Reverse Search for Enumeration

David Avis * Komei Fukuda t
School of Computer Science Graduate School of Systems Management
McGill University University of Tsukuba
3480 University, Montreal 3-29-1 Otsuka, Bunkyo-ku
Quebec H3A 2A7, Canada Tokyo 112, Japan

(December 15, 1992; Revised November 3, 1993)

Abstract
The reverse search technique has been recently introduced by the authors for efficient enu-
meration of vertices of polyhedra and arrangements. In this paper, we develop this idea in a
general framework and show its broader applications to various problems in operations research,
combinatorics, and geometry. In particular, we propose new algorithms for listing
(1) all triangulations of a set of n points in the plane,
(i) all cells in a hyperplane arrangement in RY,
(iii) all spanning trees of a graph,
(iv) all Euclidean (non-crossing) trees spanning a set of n points in the plane,
(v} all connected induced subgraphs of a graph, and
(vi) all topological orderings of an acyclic graph.

Finally we propose a new algorithm for the 0-1 integer programming problem which can be
considered as an alternative to the branch-and-bound algorithm.

1 Introduction

The listing of all objects that satisfy a specified property is a fundamental problem in combinatorics,
computational geometry, and operations research. Typical objects to be enumerated are spanning
trees in a connected graph, vertices and faces of a convex polyhedron or an arrangement of hyperplanes
given by a system of linear inequalities, triangulations of a set of points in the plane, etc.

There are several known search techniques for enumeration problems. Backtrack search is known
to be useful for various enumeration problems associated with graphs [18]. For enumeration problems
in computational geometry, the incremental search technique has been frequently used [7]. Graph
search such as depth first search or breadth first search can be widely applicable for the case where
the objects to be listed are the vertices of some connected graph.

In this paper, we introduce a new exhaustive search technique, called reverse search, which can
be considered as a special graph search. “This new search can be used to design efficient algorithms
for various enumeration problems such as those mentioned above. Reverse search algorithms, if
successfully designed, have the following characteristics:

“Research supported by the Natural Science and Engineering Research Council Grant number A3013 and the
F.C.A.R. Grant number EQ1678.

'Partially supported by (1) Grant-in-Aids for Co-operative Research (03832008) of the Ministry of Education, Science
and Culture and (2) Fujitsu Laboratories Ltd. Kawasaki, Japan.

(1) time complexity is proportional to the size of output times a polynomial in the size of input,
(2) space complexity is polynomial in the size of input,

(3) parallel implementation is straightforward, (since the procedure can be decomposed into multiple
independent subprocedures at each general stage).

In order to explain the basic idea of reverse search, let G be a connected graph whose vertices
are precisely the objects to be listed, and suppose we have some objective function to be maximized
over all vertices of G. A local search algorithm on G is a deterministic procedure to move from

any vertex to some neighboring vertex which is larger with respect to the objective function until *

there exists no better neighboring vertex. {Note that a local search algorithm will be defined as a
more general procedure in the formal discussion in Section 2). A vertex without a better neighboring
vertex is called local optimal. The algorithm is finite if for any starting vertex, it terminates in a finite
number of steps. Well-known examples of local search algorithms are the simplex method for linear
programming, the edge-exchange algorithm for finding 2 minimum spanning tree in a weighted graph
[1, Section 10.5], and the flip algorithm for finding a Delaunay triangulation in the plane [7, 8, 21].
The simplex method is not finite in general, but finite if a certain pivot rule such as Bland’s smallest
subscript rule is used to restrict the pivot selection, while the other two algorithms are finite (A
detailed description of the flip algorithm will be given in Section 3).

. Let us imagine the simple case that we have a finite search algorithm and there is only one local
.. optimal vertex z* (which is the optimal solution). Consider the digraph T with the same vertex set
Lo e ® as G and the edges which are all ordered pairs (z, z') of consecutive vertices z and z’ generated by

the local search algorithm. It should be clear that T is a tree spanning all vertices with the only sink

= &% Thusif we trace this graph T from z* systematically, say by depth-first search, we can enumerate
Wk . all vertices (i.e. objects). The major operation here is tracing each edge against its orientation which y
. corresponds to reversing the local search algorithm, while the minor work of ‘backtracking is simply?

S }/‘U‘ performing the search algorithm riee. It is noteworthy that we do not have to store any information

BT Q about visited vertices for this search because T is itself a tree.

o This new search technique has an interesting application to hard combinatorial optimization.

S Observe that for each vertex z, every vertex y below z in T (those y such that there is a directed

.~ # path from y to z) has no larger objective value. Suppose we are looking for some vertex satisfying a

4 side constraint (e.g., integrality for linear programming case) with largest objective value. Then, one

%f B can perform a reverse search but only partially: Keep the current best solution % and the current

best value Z, and whenever the search detects a better solution satisfying the side constraint, update
the current best solution and value. Whenever it detects a vertex with lower objective value, then

; abandon going lower in the tree. =~ EhghMcl-ﬁw'
X We should make some remarks on parallelization of the reverse search. It is quite easy to see’ C o\ e
TR

that a reverse search algorithm can be easily parallelized, since it only has to visit all vertices of "

a well-defined tree from a given root. One trivial implementation is to assign some free processor
a son of the root whose branch is not yet traversed. This can be done recursively of course: each
assigned processor also assigns some of its sons to any free processors. The termination of each
sub-task is easily recognized by using a depth counter. The important question is: how much can we
accelerate the computation? Obviously, it is restrained by the height of the tree from the root, and
-the computational time depends at least linearly on this height. While we cannot easily estimate the
"height in some cases like the simplex method case, there are many cases where the height is small. We
believe that such cases have significant potential for successful parallel computing. Among others,
these cases include the enumeration of spanning trees in a connected graph, vertices and cells in an
. arrangement of hyperplanes, and triangulations of a point set.

: -
i i 4 A~ !

. {- ' S T ‘L GTT ¢ c Y,CJ A ‘*’ Ca Se \
2 .

o

The original idea of reverse search came from the vertex enumeration algorithm [4, 5], proposed by
the authors, for polyhedra or for arrangements of hyperplanes which reverses the simplex algorithm
with Bland’s smallest subscript rule or the criss-cross method for linear programming, respectively.

Here is how the present paper is organized. The next section is devoted to a formal presentation
of Jocal search and reverse search. In Section 3, we give several applications of reverse search. The
notion of partial reverse search is given in Section 4 together with some applications such as 0-1-
integer programming.

2 Reverse Search

In the introduction we have given a basic idea of reverse search for enumeration. Here we shall
present it formally with more generality.

Let G = (V, E) be a (undirected) graph with vertex set V and edge set E. We shall call a triple
(G, S, f) local search if S is a subset of V, f is a mapping: V\S = V satisfying

(L1) {v, f(v)} € E for each v € V\S.

and finite local search if in addition,

(L2) for each v € V\S, there exists a positive integer k such that f*(v) € S.
Here is a procedural form of a local search (G, S, f):

procedure LocalSearch(G,S, f,vo:vertex of G);
v 1= vg;
while v ¢ S do
v = f(0)
endwhile;
output v.

S

The function f is said to be the local search function, and G the underlying graph structure. Naturally,
we consider the set V to be the set of candidates for a solution, the set S to be the set of solutions.
The local search function f is simply an algorithm for finding one solution.

