generalize properties which are easily verified in the special case of cellular strings
on a polytope with respect to a generic linear functional (see [2, §1]).

Proposition 5.1. Given cellular strings x = (z1,...,2,) end y = (Y1,-.-,Ys) on
P with x <y, we have:

(1) (9,231‘] N ((:)aIH-l] = {amaaz(l'i)} = {amin(xi+1)} fOT‘ each 1 < 1 <r- 1,
(ll) (0,.’171] n (Oazj] =0 if IZ _'.7| >2,
(iii) for each 1 < i < 1 the index j(i) satisfying x; < y;() s unique and the
function i — j(i) is increasing, that is, 1 <14’ implies j(i) < j(¢'),
(iv) for each j < s, there exist unique indices 1,1 such that @min(Z;) = Qmin(y;)
and Amaz (Ti') = Gmaz(Y5)-

Proof. For (i), note that if the intersection is larger then it contains at least one
atom a # Gmaz(Ti) = amin(Ti+1). The atom ¢ has a directed path in G(P)N [f), z5)
to the unique sink @yag(z;), and there is also a directed path in G(P)N[0, z;+1] from
the unique source Gmin(Zi+1) to a. Since amaz(Ti) = Gmin{Tit1), this contradicts
acyclicity of O.

The remaining assertions follow by similar arguments. O

One way in which facial acyclic orientations arise is from a shelling order on
the maximal faces of a regular CW-sphere X. Recall [6, Lemma 4.7.18, Theorem
4.7.24] that a shelling order of the maximal faces of X is equivalent to a recursive
coatom ordering on its face poset P. This gives rise to a recursive atom ordering
on the opposite poset P°P, which is the face poset of the polar dual CW-sphere X*
[6, Proposition 4.7.26]. The poset P°P has a 1-skeleton because it is the face poset

of a sphere. The recursive coatom ordering on P induces an acyclic orientation O
of G(P°P).

Proposition 5.2. The acyclic orientation O of G(P°P) induced from a shelling
order of a regular CW -sphere with face poset P is facial.

Proof. We must show that for any z € P°P with r(z) > 2, the restriction of the
orientation O to the atoms of [0, z]per has a unique source and sink. By definition
of a recursive atom ordering, the recursive atom ordering on P restricts to one on
its lower interval [ﬁ, z]por and this interval is also opposite to the face poset of a
(shellable) regular CW-sphere (see [6, Proposition 4.7.24]). Thus we may assume
without loss of generality that = 1p and show that © has exactly one source and
sink on the entire 1-skeleton G(P°P). It has at least one source and sink, namely the
first and last atoms in the ordering. There can be no other sources or sinks because
O comes from a shelling of a sphere (see the proof of [6, Proposition 4.7.22]). O
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One can associate to every poset Q its order compler A(Q), that is the simplicial
complex of totally ordered subsets of Q, and the topological space which is the
geometric realization of A(Q). In what follows, we will abuse notation and make
no distinction between @, the order complex A(Q) and its geometric realization,
hoping that no confusion will ensue.

We can now state the main result of this section. The special case of the Baues
problem for monotone paths asks about the homotopy type of the poset w(P, O) -1,
of proper cellular strings on P (see [2]).

Theorem 5.3. Let X be a reqular CW d-sphere with face poset P. Let O be the
facial acyclic orientation of the 1-skeleton G(P°P) of P°P induced by some fived
shelling order on the mazimal faces of X.

Then w(P%,0) — 1,, is homotopy equivalent to the (d — 1)-sphere triangulated
by the open interval (amag, 1) per -

Before proving Theorem 5.3, we identify some auxiliary objects and an important
hypothesis on O that arise in the proof.

Given any atom a of P, let w(P,0,a) be the poset of partial cellular strings
ending at a, i.e. the set of tuples x = (z1,...,z,) of elements of P with
r(z;) > 2 for each 14,
amin(zl) = Gmin,
Amaz(Ti) = @min(Ti41) for 1 <4 <r—1and
amaz(-'rr) = a.
Also define the poset D(P, O, a), called the O-backward vertez figure of P at a, to
be the following induced subposet of P:

D(P,0,a) = {z € P: amas(z) = a}.

Note that if @ = @maz, then D(P, O, @mqz) is just the half-open interval (@maz, i P
We say that the facial acyclic orientation O is tame if D(P, O, a) is contractible for
every atom a of P.

Lemma 5.4. Assume that P has a 1-skeleton and O is a tame, facial acyclic ori-
entation of G(P). Then w(P,O,a) is contractible for every atom a in P.

