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Triangulating Point Sets in Space
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Communicated by David Dobkin

Abstract. A set P of n points in R? is called simplicial if it has dimension d and
contains exactly d+1 extreme points. We show that when P contains n’ interior
points, there is always one point, called a splitter, that partitions P into d+1
simplices, none of which contain more than dn'/(d +1) points. A splitter can be
found in O(d*+ nd?) time. Using this result, we give an O(nd*log,.,4 n) algorithm
for triangulating simplicial point sets that are in general position. In R® we give an
O(n log n+ k) algorithm for triangulating arbitrary point sets, where k is the number
of simplices produced. We exhibit sets of 2n+ 1 points in R* for which the number
of simplices produced may vary between (n—1)>+1 and 2n—2. We also exhibit
point sets for which every triangulation contains a quadratic number of simplices.

1. Introduction

Unless otherwise stated we let P denote a set of n points in R® which has
dimension d. P is in general position if each subset of P containing d + 1 points
bas dimension d. A simplex is a set of d+1 points in general position. A
triangulation of P is a partition of the interior of the convex hull of P into
simplices, the vertices of which are points of P. We say that P is simplicial if P
has exactly d +1 extreme points. Two extreme edges of P are disjoint if they
have no common endpoints. For terms not defined here the reader is referred to
the book by Griinbaum [3].

—————
* Research supported by the Natural Science and Engineering Research Council grant A3013 and
the F.C.A.R. grant EQ1678.
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Triangulations of planar point sets are well behaved and wel] understood. For

€xample, every triangulation of a given planar point set of n points has the same
number of triangles, and t

time and this is optimal {6]. The preceding reference
various kinds of planar triangulations,

Wway of triangulating a three-dimensional set s by using the sp
[6]. Roughly, the idea is to sweep through the points joinin
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The algorithms to- be presented in this paper are based on the following {
geometric fact that will be proved in Section 2:

Every simplicial set P of n points in d dimensions with n’'>0 interior
points can be partitioned into 4 + 1 simplices, none of which contains more
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than dn'/(d +1) points in its interior. The partitioning point is contained in
P and is called a d/(d +1)-splitter. It can be found in O(d*+ nd?) time.

Using the above fact, Section 3 describes an algorithm for triangulating
three-dimensional simplicial point sets in O(nlog n+k) time, where k is the
pumber of simplices produced. In case the vertices are in general position, the
algorithm is particularly simple and generalizes to all dimensions. In this case it
is shown that k= O(n). In R’ it is shown that k= O(n) even under the weaker
assumption that no more than a constant number of points are collinear (coplanar
points are allowed). Finally, in three dimensions, we show that the assumption
that the point sets are simplicial can be dropped and give an algorithm for

triangulating arbitrary point sets in the same time bound.

2. Geometric Results

Unless stated otherwise, we assume that P is a simplicial d-dimensional n point
set in R? with n’ interior points. Let {p,, ...

101

, Pa+1} be the vertices of P. Let x be

any vertex in the interior of P. Then P can be partitioned into d + 1 simplices

Si={P1,~--

fori=1,...,d+1. Let f(d) be a function defined on the integers. We call x an
f(d)-splitter if each simplex S; contains at most f(d)n’ points of P in its interior.
Figure 2 shows a planar point set and a 2/3-splitter. We call a splitter x optimal
if it minimizes the maximum number of points of P contained in the interior of
any of its new simplices. It is easy to verify that the splitter shown in Fig. 2 is

s Pie1s % Pisis -+ s Pav1}

optimal. We will prove the following theorem.

Fig. 2.
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Theorem 2.1. Let P be an n point simplicial set in R* with n'> 0 interior poins,
Then P contains a d/(d + 1)-splitter which can be Sound in O(d*+ nd?) time,

Proof. Let P’ denote the n’ interior points of P. The proof involves successively
deleting points of P’ that are “close” to the vertices of P. Any of the remaining
points can act as a splitter for P,

For each i=1,..., d+1, let h, be the unit normal of the facet of p not
containing vertex p;, pointing away from p;. That is, h; points to the half-space,
bounded by this facet, that does not contain Di. Set Q,=P’. We formalize the
deletion procedure mentioned above as follows. For each i = 1,...,d+1:

(a) For each xe Qi1 let s, =(x~p,)h;. Observe that s, is the distance of x
from p; in the direction h;.