It is not difficult to find examples of local search. To list a few,

e the simplex method for linear programming, where V is the set of feasible bases, F is induced
by the pivot operation, f is the simplex pivot, and S is the set of optimal bases,

o the edge-exchange algorithm for finding a minimum spanning tree in a weighted graph [1,
Section 10.5], where V' is the set of all spanning trees, F is induced by the edge-exchange

operation, f is the best-improvement exchange algorithm, and S is the set of all minimum
spanning trees,

e the flip procedure for finding a Delaunay triangulation in the plane for a given set of points,
where V is the set of all possible triangulations, E is induced by the flip operation, f is the flip
algorithm, and S is the set of Delaunay triangulations.

1t will be helpful for us to keep at least one of these examples in mind for better understanding of
several new notions to be introduced below.

The trace of a local search (G, S, f) is a directed subgraph T' = (V, E(f)) of G where

E(f) = {(v,f(v)):veV\S}

VA The trace T is simply the digraph with all vertices of G and those edges of G used by the local search.
f’ i 'j t We also define the height h(T') of a trace T as the length of a longest directed path in T. An obvious
' }‘l’ ! ...~ =5l important remark is

0"

| e

Property 2.1. If (G, S, f) is a finite local search then its trace T is a directed spanning forest of G
with each component containing exactly one vertex of S as a unique sink.

“Let (G, S, f) be a finite local search with trace T, and denote by T'(s) the component of T
containing a vertex s for each s € S. We call the following procedure an abstract reverse search:

procedure AbstractReverseSearch(G,S,f);
for each vertex s € S do
traverse the component T'(s) and output all its vertices
endfor.

Here we are purposely vague in describing how we traverse T'(s). The actual traversal depends on
how the local search is given: in almost all cases for which reverse search is useful, G is not explicitly
given. Also, we shall deal with the case where |S| > 1, and the set S is not explicitly given. In many
cases, we can consider S to be the output of another reverse search for which the solution set is a
singleton.

Thus, it is extremely useful to discuss a special implementation of reverse search when the local
search is given in a certain way which is general enough for our applications to be described later
but yet restricted enough for us to make interesting statements about the time complexity of reverse
search.

We say that a graph G is given by adjacency-oracle or simply A-oracle when the following con-
ditions are satisfied:

(A1) The vertices are represented by nonzero integers.

(A2) An integer § is explicitly given which is an upper bound on the maximum degree of G, i.e., for
each vertex v € V, the degree deg(v) is at most this number.

(A3) the adjacency list oracle Adj satisfying (i), (ii) and (iii) is given:
(i) for each vertex v and each number k with 1 < k < § the oracle returns Adj(v, k), a vertex
adjacent to v or extraneous 0 (zero),
(ii) if Adj(v,k)= Adj(v,k") # 0 for some v € V, k and k', then k = ¥/,
(iii) for each vertex v, {Adj(v,k) : Adj(v,k) # 0,1 < k < 8} is exactly the set of vertices

adjacent to v.

The conditions (i) - (iii) imply that Adj returns each adjacent vertex to v exactly once during
the § inquiries Adj(v, k), 1 < k < 4, for each vertex v.

The conditions (A2) and (A3) may not seem to be natural, but as we will see, in many cases,
we have no knowledge of the maximum degree of the underlying graph but only an upper bound.

4
=L

ks

Foisbigmm

Consider the simplex method. For each feasible basis, some pivot operations lead to feasible bases,
and others lead to non-feasible bases. In general (with possible degeneracy and an unbounded feasible
region), we do not know the maximum number of adjacent feasible bases. However, we have a trivial
bound, that is, the number of pivot positions (= number of basic variables times number of nonbasic
variables). Associated with each feasible basis and each k-th pivot position we have either an adjacent
feasible basis or something else (i.e. a nonfeasible basis or impossible pivot), that determines our
A-oracle. For the flip algorithm, one can naturally see that the underlying graph is given by A-oracle.

A local search (G, S, f) is said to be given by an A-oracle if the underlying graph G is.

When a local search is given by an A-oracle, we can write a particular implementation of abstract
local search. The following procedure, ReverseSearch, which will be used in all of the applications

in the present paper, is the one where the traversal of each component is done by depth first search
and the set S is explicitly given:

procedure ReverseSearch(Adj,8,5,f);
for each vertex s € S do
v:=s; j:= 0; (* j: neighbor counter *)
repeat
while 7 < § do
J=7+1
(rl) next := Adj(v,j);
" if nezt # 0 then
(r2) if f(next) = v then (* reverse traverse *)
v:=nezt; j: =0
endif
endif
endwhile;
if v # s then (* forward traverse *)
(f1) u=v; v:= f(v);
(f2) j:=0; repeat j:=j+1 until Adj(v,j) = u (* restore j *)
endif
untilv =sand j=4§
endfor.

Note that for each vertex v € V'\S, exactly one “forward traverse” is performed in the procedure
ReverseSearch. The time complexity of ReverseSearch can be now evaluated. For a local search
(G, S, f) given by an A-oracle, let ¢(f) and t(Adj) denote the time to evaluate f and Adj, respectively.

Theorem 2.2. Suppose that a local search (G, S, f) is given by an A-oracle. Then the time com-
plexity of ReverseSearch is O(6 t(Adf)|V|+ t(f)|E|)- ‘

Proof. It is easy to see that the time complexity is determined by the total time spent to execute
the four lines (rl), (r2), (f1) and (f2). The first line (rl) is executed at most § times for each vertex,
and the total time spent for (r1) is O(é t(Adj)|V]|). The line (r2) is executed as many times as the
degree deg(v) for each vertex v, and thus the total time for (r2) is O(t(f){E|). The third line (f1) is
executed for each vertex v in V'\S, and hence the total time for (f1) is O(¢(f)(|V| — |S|)). Similarly,
the total time for (£2) is O(é t(Adj)(|V] - |S|)). Since |V| —|S| < |E|, by adding up the four time

complexities above, we have the claimed result. |

iy

Corollary 2.3. Suppose that a local search (G, S, f) is given by an A-oracle. Then the time complez-
ity of ReverseSearch is O(8 (t(Adj) + t(f))|V]). In particular, if §, t(f) and t(Adj) are independent
of the number |V| of vertices in G, then the time complezity is linear in the output size |V].

Proof. The claim follows immediately from Theorem 2.2 and the fact that 2|F| < §|V]|. | |

The assumption that §, t(f) and t(Adj) are independent of the number |V] is not satisfied in
general (e.g. when G is a complete graph), but is for many cases it can be assumed. In fact, all
applications to be presented in the next section satisfy this assumption.

We have already two simple formulas, Theorem 2.2 and Corollary 2.3, for the time complexity of
the reverse search. We shall use these to evaluate the time complexity of some of our applications.
However, a stronger result is possible in some cases. One of such cases is when the lines (rl1) and
(r2) have a shortcut, i.e., it is possible to check for any vertex v of G and any integer 1 < j < §
whether f(Adj(v, 7)) = v without executing Adj and f. Another case is when the procedure (f2) has a
shortcut, i.e., it is possible for any vertex v of G to determine the integer j such that Adj(f(v),7) =v
without executing Adj explicitly. In order to deal with these cases more clearly we shall give below
an alternative version of reverse search. Here we use the convention that f(0) = 0.

procedure ReverseSearch2(Adj;6,S5,f);
for each vertex s € S do
v:=s; j :=0; (* j: neighbor counter *)
repeat
while j < § do
J=7+1
(r1’) if f(Adj(v,j)) = v then (* reverse traverse *)
(:2) vim Adj(v,); § = 0
endif
endwhile;
if v # s then (* forward traverse *)
(f1) u:=v; v:= f(v);
(f2") determine j such that Adj(v,j) = u (* restore j *)
endif
untilv=sand =4
endfor.

