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Mail-from: From athana@math.upenn.edu Mon Jan 26 14:08:29 1998

Received: from hans.math.upenn.edu (HANS.MATH.UPENN.EDU [130.91.49.156])
by geom.umn.edu (8.8.6.Beta4/8.8.6.Betad4) with ESMTP id OAA21977
for <deloera@geom.umn.edu>; Mon, 26 Jan 1998 14:08:28 -0600 (CST)

Received: (from athana@localhost)
by hans.math.upenn.edu (8.8.5/8.8.5) id PAA04196;
Mon, 26 Jan 1998 15:08:28 -0500 (EST)

Date: Mon, 26 Jan 1998 15:08:28 -0500 (EST)

From: athana@math.upenn.edu (Christos Athanasiadis)

Message-Id: <199801262008.PAA04196Rhans.math.upenn.edu>

To: deloera@geom.umn.edu

Subject: Re: r_d

Cc: athana@math.upenn.edu

Mime-Version: 1.0

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

Content-MD5: MHc6fb9gLZbM69noE3 /N+w==

Status: O
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Date: Mon, 26 Jan 1998 15:08:28 -0500 (EST)

From: athana@math.upenn.edu (Christos Athanasiadis)
To: deloeralgeom.umn.edu

Subject: Re: r_d

Cc: athana@math.upenn.edu

Mime-Version: 1.0

Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Content-MD5: MHc6fb9qLZbM69n0OE3 /N+w==

Hola Jesus,

I was sure you would have plenty of choices in the end, you deserve it!
I vote for UC Davis or California Politechnic. Boston College is still
good since it is pretty close and it is in Boston.

Last time I announced that
4 6
r (n) <= 0(n ) and r (n) <= O(n )
4 5

but now I claim that
2 4
r (n) <= 0(n ) and r (n) <= O(n ).
4 5

The proof is easy again. The normal fan of the MPP of P is the common
refinement of the normal fans of the (n-1 at most) fibers. The extreme
rays in the normal fan correspond to facets of P and these are at most
0(n"~2) by the UBT. So the MPP has at most 0(n"2) facets and by the UBT
again (in the polar version) the MPP has at most 0(n"2) vertices if it
is 3-dim (d=4) and at most O(n”4) if it is 4 dim (d=5).

The same reasoning gives a bound of n~{[d/2][(d-1)/2]} in general but
this not any good for d => 12 or so.

My reasoning last time was the following: the number of nonparallel
edges e of the fibers is at most the number of 2-faces of P, which is
at most O0(n”3) for d => 6 but 0(n*2) for 4 = 4, 5. There is a result of
Gritzmann and Sturmfels (SIAM J. Discrete Math. 6 (1993), 246-269)
which bounds the # of vertices of a Minkowski some given e, the maximum
occurs when you have zonotopes with a total of e generators in general
position.

Unfortunately, the bound obtained is exactly the one I got in out paper,



possibly larger by a factor of 2, I forget. But for d = 4, 5 it gave the
first small improvement.

The problem is that the fibers won’t be zonotopes when e = O0(n”3), i.e.
P is essentially 3-neighborly.

In any case, I may get stuck with this soon and any help would be much

appreciated. I think it is an interesting problem. There is something
special about normal fans of MPP’s that have to be used..

Have fan flying.

~Christos



(for e = %) If the Klee-Minty cube was a projective image of a regular cube, then the four

“horizontal” edges would have to meet in one point (or be parallel), which is clearly not the

case.
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Theorem 4.3 Forn >d > 0:
HBl(d+1.n+2) > QHBl(d,’n).

Analogous inequalities are true for the mazimal numbers of vertices H(d,n) and Hpa(d.n) on
arbitrary increasing paths resp. for paths according to Dantzig’s rule. Hence for d > 0 we have

H(d,2d) > Hpa(d,2d) > Hgl(d,2d) > 2%

Proof. Let P C R? be a simple (d,n)-polytope which achieves the maximum length for an
arbitrary increasing path (respectively of a path according to Bland’s or Dantzig’s rule), and

let ¢ : P — [0,1] be a corresponding objective function. Then for some 0 < & < % form the
deformed product ‘

v (P,(,D) 2 ([01 l]a[€71_€])
and use the same proof as for the Klee-Minty cubes. | U

