Reverse Search for Enumeration

(Research Report No. 92-5)
by

David Avis
and
Komei Fukuda

April 24, 1992

Graduate School of Systems Management
The University of Tsukuba
3-29-1 Otsuka, Bunkyo-ku
Tokyo 112, Japan

A Pivoting Algorithm for Convex Hulls and Vertex Enumeration
of “’Arrar’lgements and Polyhedra

,,,,,, ok s,

David Avis

School of Computer Science Graduate School of Systems Management

McGill University
Montréal, Canada

Abstract:

We present a new pivot-based algorithm which
can be used with minor modification for the enumera-
ton of the facets of the convex hull of a set of points,
or for the enumeration of the vertices of an arrange-
ment or of a convex polyhedron, in arbitrary dimen-
sion. The algorithm has the following propertics:

(a) No additional storage is required beyond the input
data;

(b) The output list produced is free of duplicates;

(¢) The algorithm is extremely simple, requires no
data structures, and handles all degenerate cases;

(d) The running time is output sensitive for non-
degenerate inputs;

(e) The algorithm is easy to efficiently parallelize.

For example, the algorithm finds the v vertices of a
polyhedron in R? defined by a non-degenerate system
of n inequalities (or dually, the v facets of the convex
hull of n points in R, where each facet contains
exactly d given points) in time O(ndv) and O (nd)
space. The v vertices in a simple arrangement of n
hyperplanes in R can be found in O (n%dv) time and
O(nd) space complexity. The algorithm is based on
inverting finite pivot algorithms for linear program-
ming.

1. Introduction

In this paper we give an algorithm, which with

Permission 10 copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear. and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish. requires a tee and/or specific permission.

© 1991 ACM 0-89791-426-0/91/0006/0098 $1.50

98

Komei Fukuda

The University of Tsukuba
Tokyo, Japan

minor variations can be used to solve three basic
enumeration problems in computational geometry;
facets of the convex hull of a set of points, vertices of
a convex polyhedron given by a system of linear ine-
qualities, and vertices of an arrangement of hypess
planes. The algorithm is based on "inverting”" finite
pivotﬁfg algorithms for linear programming. For terms
not defined here, the reader is referred to Chvatal[4]
for linear programming and Edelsbrunner{7] for
arrangements. In the the rest of this section we give
an informal description of the algorithm beginning
with the vertex enumeration problem for convex
polyhedra.

Suppose we have a system of linear inequalities
defining a polyhedron in R? and a vertex of that
polyhedron. A vertex is specified by giving the
indices of d inequalities whose bounding hyperplanes
intersect at the vertex. For any given linear objective
function, the simplex method generates a path along
edges of the polyhedron until a vertex maximizing this
objective function is found. For simplicity, let us
assume for the moment that the optimum vertex is
contained on exactly ¢ bounding hyperplanes. The
path is found by pivoting, which involves interchang-
ing one of the equations defining the vertex with one
not currently used. The path chosen from an initial
given vertex depends on the pivot rule used. In fact,
care must be taken because some pivot rules generate
cycles and do not lead to the optimum vertex. How-
ever, a particularly simple rule, known as Bland’s rule
or the least subscript rule[2], guarantees a unique path
from any starting vertex to the optimum vertex. If we
look at the set of all such paths from all vertices of
the polyhedron, we get a spanning tree of the edge
graph of the polyhedron rooted at the optimum vertex.
Our algorithm simply starts at an "optimum vertex"
and traces out the tree in depth first order by "revers-
ing” Bland’s ruie.