In order to describe the time complexity of this procedure, we define t*(Adj, f) to be the time
necessary to decide for any vertex v of G and any integer 1 < j < § whether f(Adj(v,j)) = v (i.e.,
tR(Adj, f) is the time to decide whether moving from v to Adj (v,) is a reverse of f). Similarly, we
define tF'(Adj, f) to be the time necessary for any vertex v of G to determine the integer j such that

Adj(f(v),j) =v.

Theorem 2.4. Subpose that a local search (G, S, f) is given by an A-oracle. Then the time com-
plezity of ReverseSearch? is O((t(Adj) + & tf(Adj, f) + t(f) +tF (Adj, /))|V]).

Proof. The proof is similar to that of Theorem 2.2. The total time for (r1’) is O (S t®(Adj, f)|V),
and that for (r2’) is O(¢(Adj)(|V] —|S])). Similarly, the total time for (f1) is O(¢(f)(|V| - |S])), and
that for (f2°) is O(tF (Adj, f)(IV] —|S])). Adding up all these yields the result. ||

DR

Looking into this theorem, we notice a possibility of further refinement of reverse search. Remark
that the part t; = (t(Adj) 4§ tR(Adj, f)) of the time complexity is the time necessary for the reverse
traversal, i.e., moving away from the top vertex, and the remaining part t2 = (¢(f) + t (Adj, f)) is
the time for the forward traversal, i.e. , moving toward the top vertex. One cannot really shorten
the first part, but interestingly one can shorten the latter part by storing the forward traverse paths.
More precisely, if we store the forward sequence to return to the top vertex while reversing, Neither
f nor Adj need to be evaluated to go forward. This remark can be particularly important when the
trace of a local search has a short height and ¢, is an order of magnitude smaller than t;, though
presently we do not have any such applications.

Finally we should remark that the space complexity is usually independent of the cardinality of
the output. At the moment, we cannot evaluate precisely the space complexity, but it only depends
linearly on the space necessary to store a single vertex and the space necessary to realize the functions

(oracles) f and Adj.

3 Applications of Reverse Search

3.1 Vertex Enumeration in Polyhedra

The vertex enumeration problem is to list all vertices of the convex polyhedron given by P = {z :
Az < b,z > 0}, where A is an m X n matrix and b is a m-vector.

Consider the linear program of form: maximize cz subject to Az < b and z > 0. The simplex
algorithm can be considered as a finite local search (Grp, SLp, frp) where GLp = (Vip,ELp) is a
graph with Vi p is the set of all feasible bases; where two bases are adjacent if and only if one can
be obtained from the other by a pivot operation; Spp being the set of all optimal bases; and frp is
the simplex algorithm with Bland’s smallest subscript rule. Moreover, represent each basis by the
set of indices of basic variables, and define Adj.p to be AdjLp(B, (i,j)) = B — i+ j if B is a basis
and B — {4 j is a basis, and 0 otherwise, for each basic and nonbasic indices 7 and j. Then the local
search is given by an A-oracle Adjrp with dpp = m x n.

Now, how can we find all vertices of P? We can easily find one feasible basis of the linear inequality
system Az < band z > 0, say B, by the simplex method or the interior-point method. Then we can
set up an LP with objective function cz for which the current basic solution is the unique optimal
solution and B is an optimal basis. The associated local search (Grp, SLp, fLp) immediately yields
the reverse search ReverseSearch(Adjrp,0r.p,SLp,fLp) to list all feasible bases as long as the set Spp
of all optimal bases are explicitly given.

If the set Spp is the singleton {B} and we are done. Otherwise, we can enumerate all optimal
bases from B by another reverse search with respect to the dual simplex method applied to an
auxiliary problem. See [4] for details.

If the system Az < b,z > 0 is nondegenerate, then one can design a much simpler algorithm.
The critical difference is that for each feasible basis B and each nonbasic index j, there exists at
most one basic index i = i(j) such that B — ¢ 4 j is again a feasible basis. Define Adjrp to be
Adjrp(B,j) = B — i+ j if there exists ¢ such that B — i 4 j is a feasible basis, and 0 otherwise, for
each nonbasic index j. Then the local search is given by an A-oracle Adj p with smaller 8pp = n.

It is well known that the simplex method with Bland’s rule might take an exponential number
of pivots to find an optimal solution, see [3]. This means that the height of the trace Trp cannot
be bounded by a polynomial function of m and n. Theoretically, this means even the best parallel

implementation may not be much faster. The expected behavior, however, might turn out to be
quite different.

R

A Mathematica implementation of the vertex enumeration algorithm is available in [12], and a C
implementation in [2].

3.2 Enumeration of Cells in Arrangements

Let E = {1,2,...,m}, let A be an arrangement of distinct hyperplanes {H; : i € E} in R", where
each hyperplane is given by a linear equality H; = {z : @’z = b;}. The two sides of H; are Hf ={z:
a‘z > b;} and HY ={z: a’z < bj}. For each z € R", the signed vector SV (z) of z is the vector in
{—,0,4}¥ defined by

- ifze HS
SV(z)i=< 0 ifze€ H; (1€ E).
+ ifzeHF

Let VogLr be the set of signed vectors of points in R® whose nonzero support is E. We can
identify each vector ¢ in Vogr, with the open cell (open n-face) of the arrangement defined by
{z : SV(z) = ¢}. For two cells ¢ and ¢/, let sep(c, ¢/} be the set of separators of ¢ and ¢, that is,
the set of elements ¢ of E such that ¢; and ¢} have opposite signs. We say that two cells ¢ and ¢’
are adjacent in Gegry, if they differ in only one component, or equivalently, |sep(c,)| = 1. The
following lemma is important.

Lemma 3.1. For any two distinct cells ¢ and ¢’ in Voprr, there exists a cell ¢! which is adjacent
to ¢ and sep(c,c”) C sep(c,).

Proof. Let cand ¢’ be two distinct cells, and let z (') be a point in ¢ (in ¢/, respectively) in general
position. Moving from z toward z’ on the line segment [z, z'], we encounter the sequence of cells:
Co = €,€1,C2,...,¢k = ¢, and we can easily verify that c; is adjacent to ¢ and sep(c, c;) C sep(c,).

Let us assume that V' contains the cell ¢* of all +’s. Lemma 3.1 implies that for each cell ¢ different
from ¢*, there is a cell ¢ which is adjacent to ¢ and sep(c*, ¢") C sep(c*,c). Let us define foprr(c)
as such ¢” that is lexico-largest (i.e., the unique element in sep(c,¢”) is smallest possible). Then,

(GeeLL, ScELL, foELL) is a finite local search with Scgrr, = {¢*}. By Lemma 3.1, one immediately
obtains:

Corollary 3.2. The height of the trace TcgLL of the local search (GogLL, ScELL, feELL) ts at most
m.

Figure 4.1 describes the trace of the local search on a small example with n = 2 and m = 4.

By reversing this local search, we obtain an algorithm to list all cells in an arrangement. There
are a few things to be explained for an implementation. First, we assumed that the cell ¢* of all +'s
is given, but we can pick up any cell ¢ in the arrangement, and consider it as the cell of all +’s since
replacing some equality a‘z = b; by —a*z = —b; does not essentially change the arrangement. Note
that one can obtain an initial cell by picking up any random point in R™ and perturbing it if it lies
on some hyperplanes.