(b) Let y; be the [n'/(d+1)]st order statistic in the ordering induced by h,.
(c) Set

I)i = {XE Q,'_I: S, < s)’.‘}’
13‘_ ={X€ Qi~1: sxs sy,-}’
Q={xeQ_;: sc=zs, ).

We first show that Qu+1 is nonempty. By construction, for i = 1,...,d+1

»

nl
Pl<——
|2 d+1’
and so

d+1

U P

i=1

<n’'

Therefore Q,,, is nonempty. Also by construction we have

nl
d+1’

|P|=

We claim that any z contained in Qunisad/(d+ 1)-splitter for P. Indeed, for
i=1,...,d+1, consider the simplices

Si={P1,---,Pi—n,Z,Pi+1’--~,Pd+1},

created by the splitter z. Draw a hyperplane H, with normal h; through z Let
H7Y be the closed half-space bounded by H, that contains p;, and let H; be the

opposite open half-space containing the interior of S,. We have by construction
that

BcH;, V/ N

since

2e Qi s Q,
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and this implies that z is at least as far from p; in the direction h; as y;. We may
now conclude that

o pl=|H A B|=|Blz—
\Hlmpl l ln l‘ | ll d+l
Therefore the number of interior points of P contained in the simplex S; is
pounded above by
n' _dn
d+1 d+1

|H7 nPj=n'—

It remains to show that the time bound can be achieved. Finding a splitter for
p involves for each i=1,..., d+1:

(a) Finding a normal vector h; pointing away from p;.
(b) Finding the [n'/(d+ 1)]st_order statistic in the direction h; from p;.

(c) Constructing the sets P;, P, and Q;.

Consider some i in the range 1,..., d. The normal required in step (a) can
be calculated 0O(d?) time. For step (b), consider any point x in P. Its distance
from p; in the direction h; is given by the dot product (x—pi)hi. This requires
0O(d) operations per point. Finding a one-dimensional order statistic requires
O(n) time. Therefore this step takes O(nd) time for each i In step (c) each of
the sets can be constructed in O(nd) time if they are constructed explicitly, or
in O(n) time using pointers. The total time complexity of the procedure is thus
seen to be O(d*+nd?). : O

We gave a different proof of the existence of a d/(d+1)-splitter in [1]. This
proof was based on an induction on d. A suitably chosen subset of points are
recursively projected onto a face of the simplex of one lower dimension. The
basic for the recursion is d =1, and at this point the algorithm returns the median
of the one-dimensional set. Because of the need to project points, the algorithm
has complexity O(nd*), and so the procedure given above is preferred.

Corollary 2.1. If Pis also in general position, P can be triangulated into at most
n'd+1 simplices in O(nd*10g,+1/4n) time.

Proof. The algorithm is as follows:

(a) Find a d/(d +1)-splitter for P and sets P, i=1,...,d+1,as described

in the proof of Theorem 2.1.

(b) Recursively apply (a) to each P, i=1,...,d+1, that is nonempty.

It follows from Theorem 1 that the recursion can have depth at most 10g;+1/4 -
It thus suffices to bound the total amount of work done at any level in the
recursion by O(nd*). Indeed, suppose at some level there are t nonempty
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simplices, with, respectively, m,, ..., m, vertices in their interiors. Then the tota|
amount of work at this level is

Y (d*+md?) < td*+ d’n,
i=0

The result follows since ¢ is bounded above by n. O

Theorem 2.2. For any integer t, there exist simplicial sets P with n'= t(d+1)
interior points in R? for which the optimal splitters is a d/(d + 1)-splitter,

Proof. We generalize the example of Fig. 2. Let d =2 be fixed. For convenience
in notation, we in fact construct an example in R that has dimension d. Indeed,
for i=1,...,d+1, letp,«=(x1,...,xd+l) where x; =d +1 and x =0 whenever j
is different from i. Then § = {pPi,...,pss}isa d-dimensional simplex containing

the point ¢=(1,...,1). We generate ¢ points on each segment joining a vertex
of S to c. Indeed, let

Py=2"c+(1-27)p,
for i=1,...,d+1,andj=l,...,t. Finally, set
P={p,»j:i=1,...,d+1;j=1,...,t}uS.