] APy

A remarkable feature is that no additional
storage is needed at intermediate nodes in the tree.
Going down the tree we explore all valid "reverse”
pivots in lexicographical order from any given inter-
mediate node. Going back up the tree, we simply use
Bland’s rule to return us to the parent node along with
the current pivot indices. From there it is simple to
continue by considering the next lexicographic
"reverse” pivot, etc. The algorithm is therefore non-
recursive and requires no stack or other data structure.
One possible difficulty arises at so-called degenerate
vertices, vertices which lie on more than d bounding
hyperplanes. It is desirable to report each vertex once
only, and this can be achieved without storing the out-
put and searching. By using duality, we can also use
this algorithm for enumerating the facets of the convex
hull of a set of points in R¢. It can also be used for
cnumerating all of the vertices of the Voronoi
Diagram of a set of points in R?, since this can be
reformulated as a convex hull problem in R4+ (see {71
). From the vertices of the Voronoi diagram, the cells
of the Delaunay triangulation of the point set can be
readily obtained with no additional computation. A
variant of our method can be used for vertex enumera-
tion of arrangements.

The problems discussed in this paper have a
long history, which we briefly mention here. The prob-
lem of enumerating all of the vertices of a polyhedron
is surveyed by Mattheiss and Rubin in[12] and by
Dyer in[5]. There are essentially two classes of
methods. One class is based on pivoting and is dis-
cussed in detail in(5] and[4]. In this method a depth
first search is initiated from a vertex by trying all pos-
sible simplex pivots. The difficulty is in determining
whether or not a vertex has already been visited. For
this all vertices must be stored in a balanced AVL-
tree. An implementation that takes O (nd%v) time and
O(dv) space for a polyhedron with v vertices defined
by a non-degenerate system of n inequalities in R? is
given in[5]. A dual version that computes convex
hulls was discovered by Chand and Kapur({3], and has
similar complexity. Using sophisticated data structures,
Seidel[14] was able to achieve a running time of
O(d*vlogn + nf (d-1, n-1)) for sets of n points in
general position in R¢. Here f(d, n) is the time to
solve a linear program with n constraints in d vari-
ables, and v is the number of facets of the convex
hull. The space required for this algorithm is
O (nld2y The algorithm presented in this paper fits

into this class. It achieves O (dvn) time and O(dn)
space complexity for facet enumeration of the convex
hull of n points in R4, when each facet contains
exactly d given points. To the authors’ knowledge, it
is the only algorithm known that has non-exponential
space requirements in the worst case.

A second class of methods for computing the
vertices of a convex polyhedron is the “"double
description” method of Motzkin et al.[13] that dates
back to 1953. In fact the origin of these mcthods is
even carlier, as the double description method is in
fact dual to the Fourier-Motzkin method for the solu-
ton of linear inequality systems. In the double
description method, the polyhedron is constructed
sequentially by adding a constraint at a time. All new
vertices produced must lie on the hyperplane bounding
the constraint currently being inserted. A dual version
for constructing convex hulls is known in the compu-
tational geometry community as the "beneath and
beyond" method. Assuming the dimension d is fixed,
the fastest algorithm of this class again uses sophisti-
cated data structures and is due to Seidel [15] (also
see [7]). It takes O(n¥2*y (ime and O (nl92))
space.

With d fixed, the complete facial structure of a
hyperplane arrangement can be constructed by an
algorithm due to Edelsbrunner, O'Rourke and Seidel
{6] in optimal time and space O (n?). The algorithm
works by inserting the hyperplanes one at a time and
can handle degenerate cases. Again with d fixed, a
method for enumerating just the edges and vertices
(with repetitions) in O (n?) time and O(n) space is
given by Edelsbrunner and Guibas[8]. Houle et al.[11]
give several applications in data approximation where

it is required to enumerate all vertices of an arrange-
ment.

2. Dictionaries

Let A be a mxn matrix, with columns indexed
by the set £ = {1,2, ..., n }. Fix distinct indices f and
& of E. Consider the system of equations:

Ax=0 x, =1 2.1D

For any J ¢ E, x; denotes the subvector of x indexed
by J, and A; denotes the submatrix of A consisting of
columns indexed by J. A basis B for (2.1) is a subset
of E of cardinality m containing f but not g, for

which Ap 1s nonsingular. We will only be concerned
with systems (2.1) that have at least one basis, and
will assume this for the rest of the paper. Given any
asis B, we can transform (2.1) into the dictionary :

xg = —Ag'Ay xy = A xy, (2.2

where N =E - B is the co—basis, and A denotes
-Ag'Ay. A is called the coefficient matrix of the
dictionary, with rows indexed by B and columns
indexed by N, so that A =(g; : ieB, jeN). Note
that the co-basis always contains the index g.