Now, how can we realize ReverseSearch(AdjcgLL0cELL,SCELL,focELL) in an efficient way? First
we can set dcgrr = m and Scprr = {¢*}. For any cell ¢ € Vpgrr and k € E, the function
AdjcgLL(c, k) can be realized via solving an LP of the form

minimize (maximize) y;

subject to y= Az — b,
y; > 0 for all 1 # k with ¢; = +,
y; <0 for all ¢ # k with ¢; = —,

(3.1)

RS

where minimization (maximization) is chosen when ¢x = + (cx = —, respectively). The function
returns the adjacent cell ¢’ with sep(c,) = {k} if and only if LP (3.1) has a feasible solution with
negative (positive) objective value. The time t(Adjcerr) depends on how an LP with n variables
and m — 1 inequalities is solved. We denote this as a function {(m, n) of m and n.

There is a straightforward implementation of fogryz, which solves a sequence of LP’s similar to
(3.1) with objective functions y, Y2, y3, - . . This means we may have to solve O(m) LP’s in the worst
case. Presently we don’t know how to implement it in a more efficient manner.

Theorem 3.3. There is an implementation of ReverseSearch(AdjcgLL, écELL, ScELL, fcELL) for
the cell enumeration problem with time complezity O(m n l(m,n)|Vegrr|) and space complezity
O{m n).

Proof. To prove this, first we recall that Theorem 2.2 says, the time complexity of ReverseSearch
is O(6 t{Adj)|V| + t(f)|E|). As we remarked earlier, dcgrr, = m, t(Adjcerr) = O(l(m,n)), and
t(fcerr) = O(m l(m,n)). Since |Ecgrr| < n |Vegrr| holds for any arrangement (see, e.g., [10, 11]),
the claimed time complexity follows. The space complexity is clearly same as the input size O(m n).

We believe that there is no previously known algorithm to enumerate all cells of an arrangement
whose time complexity is polynomial in the size of output.

The cardinality of output is of course exponential in m and n, and the maximum, explicitly given
by Buck’s formula Y 7 &’), is attained for any simple arrangements, see [6, 7]. By Corollary 3.2,

the cell enumeration can profit a lot from parallel implementation.

3.3 Enumeration of Triangulations

Let P be a set {p1,...,pn} of n distinct points in the plane. A pair {p, ¢} of distinct points in P

_is called an edge if the line segment connecting p and q does not contain any other point of P. A

triple {p, ¢, r} of points in P is called a triangle if they are not collinear and the their convex hull
(triangle region) does not contain any other points in P. A point or edge in P is called ezternal if it
is contained in the boundary of the convex hull of P, and internal otherwise.

A triangulation of P is a set A of triangles in P such that (1) each external edge is contained in
exactly one triangle of A, (2) each internal edge is contained in either no triangle of A or exactly
two triangles of A. An edge of a triangulation A is an edge contained in at least one triangle of A.

‘By using Euler’s relation, one can easily see that the number of triangles and edges of a triangu-
lation are independent of the choice of triangulation.

Proposition 3.4. Let A be a triangulation of P, and let f; and f, be the number of edges and
triangles of A, respectively. Then, they are determined by f; = 3n—n* — 3, fo = 2n — n* — 2, where
n* denotes the number of external points.

It is clear from the definition that the number of triangulations is finite. The enumeration of
all possible triangulations of P is the problem in this section. In order to apply the reverse search
technique, the notion of Delaunay triangulation and the flip algorithm is very useful.

Let A be a triangulation with f; triangles whose interior angles a1, as,..., a3y, are indexed in
such a way that o; < oy for any 1 < i < j < 3f;. The vector a(A) = (o4, as,...,a3;,) is called
the angle vector of A . A triangulation is said to be Delaunay if its angle vector is lexicographically

maximal over all possible triangulations of the same point set, where the comparison of components
is done from left to right.

Let A be a triangulation. Let {a,b} be any internal edge of A, and let {a,b,c} and {a,b,d}
be the two triangles of A containing it. We call {a,b} flippable if the set Flip(A,{a,b}) := A\
{{a,b,c},{a,b,d}} U {{a,c,d},{b,c,d}} is again a triangulation of P. One can easily see that an
internal edge {a,b} is flippable if and only if the points a, b, ¢, d form a convex quadrangle.

We call {a, b} legal if the circumscribing disk of one of the triangles abc, abd does not contain the
other, and illegal otherwise. When an edge {a, b} is illegal, it is always flippable and the operation
Flip(A,{a,b}) is called a Delaunay flip.

It is known that a triangulation A is Delaunay if and only if it does not contain any illegal
edges. The flip algorithm is simply a procedure to use the Delaunay flip operation repeatedly in any
order until no such operation is possible, see Figure 4.2. The following theorem states that the flip
algorithm is finite.

Theorem 3.5 ([8, 21]) : The flip algorithm terminates in O(n?) steps and finds a Delaunay trian-
gulation of P, starting with any initial triangulation.

To apply reverse search, let Vrrr (STrr) be the set of all (Delaunay, respectively) triangulations
of P. The underlying graph Grry is (Vrrr, ETri) where two vertices are adjacent if and only if one
is a flip of the other. We define a local search frp; as the function from Vrr;\Stprs to Vrrr such
that

fTRI(A) = Flip(A? {a’ b})

where {a, b} is the lexico-smallest illegal edge of A.
Now, how one should design an A-oracle? For any triangulation A, let L be the list of interior
edges ordered lexicographically and let Li be the kth member of L. By Proposition 3.4, the cardinality

|L| of L is exactly 3n — 2n* — 3, which we denote by drr;. The adjacency oracle Adjrri(A k) is
then defined as

Flip(A, L) if Ly is flippable,
0 otherwise,

AdjTri(A k) == {
foreach k =1,...,07R].

Theorem 3.6. There is an implementation of ReverseSearch2(Adjrrr, TR, STRI, frRI) for the
triangulation enumeration problem with time complezity O(n |VrRr1|) and space complezity O(n).

Proof. For the implementation, we can use the quad-edge data structure [13] for storing a tri-
angulation. Also we store L as a linked list of edges each with a flag indicating either nonflippable,
legal or illegal, and store the lexico-smallest illegal edge of L. For the analysis of time complexity,
we apply Theorem 2.4. First, note that we can evaluate Adjrrr and frgr in O(n) time, including
time to update L and the triangulation data. Since we store the lexico-smallest illegal edge of L,
tR(Adj, f) and t¥ (Adj, f) are both O(1). Since érrr = O(n) and by Theorem 2.4, we have the stated
time complexity. The space complexity is clearly O(n). |

We remark that enumerating all elements in Stpgy (i.e. the enumeration of all Delaunay tri-
angulations) is unnecessary. It is possible to transform any Delaunay triangulation to another by
a sequence of flips, and one can extend the local search frp; so that it finds the lexico-smallest
Delaunay triangulation by flipping some legal edge at a non-lexico-smallest Delaunay triangulation.

Theorem 3.5 shows that a parallel implementation can be quite fast.

It should be mentioned that essentially the same algorithm has been discovered independently
by H. Telley.

10

3.4 Enumeration of Connected Induced Subgraphs

Let G = (V, E) be a graph with vertexset V = {1,2,...,n} and edge set E of size m. For any subset
U of V, we denote by G(U) = (U, E(U)) the subgraph of G induced by U, i.e. E(U) is the set of
edges of G whose endpoints are both in U.