Now consider any splitter for P By symmetry, we may assume that it has the
label Dy, for some j. Tt is easy to check that the simplex {plj, D2, ..., Pa+y} cONtains
the simplex {c, p,, ... » Pa+1}. However, this latter simplex contains all points p;
with i=2. There are precisely dt =dn'/(d +1) such points. O

Corollary 2.1 shows, for fixed dimension 4, that a triangulation of a simplicial
point set in general postion can be constructed with a linear number of simplices.
Intuitively, one can image inserting the interior points one at a time. Each point
lands in exactly one simplex if the point set is in general position. This simplex
can be retriangulated creating d +1 new simplices. Suppose now that we relax
the assumption of general position. We consider the case d =3, It is possible
that a point is inserted into a face of the existing triangulation. This face bounds
two simplices (unless it is an external face, in which case it lies in one simplex
and there is no difficulty). We may now treat both simplices independently and
retriangulate each with the new point. This partitions each of the old simplices
into three new simplices for a net gain of four simplices.

The problems caused by collinearity are more serious. Repeating our earlier
point insertion process, suppose we insert a point into an edge of the existing
triangulation. As shown in Fig. 3, in a set of n+2 points, such an edge may lie
in as many as n—1 existing simplices. Inserting the point x into edge 12 in the
figure creates an additional n—1 simplices. If we insert a further n—3 points
into edge 12, we create a triangulation with 2n points and (n-1)? simplices. It
can be shown that the given triangulation is unique for this point set.

Consider the preceding example of 2n points with an additional point y on
edge 23, as shown in Fig. 4. First consider a partition of the simplex {1, 2,3,4}
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Fig. 3

into simplices {1, y, 3, 4} and {1,2, y, 4}. Each of these simplices is similar to the
example of Fig. 3 and can be triangulated with only 2n—2 simplices. On the
other hand, if we ignore the point y and triangulate the remaining points, we
obtain, as before, (n—1)* simplices. Inserting point y creates one additional
simplex. Summarizing, we have proved the following:

Theorem 2.3.

(a) A simplicial point set P in R? with at least n=5 points and no 3 points
collinear can be triangulated using at most 4(n—4) simplices.

(b) There exist 2n+1 point sets P in R? that can be triangulated with as few
as 2n -2 and as many as (n—1)>+1 simplices.
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(c) There exist 2n point sets P in R? JSor which the unique triangulation require:
(n—1)? simplices.

In a very recent paper, Rothschild and Straus [7] study the problem of which
n point sets (not necessarily simplicial) in d space produce the minimum and
maximum number of simplices. Firstly they characterize point sets which produce
the minimum number n—d of simplices. Then they consider which point sets
give the maximum number of simplices. Using the Upper Bound Theorem they
give bounds on the maximum number T, of simplices that can be constructed.
For d =3 they show that

(n—3)(n—-2)S T

<(n+1)(n—2)_
2 " 2

4.

The examples achieving the minimum number of simplices are quite different
from those that obtain the maximum number. In our case, we are interested in
those point sets that simultaneously allow both a “good” triangulation (linear)
and a “bad” triangulation (quadratic).

3. Algorithms for Three Dimensions

We will now describe an O(n log n+ k) algorithm for triangulating sets in three
dimensions. Initially we consider simplicial point sets. The heart of the algorithm
involves finding a 3/4-splitter for P. Let {r, s, 1, u} be the extreme points of P,
The procedure SPLIT(P, r, s, t, u) returns a 3/4-splitter for P. This algorithm is
described implicitly in the proof of Theorem 2.1 and will not be given in detail here.

We are now ready to describe our triangulation algorithm, TRIANGU-
LATE(P, r, s, t, u). This algorithm takes as input a set P and four points {r, s, ¢, u}
which are assumed in general position. The algorithm produces a triangulation
of the points of P contained in the convex hull generated by these four points,
CH(r, s, t, u). For convenience in describing the recurisve part of the algorithm
we allow points of P notin CH (r, 5, t, u). The excess points are simply discarded
in the first step. The algorithm is a standard “divide and conquer” procedure
based on SPLIT. A second procedure EDGE-GEN((r, s, t, u) is used to generate
the edges of the simplex, specified by its arguments, which is assumed to have
empty interior. In the case where the points of P are in general position, this
procedure is trivial and produces the obvious four edges. In the general case,
additional points may lie on the boundary of the simplex. These “degenerate”
points are detected in the divide phase: points lying on a dividing edge ij are
stored in a list Ej; points lying in the interior of a dividing fact i, j, k are stored
in a list Fj. The details of EDGE-GEN are given later.