A variable x; is primal feasible if ieB—f and
ai; 20. A variable x; is dual feasible if jeN-g
and a; £0. A dictionary is primal feasible if x; is
primal feasible for all ie B—f and dual feasible if X;
iIs dual feasible for all jeN-g. A dictionary is
optimal if it is both primal and dual feasible. A basic
solution to (2.1) is obtained from a dictionary by set-
ung xy_, =0, x, = 1. If any basic variable has value
zero, we call the basic solution and corresponding dic-
tionary degenerate . In section 2 of the paper we give
an algorithm for enumerating all distinct basic solu-
tions of the system (2.1) without repetition, using only
the space required to store the input. The algorithm is
initiated with an optimal dictionary. A variant of the
algorithm enumerates all primal feasible dictionaries

:eporting the corresponding basic feasible solutions
without repetition.

The geometric problems mentioned in the title
can all be transformed to dictionary enumeration prob-
lems. A hyperplane in R%.d 20, is denoted by the
pair (b,c), where b is a vector of length d and ¢ is a
scaiar, and is the solution set of the equation by = ¢,
y=@;: Jj=1.,d). A hyperplane arrangement
is a collection of n, hyperplanes (b;, ¢;), for some
integer no. A vertex of the arrangement is the unique
solution to the system of d equations corresponding to
d intersecting hyperplanes. The
vertex enumeration problem for hyperplane arrange-
ments is to list all of the vertices of an arrangement.
From a hyperplane arrangement, we show how to con-
struct an optimal dictionary with m = ng—d+1 and
n = ngt+2.

A (convex) polyhedron P is the solution set to a
system of n, nequalities in d non-negative variables:
P={(yeR?*1 A’y <b,y 20), where A’ is an
nox d matrix and b is a ngp-vector. A vertex of the

polyhedron is a vector yeP that satisfies a linearly 9
independent set of d of the inequalities as equations.
The vertex enumeration problem for P is o
enumerate all of its vertices. In fact to find even a sin-

gle vertex of P is computationally equivalent to linear
programming. As we wish to separate this from the o
enumeration problem, we will assume we are given an -
initial vertex. We show how to construct an optimal .+
dictionary for P with m = no+l and n = ngtd+2. It 3
can be shown that each primal feasible dictionary has
a basic solution which gives a vertex y of P,

Let Q = {q). -, g5} denote a set of ng points
in R%. A facet of the convex hull of Q is a hyper--
plane containing 4 affinely independent points of Q.
There is no loss of generality in assuming that the ori-- '3
gin is contained in the convex hull of Q. By employ- -~ “ SIS
ing a standard duality between points and hyperplanes, +..§ '
we may transform the facet enumeration problem for.
Q into a vertex enumeration problem for a convex -
polyhedron.

4

3. Enumeration of Dictionaries

Suppose we are given a system of equations of ¢
the form (2.1), for some mxn matrix A. The:
linear programming problem (LP) for (2.1) is
maximize x; over (2.1) subject to the additional con-
straint that each variable except x; and x, is mon-;
negative. Each optimal dictionary is a solution to LP..;
To begin with, we will assume that there is a unique.
optimal dictionary. A pivot (r, s) on a basis B, and-
corresponding dictionary x; = Axg, is an interchange:
of some reB—f with some index seN—g givir!g a
new basis B’. The new coefficient matrix A’ = (a;;) is:
given by

’ l a_i.r . E’] A :
Qpe =~ "y O =—, Gj="T"> G.) .
Gy Grs Qrs ;
‘. auErj . .
a;; = @ — ——, (ieB-r,jeN-s).
arS

The pivot is primal feasible (respectively,
dual feasible) if both of the dictionaries correspor_lqj
ing to B and B’ are primal (respectively, dual) feast-
ble. The simplex method is a method of solving LP. @
by beginning with an initial dictionary and pivoting -4
until an optimal dictionary is found. We consider two -

rules for choosing a pivot. The first rule, known as

Bland’s rule starts with primal feasible basis B .
Bland’s Rule.