In this section, we apply the reverse search technique to the enumeration of all connected induced
subgraphs of a given graph G. It will be seen that the enumeration of connected subgraphs as
opposed to connected “induced” subgraphs can be treated in a similar manner.

The following lemma is essential.

Lemma 3.7. Let G = (V,E) be a graph and let U be a nonempty subset of V such that G(U) is
connected. Then there exists a vertex j € U such that G(U — j) is connected.

Proof. Let the assumptions be satisfied. If |[U| = 1 then the lemma is trivial. Assume that
|U| > 2. Take any spanning tree T of G(U), and take any vertex j of T having degree one, which
always exists. Removal of such a vertex cannot disconnect T and the graph G(U). |

It is quite easy to prove that there is an opposite operation preserving connectivity.

Lemma 3.8. Let G = (V, E) be a connected graph and let U be a proper subset of V such that G(U)
is connected. Then there ezists a vertez j € V \ U such that G(U + j) is connected.

Each of the two lemmas above yields a reverse search algorithm for enumerating all connected
induced subgraphs. Here we exploit the first one, Lemma 3.7.

Let Vors be the family of subsets U of V such that G(U) is connected, and let Sgrs = {#}. By
Lemma 3.7 The following local search function fors from Voys \ Scrs to Vers is well-defined:

fers(U):=U—j

where j is the smallest vertex in U such that G(U — j) is connected. Thus for any nonempty set
U € Vers the function fors generates a unique sequence of subsets U, f(U), f3(U),.. ., fl%w) =0.
The reverse search algorithm we describe here merely reverses this finite algorithm.

Now the underlying graph Gers = (Vors, Ecrs) is rather straightforward; two subsets U and U’
are adjacent in G¢rs if and only if one is a proper subset of the other and they differ in exactly one
element. The adjacency oracle Agys is then defined by

U—k ifkeUandU—k € Vgys
Adjcis(Uyk):i=4{ U+k ifkeV\U and U + k € Vors

0 otherwise,

for each U € V15 and each vertex k = 1,2,...,n. Thus we have éc1s = n.
A simple implementation of the adjacency oracle Adjcrs and fors gives the following complexity

of the reverse search algorithm, which one might be able to improve by using a more sophisticated
data structure.

Theorem 3.9. There is an implementation of ReverseSearch(Adjcys, dcis, Scis, fcis) for the
connected induced subgraph enumeration problem with time complezity O(m n |Vgrs|) and space
complezity O(m + n).

Proof. The essential part of implementing Adjcrs and fors is to list directly or indirectly all
articulation points (i.e. cut vertices) in a graph. Using the depth-first-search tree (see [1, Section
7.4]), we have an implementation of Adjcrs and fors for which t(Adjcrs) = t(fors) = O(m). From
the time complexity of ReverseSearch in Theorem 2.3 and the fact that d¢rs = n, we immediately
obtain the claimed time complexity. The space complexity is clearly same as the input size O (m+n).

11

Adhaing

Clearly the height of the reverse search tree Tgrs is at most n. This means that a parallel
implementation the algorithm can be much faster.

It is interesting to note that this reverse search algorithm can be used with slight modification
to enumerate all connected induced subgraphs with at most k vertices, for a fixed k < n. The only
change will be an additional stopping rule (stop as soon as |U| = k) to search lower in the trace of
fers.

As we mentioned it above, Lemma 3.8 yields a reverse search algorithm as well. In this algorithm,
the initial graph is G itself instead of the empty graph (assuming without loss of generality that G
is connected). It is easy to see that an additional stopping rule in this search, gives an algorithms
for enumerating all connected induced subgraphs with at least k vertices, for a fixed k < n.

Finally, we should note that the enumeration of all connected subgraphs of a graph as opposed
to “induced” subgraphs can be done by the same approach. That is, the key lemmas, Lemma 3.7
and Lemma 3.8, have an immediate analogue in terms of connected subgraphs where edge inser-
tion/deletion replaces vertex insertion/deletion.

3.5 Enumeration of Topological Orderings

Let G = (V, E) be an acyclic digraph with vertex set V = {1,2,...,n} and edge set E of size m.
We denote by (7, j) an edge directed from i to j. A permutation 7 = my7y...7, of V is said to be a
topological ordering if (i, j) € E implies ¢ appears to the left of j in . Topological orderings are also
called linear eztensions.

It is well-known that a topological ordering of an acyclic graph G can be found in O(m) time,
see [1, Section 6.6]. In this section, we present a reverse search algorithm to enumerate all topological
orderings efficiently.

Without loss of generality we assume that the trivial permutation (identity) #° is a topological
ordering. Let VroR be the set of topological orderings, and let Syor = {=°}.

For a permutation 7 of V and for any 1 < p < n, the local change of 7 at i is the replacement of
m with LC(, i), the permutation obtained from 7 by interchanging =; and mit1. The local change
is said to be admissible if m; > m;y;. Now we have a simple lemma.

Lemma 3.10. Letw be a nonirivial permutation in Vror. Then n admits an admissible local change,
and furthermore any admissible local change of 7 is in Vrog.

Proof. Let = be a nontrivial permutation in Vrog. Since it is nontrivial, there exists an index

1 < @ < n such that m; > m;y;. Take any such an index i. Since #° is a topological ordering,
(mi,mi41) € E and thus LC(w, 1) € Vop. i

This lemma ensures that any nontrivial permutation in Virog can be replaced by a permutation
in Vropr which is better (closer to 7%). More specifically, the lemma enables us to define a finite local
search function frog from Vpogr — n° to Vrog as:

fTOR(W) = LC(W, S)

where s is the smallest index such that the local change of 7 at s is admissible (i.e. s is the smallest
index such that x, > m,4q).

The underlying graph structure Gror = (Vror, Eror) is naturally derived from the function
fToRr; two permutations 7 and n' are adjacent if and only if one is obtained from the other by a local
change. So we define the adjacency oracle AdjTor of the graph by

Adiror(r, k) = { LC(m k) if (mky7x41) & E and (mpy1,7k) € E

0 otherwise,

12

A

for each m € Vrop and each index k = 1,2,...,n — 1. Thus we have é7op =n — 1.
The following lemma is important for an efficient implementation of the reverse search algorithm
for the current problem.

Lemma 3.11. Let 7 be a nontrivial permutation in Vror and let s be the smallest index such that
the local change of © at s is admissible. For an indez 1 < i < n, the local change of m at 1 is a
reverse of fror, i.e., fror(LC(,%)) = = if and only if (m;,miy1) € E, 7; < miy1 and either one of
the following conditions holds:

(i)i<s—1;
(i) i=s5+1 and m, < w4 (implying, s < n —2).

Proof. The sufficiency is easy. We prove the necessity. Let ¢ be an index 1 < i < n such that the
local change of 7 at i is a reverse of frog. Firstly, one can easily see that the conditions (miymiy1) ¢ E
and m; < w4y must hold. Suppose that neither (i) nor (ii) holds. Then we have three cases (1) i = s,
(2) i=s+1and 75 > myys, (3) i > s+ 1. Let 7' = LC(r, 4).

Clearly the case (1) does not happen since the position s cannot be an admissible local change
position for both m and n’. Thus either (2) or (3) must hold. Then the position s is the smallest
index j such that the local change of #' at j is admissible. This contradicts the assumption that
Jror(r') = m.