TRIANGULATE(P, r,s, tou).
1. Let S={r, s, u}.

For all x € P if x ¢ interior of S then
begin
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remove x from P
if x lies on edge i,j of S let E;=E; w {x}
else if x lies on face (i, ), k) of S let Fiyy = Fyou{x}
end.
2. 1f |P|=5 then
begin
y= SPLIT(P, r, s, t, u); TRIANGULATE(P, 1, 5, 1, y);
TRIANGULATE(P, 1,5, ), u); TRIANGULATE(P, 1, 3, 1, u);
TRIANGULATE(P, y, 5, 1, u),
end
else EDGE-GEN(r, 5, 1, u).
DGE-GEN which triangulates a simplex
with no points in its interior and possibly many points on its boundary. Along
with the simplex, the procedure receives a list Fj, for each face {i,j, k}, of all
points interior to that face and a list Ej;, for each edge i, j, of all points lying in
the interior of that edge.
If each of the lists Fix is empty,

Finally we describe the procedure E

we proceed to the next case. Otherwise we
triangulate the points in each face, excluding points lying on its edges. This
process consists of four two-dimensional triangulation problems. Assume that
F,, is nonempty, and let x, y, z be the not necessarily distinct points in the
triangulation of Fr U {r, s, t} that are adjacent, respectively, to edges rs, st, tr (as
illustrated in Fig. 5). We then join vertex u to all points in F,, vertex x to all
points in Fys, vertex y to all points in Fiu, and vertex z is then joined to all
points in Fin. These edges together with the edges generated in the four two-
dimensional triangulatioh problems partition the simplex {r, 5, t, u} into a set of
simplices whose number if linearly proportional to the number of points in the
interior of its faces. Simplices with many points on their edges are then triangulated
separately as described in the following paragraph.

=

t

Fig. 5. Only triangulation of F, is shown.
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In this case we consider simplices with no points in their interiors, no points
interior to their faces, and many points on their edges. The first step is to sort
all the edge lists. For concreteness we use the alphabetic order of the vertices to
determine the direction of sorting, so that on edge ru the points are sorted from
r to u. Consider a simplex {r, 5, t, u} and let ij,, ij,, ..., iji, be the sorted points
along some edge ij. If all the points lie on two disjoint edges, say rs and tu, it
can be shown that the only possible triangulation is:

{r, rsy, t’ tul}’ {rsla rssy, t, tul}y R} {rsk,.,’ S, t’ tul},

{r’ rsy, tula tuZ}s {rsla rs,, tuly tu2}9 L] {rsk,,’ Sy tula tul}y

{rorsy, tu, ub, {rsy, rsy. tu, ud, oo {rse s, tu,, u

which has (|E,| + 1)(|E,.|+ 1) simplices. Otherwise there exists a face, say {r,s, t},
with at least two nonempty edge lists. We triangulate the face {, s, 1} as shown
in Fig. 6, and then join the opposite vertex u to all points in E,, U E,, U E,. These
edges partition the simplex {r, s, t, u} into a set of simplices whose number is
linearly proportional to the number of points in the edge lists of face {r, s, t}.
Each of the simplices that contain edges ru, su, and tu may have nonempty edge
lists. Since these edges cannot be disjoint, we can partition the simplices into a
linear number of simplices.

For a simplex §={r, 5, ¢, u} with empty interior, let m_ be the number of points
lying on the interior of edges of S and let m, denotes the number of points lying
in the interior of faces of S. We say that S is degenerate if m;=0 and if the
extreme points can be labeled so that |E,|>0, |E,.|>0 and for all other edges
ijs |EU| =0.

Theorem 3.1. The number of edges produced by EDGE-GEN is either

(i) O(m.+my) if S is nondegenerate, or
(ii) (|Es|+1)(|En]+1) if S is degenerate.