(1) Let s be the smallest index such that x, is dual

infeasible, that is, @z, > 0.
a;
(2) Set A = min{- -_—g ti€B-f,a, <0). Letr be
s
the smallest index obtaining this minimum.
The pivot (r, s) maintains the primal feasibility of the
dictionary. The second rule, known as the criss-cross
rule, starts with any basis.

Criss-Cross Rule

(1) Leti#f,g be the smallest index such that x;

is (primal or dual)infeasible.

(2) IfieB,let r=i and let s be the minimum index
such that a,, > 0, otherwise let s=i and let r be

the minimum index such that @,, < 0.

The criss-cross pivot (r, s) interchanges x, and X,
and may not preserve either primal or dual feasibility.
In both cases, if step (1) does not apply then the dic-
tionary is optimal.

The validity of these rules is given by the fol-
lowing proposition. Part (a) is proved in[2] and part
(b) in[16] for linear programs, and in[17] [19] in the
more general setting of oriented matroids. A simple
proof of part (b) also appears in [10].

Proposition 3.1. Let (2.1) be a system that admits an
opumal dictionary and let B be any basis.

(a) If B is primal feasible, then successive application
of Bland’s rule leads to an optimal dictionary, and
each basis generated is primal feasible.

{b) Successive application of the criss-cross rule start-
ing with basis B leads to an optimal dictionary.

First we give a dictionary enumeration algorithm
for systems (2.1) that admit a unique optimal diction-
ary. Consider a graph where vertices are dictionaries
and two vertices are adjacent if the corresponding two
dictionaries differ in only one basic variable. Then
part (b) of the proposition tells us that there is a
unique path consisting of criss-cross pivots from any
dictionary 10 the optimal dictionary. The set of all
such paths gives us a spanning tree in this graph. Con-
sider a non-optimal dictionary D with basis B. Let
(r.s),reB—f,seN-g, be the pivot obtained by
applying the criss-cross rule to D giving a dictionary
D’. We call (s,r) a reverse criss—cross pivot for
D’ Suppose we start at the optimal dictionary and

101

explore reverse criss-cross pivots in lexicographic
order. This corresponds to a depth first search of the
spanning tree defined above. When moving down the
tree, each dictionary is encountered exactly once. A
similar analysis applies to part (a) of the proposition.
We form a similar graph, except that vertices are just
the primal feasible dictionaries. We define a
reverse Bland pivot in the analogous way. A depth
first search of this graph provides all primal feasible
dictionaries.

Our enumeration algorithm search for dic-
tionaries is given in Figure 3.1. For a given system
(2.1) we have an initial basis B = {1, ..., m}, co-t@sis
N ={m+1, ..,n} and optimal dictionary xz = Axy.
We further assume that f =1, g = n, and that m and
n are global constants. The efficiency of the pro-
cedure depends greatly on the procedure reverse. The
simplest way to check if (r, s), reB—f,seN-g,isa
reverse pivot is to actually perform the pivot, then use
procedure select—pivot on the new dictionary. If this
produces the same pair of variables, then (r, s) is a
valid reverse pivot. Since a pivot involves O(mn)
operations, a faster method is desirable. In fact to
determine the pivot by the criss-cross or Bland’s rules,
the entire dictionary is not required by procedure
select—pivot. To test whether A arises from a
coefficient matrix A’ by a criss-cross (resp., Bland)
pivot interchanging B [i] with N {j], it is only neces-
sary to examine rows f,i and columns j, g of A’
These can be computed from A in O (m+n) time, and
checked to see if (B[i], N[j]) is a criss-cross (resp.,
Bland) pivot. Further savings are possible, as certain
potential reverse pivots can be eliminated without any
pivoting.