4.2 The Goldfarb-Sit Cubes
Goldfarb & Sit [16] constructed linear programs — rescaled Klee-Minty cubes tailored to fool
the steepest increase rule — as follows. They analyzed the programs

J S
maxzﬁi'lm,-: z € GSy
i=1

where GSy C R? is the polytope given by

0 S I
Pzj-1 <

1

<
< & —pajy for2<j<d,

where 8 >2 6> 2 and §; := (OB)i‘l. It is immediate from Theorem 3.4 that we may construct
the Goldfarb-Sit cubes as deformed products

GSy = {0} CR
as; = [0,1] CR
GSyp1 = (GSgzq) ™ ([0,8041]), (B, 6441 — B]) C REHL.

and that they are combinatorial d-cubes.

15



(for € = %) If the Klee-Minty cube was a projective image of a regular cube, then the four
“horizontal” edges would have to meet in one point (or be parallel), which is clearTy not the

case.
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Theorem 4.3 Forn>d > 0:
HBl(d-{—l,n-i-?) > 2H}31(d,n).

Analogous inequalities are true for the mazimal numbers of vertices H(d,n) and Hpa(d.n) on
arbitrary increasing paths resp. for paths according to Dantzig’s rule. Hence for d > 0 we have

H(d,2d) > Hpa(d,2d) > Hg(d,2d) > 2%

Proof. Let P C R? be a simple (d,n)-polytope which achieves the maximum length for an
arbitrary increasing path (respectively of a path according to Bland’s or Dantzig’s rule), and

let ¢ : P —> [0,1] be a corresponding objective function. Then for some 0 < ¢ < 3 form the
deformed product \

(P,p) ™ ([0,1],[e,1=¢€])
and use the same proof as for the Klee-Minty cubes. O

4.2 The Goldfarb-Sit Cubes

Goldfarb & Sit [16] constructed linear programs — rescaled Klee-Minty cubes tailored to fool
the steepest increase rule — as follows. They analyzed the programs

J o
maXZﬁi‘lxi: z € GSy
=1

where GS,; C R? is the polytope given by

0 _<_ Iy S 1
Brj-1 < z; < &—Prj for2<j<d,

Where > 2,6 > 2 and §; := (68)*!. It is immediate from Theorem 3.4 that we may construct
the Goldfarb-Sit cubes as deformed products

GSo = {0} CR
GS; = [0,1] CR
GSd+1 = (GSd1 Id) X ([01 6d+1]1 [IH’ 6d+1 - /3]) c Rd+1 .

and that they are combinatorial d-cubes.

15
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(/for € = 3)- If the Klee-Minty cube was 2 prOJec.,tlve image of a regular cube, then the four
“horizontal” edges would have to meet in one point (or be parallel), which is clearly not the
case.

Z1

Theorem 4.3 Forn>d > 0:
HBl(d+1,n+2) > 2H31(d, n).

Analogous inequalities are true for the mazimal numbers of vertices H(d,n) and Hpa(d.n) on
arbitrary increasing paths resp. for paths according to Dantzig’s rule. Hence for d > 0 we have

H(d,2d) > Hpa(d,2d) > Hp(d,2d) > 2%

Proof. Let P C RY be a simple (d,n)-polytope which achieves the maximum length for an
arbitrary increasing path (respectively of a path according to Bland’s or Dantzig’s rule), and

let @ : P — [0,1] be a corresponding objective function. Then for some 0 < € < % form the
deformed product ‘

v (PaSO) N ([07 1]7[€a1_5])
and use the same proof as for the Klee-Minty cubes. U

4.2 The Goldfarb-Sit Cubes

Goldfarb & Sit [16] constructed linear programs — rescaled Klee-Minty cubes tailored to fool
the steepest increase rule — as follows. They analyzed the programs

d
maxZﬂi‘lzi: z € GS4
i=1

where GS; C R? is the polytope given by

1
5]'—:31:]'-—1 for 2 < j <d,

0 < =z <
Bzj.1 < z; <

where 3> 2, 6 > 2 and §; := (§8)""!. It is immediate from Theorem 3.4 that we may construct
the Goldfarb-Sit cubes as deformed products

GSg = {0} CR
GS; = [0,1] CR!
GSar1 = (GSg,yza) X ([0,0411), (18,0441 —B]) & Ré+L,

and that they are combinatorial d-cubes.
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