(a) (b)

Fig. 6. (a) Two nonempty edge lists. (b) Three nonempty edge lists.
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Triangulating points interior to the faces of an empty simplex requires
O(m¢log my) time. After sorting the edge lists, we can triangulate an empty
simplex with points on its edges in O(k) time, where k is the number of output
simplices. Since a point interior to a face is processed at most twice and the
points on each edge list are ordered once, the total time spent in EDGE-GEN
during the triangulation of P is O(nlogn+k). As the rest of the algorithm
TRIANGULATE runs in time O(nlogn), the overall running time is thus
O(nlog n+ k) time.

We conclude this section by describing how the assumption that the point sets
are simplicial can be dropped. The main idea is to partition the point set into a
collection of simplicial sets which are then processed separately by
TRIANGULATE.

Given an arbitrary set P of n points in R?, we begin by computing the convex
hull using the O(nlog n) time algorithm of Preparata and Hong [5], [6]. Let
CH(P) denote the subset of P consisting of those points on the convex hull. A
vertex x of CH(P) is chosen arbitrarily. The faces of the convex hull not
containing x, excluding points of the set that may lie interior to these faces, are
triangulated. Vertex x is then joined to all other points in CH(P). This results
in a decomposition of the convex hull into simplices, in O(n) time. Now we
describe how to distribute the nonconvex hull vertices into the interior, faces and
edges of those simplices.

Let H and H' be two nonidentical parallel planes of support of the convex
hull such that H intersects the convex hull at x. Let I(y, x) denote the line through
nonidentical points x and y. We project the convex hull vertices onto H', giving
a set C*, as follows:

C*={y:y'=Uy,x)nH'ye CH(P),and y # x}

so that y’ denotes the projection of a convex hull point y onto the plane H'.
Points in C* are joined by an edge whenever they arise from convex hull vertices
that were joined by an edge on the triangulated convex hull of P. C* forms a
planar subdivision of a convex polygon whose interior regions are all triangles.
A triangle on a face of the convex hull not containing x is mapped into an interior
triangle of the planar subdivision, and a triangle on a face of the convex hull
containing x is mapped onto an edge of the exterior face of C *_This is illustrated
in Fig. 7(a) and (b). Figure 7(a) shows a three-dimensional convex polyhedron
with hidden lines dashed. The planar subdivision C* obtained by projecting from
vertex 0 is shown in Fig. 7(b).

We now construct a subdivision hierarchy of O(logn) height using the
O(n log n) time and O(n) space algorithm of Kirkpatrick [4], [6]. For each
nonconvex hull vertex, z, we search the subdivision hierarchy for the location of
its projection, z'=1(z, x) " H', in the planar subdivision C*. In the case where
the points of the set are in general position, z' must lie in the interior of some
triangle and is directly associated with the corresponding simplex. In the general
case, additional tests must be performed to check whether z lies on an edge, on
a face, or in the interior of a simplex. Details of these tests are as follows:
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(b)

Fig. 7

if 2’ lies on vertex i’ of C* then
let £, = E,u{z}
if 2’ lies on edge i'j' of C* then
if z lies on edge ij of the convex hull then
let E; = E; u{z}
else
let Fy, = F, u{z}
if 2’ lies inside triangle i'j’k’ of C* then
if z lies on face {i, j, k} of the convex hull then
let Fy = Fy u{z}
else
let Py = Py u{z}.

The simplices are then processed separately by TRIANGULATE. Along with
the points interior to each simplex, the algorithm receives as input lists of the
points interior to each face and lists of points lying on each edge.

Our splitting algorithms generalize in a straightforward way to d-dimensional
space. Assuming the point sets are simplicial and in general position Corollary
2.1 shows that they may be triangulated efficiently. The triangulation algorithm
for general point sets does not, however, readily generalize due to two difficulties:
(i) convex hulls in higher dimensions are more difficult to compute and may
contain O(n!4~"/2)) faces; (ii) no general methods for point location in higher

dimensions are known and so distributing the points into simplices is computa-
tionally difficult.
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4. Note

some of the results described in this paper have since been independently
rediscovered by Edelsbrunner et al. {2]. In particular, for points sets in general
position, they have aiso found an O(nlog n) triangulation algorithm in three
dimensions based on the idea of splitting. This paper also contains several
interesting combinatorial results on extremum problems concerning triangula-
tions, that are not covered in our paper. Warren Smith has informed the authors
that he can improve the time complexity in Theorem 2.1 to O(ns(d)/d +d*),
where s(d) is the time required to multiply two d X d matrices (private communi-

cation).
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