Proof. We use Babson’s Lemma, whose statement we recall next. See [11, Lemma
3.2] for a proof.
Lemma 5.5. (Babson [1]) Let f : X — Y be an order preserving map of posets. If

(i) f~'(y) is contractible for each y inY and
(ii) f~'(y) N X<z is contractible for each z in X andy inY with f(z) >y,

then f induces a homotopy equivalence. O

We can assume that ¢ # Gmaz, since w(P, O, Gmaz) = w(P, O) has the maximum
element 1, and hence is contractible. We wish to apply Lemma 5.5 to the forgetful
map

f: w(P,0,a) — D(P0O,a)
(1. Tp) +— T,
and use induction on the product of two orderings, one of which is the position of

a in the partial ordering of the atoms of P induced by O, and the other being the
rank of the poset P.
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To check condition (i) of Lemma 5.5, given y € D(P, 0, a), the fiber f~1(y)

consists of all partial cellular strings of the form (z1, ..., z,_1,y). Using Proposition
5.1, the map which sends such a cellular string to (z3,...,2,._1) gives a poset
isomorphism

f—l(y) = w(P1 07 amin(y))'

Since amin(y) is strictly less than a in the partial order induced by @, induction
implies that w(P, O, amin(y)) is contractible, as desired.

To check condition (ii) of Lemma 5.5, given y € D(P,0,a) and given any
X = (z1,.., Ty, ;) With f(x) > y, the set f~1(y) Nw(P,O,a)<x consists of
all partial cellular strings of the form (zi,...,z,_1,y) which lie below x. Us-
ing Proposition 5.1, any such cellular string must contain some element z; with
Amin(ZTk) = amin(z}), and the map which breaks such a cellular string into two
strings

({z1, .o oy @h=1), (Tky -« oy Tr—1))

gives a poset isomorphism
f-l (y) M w(P, O, a)sx = w(P, O, amin(x;)5(3'1w~,1;_1)) X w([(), .’E;], O, amm(y))

The first factor in the latter direct product of posets is contractible because it
has (z7,...,}_;) as its maximum element. The second factor is contractible by
induction on the rank of P, since [0, z’]p has smaller rank than P. a

Corollary 5.6. Assume that P has a 1-skeleton and O is a tame, facial acyclic
orientation of G(P). Then the poset w(P,O) — 1,, of proper cellular strings on P
s homotopy equivalent to the open interval (@maz, 1p) in P.

Proof. Consider the special case of the map f in the proof of Lemma 5.4 when
@ = Gmqy. This gives a map

f: w(P,0) = (amaz,1p]
which satisfies the hypotheses of Lemma 5.5. As a result, the restriction
Vi UJ(P, O) - iw - (amaxa iP)

of this map also satisfies the hypotheses of Lemma 5.5. Therefore it induces the
desired homotopy equivalence. O

We can now prove Theorem 5.3.

Proof of Theorem 5.3. Assume that P and O are as in the statement of the theorem.
In light of Corollary 5.6, we will show that O is tame. Thus, for any atom a of
PP, we must show that D(P°, O, a) is contractible. To this end, we rephrase the
definition of D(P°P, O, a).

Let R be the recursive atom ordering of P°? induced by the shelling of X. Let
I be the set of atoms b of [a, 1] por such that a’ precedes a in R, where [0, b] por =
{0,a,a’,b}. The definition of a recursive atom ordering implies that [ is an initial
segment in the ordering that R induces on the atoms of [a,1]per. Let I¢ be the
complement of I in the set of atoms of [a, i] por. Note that I¢ is also an initial
segment in a recursive atom ordering of [a, 1] por, since [7, Lemma 1.2] states that
the reverse of a recursive atom ordering is again a recursive atom ordering when
X is a sphere. Recall that D(P°,0,a) is the set of elements z > a of P°? for
which a,n42(2) = a. This is exactly the set of z > a for which every atom of [a, x|
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lies in I, or equivalently, the set of £ > a which do not lie above any atoms in I€.
It follows from {7, Theorem 1.3] (see also [6, Lemma 4.7.28]) that D(P°?, 0, a) is
contractible, since it is the complement of the filter generated by a set of atoms
(namely I¢) which form an initial segment in some recursive atom ordering coming
from the dual of a shellable sphere.

Corollary 5.6 now implies that w(P°P,®) — 1,, is homotopy equivalent to the
interval (@mag, 1)por. This interval is homeomorphic to a (d — 1)-sphere because it
is an open interval of corank one in the face poset of a shellable d-sphere (see e.g.
[6, Propositions 4.7.19, 4.7.24]). a

Corollary 5.7.
(i) [2, Theorem 1.2] For a convez d-polytope Q and generic linear functional f,
the poset w(Q,sg,tg) of cellular strings on Q is homotopy equivalent to a
(d — 2)-sphere.
(ii) [4, Theorem 2] For an oriented matroid L of rank r, the poset Ess(T (L, B))
of essential chains in the poset of topes (with respect to the base tope B) has
the homotopy type of an (r — 2)-sphere.

Proof. A generic linear functional f on @ gives rise to a shelling order on the
boundary (d — 1)-sphere X of the polar polytope Q* (see [13, Exercises 8.10, 8.11]).
One can then check that the poset of cellular strings w(Q, s¢,ts) from [2] is exactly
our w( PP O). Hence the first assertion follows from Theorem 5.3.

For an oriented matroid £ of rank r, [6, Theorem 4.3.3] states that any linear
extension of the poset of topes T(L, B) gives rise to a shelling of a regular CW
(r—1)-sphere X. One can then check that the poset of essential chains Ess(T (L, B))
is exactly our w(P°P, O). Hence the second assertion follows also from Theorem
5.3. a
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