Therefore either (i) or (ii) must hold. This completes the proof. 1

Theorem 3.12. There is an implementation of ReverseSearch2(Adjror, étor, Stor, fror) for
the topological ordering enumeration problem with time complezity O(n |Vrorl) and space complezity
O(m n).

Proof. For an efficient implementation, we store the current permutation = = w7 .. .7y, and the
smallest index s such that the local change of 7 at s is admissible. Also we store the graph G with
its incidence matrix so that the query (4,5) € E? can be answered in O(1) time. Observe that one
can evaluate Adjror and frog in O(n) time, including time to update 7 and the index s. Since we
store the index s, Lemma 3.11 implies that we have t®(Adj, f) = O(1). By using the trivial time
complexity t¥'(Adj, f) = O(n) and éror = O(n), Theorem 2.4 yields the claimed time complexity of
ReverseSearch2. The space complexity is dominated by the storage for the incidence matrix which

is O(m n). |

There is an efficient backtrack algorithm to enumerate all topological orderings, see [14]. Recently,
a Gray code algorithm has been proposed [17] which generates all topological orderings (and outputs
only the local changes) in optimal O(m? + |Vrog|) time and O(m) space. Analysing the amortized
complexity of the reverse search algorithm is an interesting problem, which might lead to a reverse
search algorithm with optimal complexities.

3.6 Enumeration of Bases and Spanning Trees

Let P be a finite set with n elements, and let M be the set of bases of a matroid on the ground set
P with rank m [22], i.e., M satisfies the basis azioms:

(1) each member of M is a subset of P with cardinality m, called a basis of M;
(2) for any two bases B and B’ of M and for any s € B'\B, there exists an element r € B\B’ such
that B — r + s is again a basis of M.

13

There are simple well known examples of matroids.

Let A be a real matrix of rank m with n-column vectors A, ..., A,, and let P = {4;,..., A,}.
A basis of A is defined as a maximal independent subset of P. Then the set M;,(A) of all bases of
A is a matroid. A matroid arising this way is called linear or representable over the reals.

For a graph G with the edge set P, the set Msr(G) of all spanning forests, each considered
as the collection of its edges, is also a matroid. This matroid is known as the cycle matroid of
G. By assigning arbitrary orientations to the edges of G, we have Mgr(G) ~ My;,(Ag) for the
(—1,0,+1)-incidence matrix Ag of G, the cycle matroid of a graph is always linear.

The problem of enumeration of bases of M does not make any sense if M is given explicitly.
However, as we see from the two special cases above, we often have the following situation:

(a) the set P is explicitly given but not M;
(b) there is an efficient way to find a basis of M;
(c) there is an efficient way to decide whether a given subset B of P is a basis or not.

Under these conditions, the efficient enumeration of bases is a nontrivial problem. Like the cases
we have already discussed in earlier sections, the reverse search technique can be naturally applied
to this problem.

By (a), we may suppose that a basis B* of M is given. Without loss of generality, we set
B* = {1,2,...,m} and P = {1,2,...,n}. Let Vgas = M and Sgas = {B*}, and consider Ggus
to be the graph with vertex set Vg4s such that two vertices B, B’ are adjacent if and only if they
have exactly m — 1 common elements. Now, the basis axioms (1) and (2) almost immediately yield
a local search we need for the enumeration of bases. Namely we define f to be the function from
VBAS\SBAS to Vg 4s such that

fBas(B) :==B —r+s,

where s = min{j : j € B*\B} and r = max{i : i € B\B* and B — i + s is a basis }. From the basis
axioms, this function is well defined, and always returns a basis closer to B* in terms of Hamming
distance.

In order to design an algorithm that can be readily applied to the linear matroid case, we employ

the notion of tableau. For a basis B, the B x (P\B)-matrix T(B) = [t;; : ¢ € B and j € P\B] defined
by

we{s Sk engerw.
is called the tableau of B.

The notion of tableau is commonly used for linear matroids with an explicitly given representation
matrix A in which each tableau corresponds to an elementary (pivot) transformation of 4. The
tableau here is simply a combinatorial abstraction which only distinguishes the zero and the nonzero
entries by 0 and 1.

For a given tableau T'(B), and a nonzero entry t,,, the operation of replacing T'(B) by T'(B — r+s)
is called a pivot on (r,s), denoted by Piv(B,(r,s)). Since this operation is basic in linear cases, it
is useful to implement our algorithm using the pivot operation as an elementary operation. Let us
consider ¢(Piv) to be the time necessary to do one pivot operation. In the linear case M = M(A),
we have t(Piv) = O(mn).

Our adjacency oracle Adjp s is merely a disguise of the tableau:

. .. B—-i+j ift;=1 . .
AdJBAS(B,(%J)):{ 0 t+i ;ft:-;zo (i € B,j € P\B).

14

PN

Here, we consider g5 = m X (n — m), which is the number of candidates for (3,).

For the implementation of reverse search we propose here, we maintain the tableau for the current
basis B. In addition, we maintain three additional items associated with B so that we can evaluate
fBAs, Adjpas in constant time O(1). The first one is simply the pivot position (r,s) chosen by fpas
at B. The second item is the largest integer ! such that {1,...,{} C B, which will be denoted by
last(B). The last one is the reversibility flag vector R(B) = [R(B); : j € P\B] given by

true if j > m and t; =0 for all k € B with k& > j .
R(B); ':{ false ot{lerwise, ’ (7 € PAB).

Then we have the following lemma.

Lemma 3.13. For a basis B, a position (i,) in the tableau T(B) is a reverse pivot position with
respect to fpas if and only if t;; # 0, i < last(B) and R(B); =true.
Proof. Left to the reader. |

Theorem 3.14. There is an implementation of ReverseSearch2(Adjpas, 0pas, SBas, fBas) for
the basis enumeration problem with time complezity O((mn + t(Piv))|Vpasl|) and space complezity
independent of |V asl|.

Proof. To prove this, we use Theorem 2.4 which claims the time complexity of ReverseSearch?2 is
O((t(Adj) + t(f) + & tR(Adj, f) + tF (Adj, F))IV]).

For the claimed implementation, we use the data structure (the tableau and the three associated
items) described above. Thus we have O(t(fBas)) = O(t(Adjpas)) = O(1) excluding the data
structure update. Clearly, tF(Adj, f) = O(1). Also, by the previous lemma, we have t?(Adj, f) =
O(1). Since égas = m X (n —m), the total time for enumeration excluding the time of data structure
update is O(mn|Vpas])

Now, the time of updating a tableau and the associated data is t(Piv) + O(mn). Since we must
update the tableau and the associated data each time we move to a different basis, the total time for
updating data is O((t(Piv) + O(mn))|Vpasl|). This proves the theorem. [

For the case of spanning trees of graphs, the enumeration problem can be solved using backtrack
search with time complexity O((m + n)|M]|), see [18]. It has been shown recently in [15, 20] that
by using sophisticated data structures one can design reverse search algorithms with the optimal
complexity O(m+ n+n|M|). While [15] describes an implementation with optimal space complexity
O{m + n), the algorithm in [20] can be used to scan all spanning trees in O(m + = + |M|) time and
O(mn) space.

One can easily see that the maximum cardinality of output is (). In contrast, the trace of the

reverse search has an exceptionally short height of at most m. This example is perhaps an ideal
example of reverse search that can profit substantially from parallel implementation.

Note that this reverse search can be applied to the enumeration of vertices in arrangements of
hyperplanes. This is superior to the reverse search method given in [4] in the sense of both time
complexity and parallel acceleration.