Proposition 3.2 If (s,r), seB—f and reN—-g, is a
valid reverse criss-cross pivot for a dictionary
xg = Axy, then either

(@ a,>0, a,>0, a; 20 for jeN-g,j <s,
or
(b) @, <0, a,<0, a@,<0forieB-—f,i<r.

Proposition 3.3 Let xz = Axy be a dictionary, let

a; . —
reN-g and set A = min{- — : ieB-f, @, <0). If
a;,
(s,r), seB-f, is a valid reverse Bland’s rule pivot
then s must be an index that obtains this minimum.

procedure search (B, N, A);
* B=A{1,..,m), N={m+l,..,n), f=1,8 =n,
xp = Axy is 2 unique optimal dictionary for a system
21)*
begin
1:=2; j:=1;
repeat
while (i1 <m and not
(B,N,A,i,j))increment (i, j);
if (i <m) then /* reverse pivot
found */
begin _
pivot (B, N, A, i, j);
if lex-min (B, N, A) then print (B);

reverse

i=2; j:=1,
end;
else /* go back 1o previous diction-
ary */
begin .
select-pivot (A, i, j);
pivot (B, N, A, i, j);
increment (i, j);
end;
until (>m and B{m]=m)
end; /* search */

function reverse (B, N, A, i, j):boolean;

M* true if (s,r), with s =B[i],r =N[j], is a
valid reverse cross-pivot (resp., Bland-pivot) for
A, otherwise false */

procedure pivot (B, N, A,i, i
/* pivot A on row i and column j, update B and

N. Reorder as necessary and set i and j to be the
indices of the interchanged B [i] and N [j]. */

function lex-min (B, N, A):boolean;
f* true if A is non-degenerate, or degenerate and

B is the lexicographically minimum basis for this
basic solution, else false */

procedure select-pivot (4, i, j);

f* Find criss-cross (resp., Bland) pivot for
coefficient matrix A. Return the index i of the
pivot row and index j of the pivot column*/

procedure increment (i, j);
begin
J=j+l; if (j=n-m)
J:=1; i:=i+1; end;
end; /* increment */

then begin

Figure 3.1

102

The procedure lex—min is used to ensure that
each basic solution is output exactly once, when the
lexicographically minimum basis for that basic solu-
tion is reached. The correctness of the procedure is
based on the following proposition.

Proposition 3.4 Let B be a basis for a degenerate dic-
tionary xz =Axy. B is not lexicographically
minimum for the corresponding basic solution if and
only if there exists reB—~f and seN—g such that
r>s,a,=0anda, 0.0

Procedure search as given in the previous sub-
section will only generate all (feasible) dictionaries if
the system (2.1) has a unique optimal dictionary. Sup-
pose there are many optimal dictionaries. This situa-
tion arises when one of the basic variables has value
zero, ie. the dictionary is degenerate. Then instead of a
spanning tree in the graph described after Proposition
3.1, we obtain a spanning forest. Each of the two pivot
algorithms terminates when any optimal solution is
found. Therefore, procedure search must be applied to
each optimal dictionary. Fortunately, from any
optimal dictionary we can generate all optimal dic- .
tionaries by a procedure very similar to search. We
construct a non-degenerate optimum dictionary by
adding an extra column, and use the dual form of
Bland’s rule to maintain dual feasibility while con-
structing all optimal dictionaries to the original prob-
lem. Details are given in the fulil paper[1].

4. Complexity

In this section we discuss the complexity of the
dictionary enumeration algorithm, and apply the
results to the geometric applications described in Sec-
tion 2. Suppose we have a system (2.1) for some mxn
matrix A. Let f (A) denote the number of dictionaries
that can represent (2.1). f(A) is just the number of
linearly independent subsets of m columns of A, with
the condition that the column with index f is always
included, and index g is always excluded. This is at
[;'—2

-1)
dictionary, we may evaluate (m-1)(n-m-2) candi-
dates for reverse pivots, each candidate requiring
O(m+n) time as shown in the previous section. Pro-

cedure pivor requires O (m(n—m)) time per execution

most but may be much smaller. For each

as does procedure lex—min. These complexities are
valid for the case of multiple optimal solutions. There-
fore the overall time-complexity of search is

O ((m+n)m(n-m)f (A))=0 ((m+n ymn ”:%])(4.1)

Apart from a few indices, no additional space is
required other than that required to represent the input.

We now consider the complexity of evaluating
all feasible dictionaries. Let g(A) denote the number
of primal feasible dictionaries representing (2.1). The
above analysis and (4.1) hold, with g(4) replacing
f(A). In the non-degenerate case we can do better.
Recalling Proposition 3.3, we see that we only need to
consider one candidate reverse pivot per column of the
dictionary: if there are two or more indices realizing
the minimum then a pivot would give a degenerate
dictionary. For each column, the candidate basic vari-
able can be found by computing the minimum ratio)\
in O(m) ume. To check if a candidate is in fact a
reverse pivot, we need to construct the objective row
of the dictionary after the pivot, taking O (n—m) time.
Therefore since there are n—m—2 candidate columns,
all reverse Bland pivots from the given dictionary can
be found in O ((n—m)n) time, in the non-degenerate
case. This gives an overall complexity of
O{(n—m)ng (A)) for the non-degenerate case.

We now return to the geometric problems men-
tioned in Section 2. Suppose we have a collection of
no hyperplanes in R?. For this problem, m = no—d+1
and n = ny+2. The time-complexity of enumerating all
vertices of a hyperplane arrangement by this method
becomes: O(n¢ d f(A)). In the case of non-
degenerate arrangements, f(A) is the number of the
vertices, ie. the size of the output. This method should

be particularly useful for non-degenerate arrangements
with few vertices.

Consider now the enumeration of the vertices of
a polyhedron given by a list of no inequalities in 4
variables. Since we assume the polyhedron has at
least one vertex, no=d. We have m = ng+l and
n =ngtd+2. The time-complexity of enumerating all
of the vertices is O (ndd g(A)). Again the complex-
ity is output sensitive for non-degenerate polyhedra,
for which g(A) is just the number of vertices. If the

polyhedron is simple (ie. all dictionaries are non-
degenerate) then we get an improved complexity
bound. The algorithm produces vertices at a cost of
O(ng d) per vertex with no repetitions and no addi-
tional space. These complexities apply to the convex
hull problem, where n, is the number of input points.
In the non-degenerate case where no more than d
points lic on any facet (ie., the facets are simplicial),
We can enumerate the v facets in time O (ngdv) and
space O (nyd).

The simplicity of the algorithm rends it suitable
for symbolic computation in a language such as
Maple or Mathematica . Using exact arithmetic, the
problem of numerical accuracy which occurs with
most geomerric algorithms is avoided. Another feature
of the algorithm is that it is easy to efficiently parallel-
ize. Since in the enumeration no dictionary is ever
reached by two different paths and no additional
storage is required, subproblems can be scheduled
arbitrarily onto free processors.

The complexity analysis presented for the
degenerate case is quite rudimentary. We allow a
worst case ume of O(m+n) to determine whether a
pair of indices is a reverse pivot. This seems certain to
be an overestimate. In a reverse criss-cross pivot, for
the ith basic variable to interchange with the jth non-
basic variable, at least i+j signs have to be "correct”.
We may compute these signs consecutively and stop
the first time an "incorrect” sign is encountered. Amor-
tizing this cost over the complete enumeration of an
arrangement, it is possible that just a constant amount
of work has to be done on the average to determine
that a potential reverse pivot is invalid.