3.7 Enumeration of Euclidean Spanning Trees

Let P = {p;1...pn} be a set of n points in the plane, no three of which are collinear. We consider
trees with vertices in P and edges given by line segments with endpoints in P. Two such edges
with all endpoints distinct are said to cross if the corresponding line segments intersect. By the
general position assumption this intersection point must be at an interior point of both segments.

15

An Euclidean Spanning Tree for P is a spanning tree with no crossing edges. In this section we
show how to enumerate all Euclidean spanning trees for P. First we describe an optimum tree T*.
By relabeling the points if necessary, we may assume that p, is the lexicographically smallest point,
and hence an extreme point of the convex hull of P. We label the other points p;...p, in sorted
counter-clockwise order about p; so that both p;p; and p;p, are edges of the convex hull of P. T* is

defined as the tree consisting of edges pyp; ¢ = 2,...,7n. It is clearly an Euclidean spanning tree for
P. The enumeration algorithm is based on the following lemma.

Lemma 3.15. For any non-optimum Euclidean spanning tree T' of P there is an edge e of T™ which

ts not in T and an edge f of T which is not in T* such that T' = T +e — f is an Euclidean spanning
tree.

Proof. The proof uses an adoption of an argument due to F.F. Yao [23]. A candidate for f is an
edge p;p; that is in T — T™. Note that this implies that neither endpoint is p;. At least one of the
edges p1p; and pip; is not in T, and can be used for e provided it is not intersected by any other
edge of T. By placing an acyclic relation on the edges of T — T* we show the existence of such a pair
of edges f and e.

By convention, when we refer to an edge p;p; of T we will assume that i < j. Let pip; and p.p;s
be two edges of T — T™. We say that p;p; dom p,p, whenever edge pip; intersects the interior of the
triangle pyprps. If pip; dom p,p, and in addition Pipj crosses pip, then we say that p;p; leftdom p,ps,

otherwise we say that p;p; rightdom p,p,. Note that pip; leftdom p,p,, implies that ¢ < r, so we have
the following.

Observation 1: The relation leftdom is acyclic.

Observation 2: If p;p; rightdom p,p, then i > r.

Proof: Since p;p; and p,p, are edges of T they can only intersect at endpoints. Since pip; does
not cross pip, and it intersects the interior of the triangle p;p,p,, we must have i > r (note equality
is possible).

Let pyp, be an edge of T — T*.

Observation 38: If p;p; leftdom p,p, and p,.p, rightdom p;p, then pip; dom pp,,.

Proof: First note that edges p,p, and p;p, do not cross because they are edges of T'. Since
Prps rightdom pyp, either r =t or r > t. If r = ¢ then p;p; leftdom p;p,. If r > t then pr is contained
in the interior of the triangle p;p;p,. Since p;p; crosses p;p, it also properly intersects the interior of
the triangle p;ppy, as required.

Using the above observations we can show that dom has a maximal element, which is our candidate
for f. Since leftdom is acyclic, it has maximal element(s). Let p,p, be the maximal element of leftdom
satisfying the conditions:

(i) if p;p; is a maximal element of leftdom then i < ¢, and

(ii) if psp; is a maximal element of leftdom, j # u, then Lp1pipy < Lp1pep;.

Claim: p;p, is a maximal element of dom.

Proof: Assume, on the contrary, the existence of an edge p,p, such that p.p, dom p;p,. First
note that since pip, is maximal for leftdom we must have p.p, rightdom PPy Let p;p; be the
maximal element for leftdom in the chain of the leftdom relation containing p,p,. By repeated use of
Observation 3 and the maximality of p;p, with respect to leftdom, we have pip; rightdom p;p,. By
Observation 2, we have i > t, which combined with condition (i) gives i = t. But now condition (ii)
gives a contradiction, since we cannot have pip; rightdom p;p, This contradiction proves the claim.

The rest of the proof is straightforward. We let f be the edge pp,. Since T is a tree, at least

one of pip;, p1py is not in T and is our choice for e. The maximality of S with respect to dom proves
that 77 is Euclidean. |

16

FHNANIE

Lemma 3.15 immediately shows that there is a reverse search algorithm for enumerating all
Euclidean spanning trees. The performance of an implementation is another matter. Here we do not
try to search for the most efficient one, since it will go beyond the scope of this paper. Instead, we
shall describe a simple one with a reasonably good time complexity.

First we define the graph Ggst = (Vgst, Egst), where Vgt is the set of all Euclidean spanning
trees, and two trees T and T” in Vggs7 are adjacent in Ggs7 if the symmetric difference TAT’ consists
of two edges of form, pyp; and p,ps with j =r or j = s.

For any Euclidean spanning tree T different from T*, let M(T') be the set of edges in T\T™* that
are maximal elements of dom. Lemma 3.15 guarantees that M(T) is nonempty. For each edge in
M (T), there exists a unique edge ey € T" such that T'— f+ ey € Vgsr. The local search we use here
is (Ggsr, SEST, fesT) where SgsT = {T*} and

fest(T):=T - f+¢;

where f is the lexico-min edge in M(T).
In order to construct an A-oracle, one can set dgsr to be (n — 1)(n — 2) since there are (n — 1)
edge candidates to remove from T and at most (r — 2) edges to add, at any Euclidean spanning

tree . We can easily implement Adjgst such that t(Adjgst) = O(n) since recognizing whether two
edges cross takes only constant time. Similarly we have t(fgst) = O(n).

Theorem 3.16. There is an implementation of ReverseSearch(Adjgst, égst, SsT, fest) for the
Euclidean spanning tree enumeration problem with time complezity O(n® |Vest|) and space complez-
ity O(n).

Proof. To prove this, we simply use Corollary 2.3 which claims the time complexity of Revers-

eSearch is O(8(t(Adj)+¢(f))|V]). This together with the discussion above gives the time complexity.
The space complexity is obvious. [

17

SR

4 Partial Reverse Search

In Section 2, we developed the reverse search as a general exhaustive search technique. Here we
introduce a simple modification of reverse search as a general algorithmic framework for solving a
certain class of hard optimization problems.

In order to understand the main idea, let us first consider the 0-1-integer programming problem
(abbreviated by IP):

maximize czx
subject to Az < b and, (4.2)
z;=0orlforj=1,...,n,

where A is a rational m x n matrix, b a rational m-vector and ¢ a rational n-vector. It is well known
that IP is N P-complete {19]. A standard technique used to solve this problem is the branch-and-

bound (see, e.g. Chapter 18 in [16]). The new algorithm to be introduced now can be considered as
an alternative to the branch-and-bound methods.
Let

P={z:Az<band 0<z<1}.

Then we have the following lemma.

Lemma 4.1. A point = in P is an optimal solution to the IP (4.2) if and only if x mazimizes cx
over all vertices of P that are integral.

Proof. The “only if” part is trivial. The “if” part follows from the fact that every integral vector
of P is a vertex of P. |

This lemma suggests the following primitive strategy to solve an IP:
(1) Apply reverse search of Section 3.1 for enumerating all vertices of P;

(2) during the search procedure, output no vertices but remember and update an integral vertex,
say U with currently best objective value; and

(3) output ¥ at the end of search.

This procedure obviously works. But it is very far from practical since the vertex enumeration
takes too much time for large n and m. Can we shorten this procedure and somehow overcome this
difficulty? Observe that the local search f we reverse in (1) is the simplex method, and f is monotone
with respect to the objective function, that is, czg < cz £(B)» Where zp denotes the basic solution
(i.e. a vertex of P) associated with a basis B. This means that as we follow the trace Ty reversely
(against its orientation), the objective value monotonically decreases. Therefore, while doing reverse
search, as soon as we detect an integral vertex or a vertex with ob jective value worse than the current
best value ¢, there is no reason to search lower in the trace.

We do not know if this “partial reverse search” strategy yields a practical algorithm. But we
believe that it deserves further investigation. Unlike the branch-and-bound algorithms for IP that
require a large number of linear programs to be solved, we have to solve at most one linear program
initially. Furthermore we have simple ways to implement it in parallel computers.

Now, let us present the partial reverse search in general setting. Suppose we have a finite local
search (G, S, f) given by an A-oracle. Therefore, we can apply reverse search to enumerate all vertices
of G = (V, E). Now, in addition, suppose we have the following situation:

(1) we are given an objective function ¢ defined at each vertex;

18

(2) we are given a boolean function @ defined at each vertex.
The general problem to be solved is to

maximize ¢(v)
subject to v €V and, (4.3)
Q(v) = true.

Obviously, an IP is a special case of this optimization problem. We call the following procedure a
partial reverse search:

procedure PartialReverseSearch(A4dj,6,S,f,c,Q);
for each vertex s € S do
v:=s8; 7 := 0; (* j: neighbor counter *)

T := 0; ¢ = —o0; (* current best solution and value *)
repeat
while 7 < § do
j=i+1

nezxt := Adj(v,j);
if neast # 0 and f(next) = v and c(next) > ¢ then (* reverse traverse *)
v = nezxt; j := 0;
if Q(v) = true then (* update the current best solution *)
7= v; ¢ = c(v);
J:=46&+1 (* no further reverse *)
endif
R endif
endwhile;
if v # s then (* forward traverse *)
ui=v; v:i= f(v);
determine j such that Adj(v,j) = u (* restore j *)
endif
until v = s and 7 = §;
output v
endfor.

We call a local search function f monotone with respect to c if c(v) < ¢(f(v)) for all v € V\S.
Then, the previous discussion of partial reverse algorithm for IP naturally extends to:

Proposition 4.2. The partial reverse search solves the optimization problem (4.8) if the function f
ts monotone with respect to c.

One can easily find applications of partial reverse search other than the integer programming. For
example, one can find a very special triangulation of points in the plane by using the flip algorithm
frrr of Section 3.3. It is often desired to have a triangulation which does not use a very narrow
angle in any of its triangles. In fact, a Delaunay triangulation is one that maximizes the angle vector,
and thus in particular, it maximizes the minimum angle. The partial reverse search can then find a
triangulation satisfying any prescribed condition(s) Q and maximizing the angle vector.

Another example is to find a “special” basis of a weighted matroid (or a spanning tree of a graph
with weighted edges). It is easy to modify the local search fp4s of Section 3.6 so that it finds a basis

19

of maximum weight (see, [9]). Setting Q to be any condition(s) that you want a basis to satisfy, e.g.
having k leaves for the graph case. Then the partial reverse search finds a basis satisfying @ with
maximum weight.

Again, we have no evidence whatsoever supporting these applications being useful in practice. In
order to say anything meaningful in this respect demands further research.

Acknowledgements. The authors are grateful for Département de Mathematiques of EPFL,
Switzerland, where the major part of this paper was written during the second author’s visit in
autumn 1991. In particular, the idea of using the flip algorithm for the triangulation enumeration
came from the author’s discussion with Professor Th. M. Liebling of EPFL.

References

[1] A.V. Aho, J.E. Hopcroft an J.D. Ullman, Data Structures and Algorithms, Addison-Wesley,
1987.

(2] D. Avis, “A C implementation of the reverse search vertex enumeration algorithm,” Research
Report B-359, Department of Information Sciences, Tokyo Institute of Technology (1992).

[3] D. Avis and V. Chvital, “Notes on Bland’s pivoting rule,” Mathematical Programming 8, (1978),
24-34.

(4] D. Avis and K. Fukuda, “A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra,” Discrete Comput Geometry 8 (1992), 295-313.

[5] D. Avis and K. Fukuda, “A basis enumeration algorithm for linear systems with geometric
applications,” Applied Mathematics Letters 5 (1991), 39-42.

[6] R.C. Buck, “Partion of space,” Amer. Math. Monthly 50 (1943), 541-544.
(7] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.

(8] S. Fortune, “A note on Delaunay diagonal flips,” AT&T Bell Laboratories, Murray Hill, New
Jersey, 1987.

(9] S. Fujishige, Submodular Functions and Optimization, Annals of Discrete Mathematics 47,
North-Holland, 1991.

[10] K. Fukuda, K. Saito and A. Tamura, “Combinatorical face enumeration in arrangements and
oriented matroids,” Discrete Appl. Math. 31 (1991), 141-149.

(11] K. Fukuda, K. Saito, A. Tamura and T.Tokuyama “Bounding the number of k-faces in arrange-
ments of hyperplanes,” Discrete Appl. Math. 31 (1991), 151-165.

{12] K. Fukuda and 1. Mizukoshi, Mathematica package: Vertex enumeration for convex polyhedra
and hyperplane arrangements, Version 0.3 Beta, Graduate School of Systems Management,

University of Tsukuba, Tokyo (1991), available via anonymous ftp from cs.sunysb.edu (directory
pub/Combinatorica).

(13] L.J. Guibas and J. Stolfi, “Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams,” ACM Trans. Graphics 4 (1985), 74-123.

20

SR

(14] D.E. Knuth and J.L. Szwarcfiter , “A structured program to generate all topological sorting
arrangements,” Information Processing Letters 2 (1974), 153-157.

[15] T. Matsui, “Algorithms for finding all the spanning trees in undirected graphs,” METR93-
08, Department of Mathematical Engineering and Information Physics, Faculty of Engineering,
University of Tokyo, (1993).

(16] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Printice-Hall, 1982.
[17] G. Pruesse and F. Ruskey “Generating Linear Extensions Fast,” SIAM J. Computing, to appear.

[18] R.C Read and R.E. Tarjan, “Bounds on backtrack algorithms for listing cycles, paths, and
spanning trees,” Networks, 5 (1975), 237-252.

[19] A. Schrijver, Theory of Linear and Integer programming, John Wiley & Sons, 1986.

[20] A. Shioura and A. Tamura, “Efficiently scanning all spanning trees of an undirected graph,”
Research Report B-270, Dept. of Information Sciences, Tokyo Institute of Technology (1993).

[21] H. Telley, “Static and dynamic weighted Delaunay triangulations in the Euclidean plane and in
the flat torus,” Research Report No. UITUCDCS-R-90-1662, Department of Computer Science,
University of Illinois at Urbana-Champaign (1990).

[22] D.J.A. Welsh, Matroid Theory, Academic Press, 1976.

(23] F.F. Yao, “On the priority approach to hidden surface algorithms,” Proc. 21st Symposium on
Foundations of Computer Science (1980), 301-307.

21

;‘m@mf'ﬁ

Figure 4.1: An arrangement of hyperplanes and the trace of fogrr

22

1 '
4 \
3
»L Flip {1,3}
¢ Flip {3,5}
P T
¢, Flip {1,6}
@ Delaunay Triangulation

Figure 4.2: Flip Algorithm and Delaunay Triangulation

23

S

(@) (b)

Figure 4.3: (a) pip; rightdom p.p, (b) pip; leftdom p,p,

24