The ‘“reverse pivoting" approach can be
extended to the setting of oriented matroids, and in
particular 10 pseudo line arrangements. While the
criss-cross method works correctly in the seiting of
oriented matroids, Bland’s rule is not finite for
oriented matroid programming [9]. Todd{18] has
found a finite rule that can replace Bland’s rule in the
oriented matroid setting.

S. Acknowledgements

The work of the first author was performed
while visiting the laboratory of Professor Masakazu
Kojima of Tokyo Institute of Technology, supported
by the JSPS/NSERC bilateral exchange program.

References

1. D. Avis and K. Fukuda, ‘‘A Pivoting Algorithm
for Convex Hulls and Vertex Enumeration of
Arrangements and Polyhedra,”” Technical Report
B-237, Tokyo Institute of Technology, Dept. of
Information Science, November 1990,

2. R. G. Bland, ‘A Combinatorial Abstraction of
Linear Programming,” J. Combin. Theory B,
vol. 23, pp. 33-57, 1977.

3. D.R. Chand and S.S. Kapur, “‘An Algorithm for
Convex Polytopes,” J. ACM, vol. 17, pp. 78-86,
1970.

4. V. Chvatal, Linear Programming, W.H. Free-
man, 1983.

S. ME. Dyer, *‘The Complexity of Vertex
Enumeration Methods,”” Math. Oper. Res., vol.
8, pp. 381-402, 1983,

6. H. Edelsbrunner, J. O’Rourke, and R. Seidel,
“‘Constructing Arrangements of Lines and
Hyperplanes with Applications,”” SIAM J. Com-
puter Science, pp. 341-363, 1986.

7. H. Edelsbrunner, Algorithms in Combinatorial
Geometry, Springer-Verlag, 1987,

8. H. Edelsbrunner and L. Guibas, *‘Topologically
Sweeping an Arrangement,”’ J. Comp. Syst. Sci-
ences, vol. 38, pp. 165-194, 1989.

9. K. Fukuda, ‘‘Oriented Matroid Programming,’’
Ph.D. Thesis, University of Waterloo, 1982.

10. K. Fukuda and T. Matsui, ‘‘On the Finiteness of
the Criss-Cross Method,”” European J. OR., 10
appear.

11. M. E. Houle, H. Imai, K. Imai, J-M. Robert, and
P. Yamamoto, ‘‘Orthogonal Weighted Linear L,
and L. Approximation and Applications,”
manuscript, September 1990.

104

12.

13.

4.

15.

16.

17.

18.

19.

T.H. Matheiss and D. S. Rubin, “*A Survey and
Comparison of Methods for Finding all Vertices
of Convex Polyhedral Sets,”” Math. Oper. Res.,
vol. 5, pp. 167-185, 1980.

T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.
M. Thrall, ““The Double Description Method,”’
Annals of Math. Studies 8, Princeton University
Press, 1953.

R. Seidel, ‘“‘Constructing Higher-Dimensional
Convex Hulls at Logarithmic Cost per Face,”
Proc. 1986 §.T.0.C., pp. 404-413.

R. Seidel, ‘““A Convex Hull Algorithm Optimal
for Point Sets in Even Dimensions,”” Report 81-
14, University of British Columbia, Dept. of
Computer Science, 1981.

T. Terlaky, ‘‘A Convergent Criss-Cross
Method,”” Math. Oper. und Stat. ser. Optimiza-
tion, vol. 16, pp. 683-690, 1985.

T. Terlaky, ‘‘A Finite Criss-Cross Method for
Oriented Matroids,”’ J. Combin. Theory B, vol.
42, pp. 319-327, 1987.

M. Todd, ‘‘Linear and Quadratic Programming
in Oriented Matroids,”’ J. Comb. Theory B, vol.
39, pp. 105-133, 1985.

Z. Wang, *‘A Conformal Elimination Free Algo-
rithm for Oriented Matroid Programming,’
Chinese Annals of Mathematics, vol. 8B.1,
1987.

it wie i oM II'I 'I

ad

< anhai

e

r

e TR AR 1 SUL S
I - WOR AN T S > :

il 2

+
3

il
i

