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Abstract. We present a new pivot-based algorithm which can be used with minor
modification for the enumeration of the facets of the convex hull of a set of points,
or for the enumeration of the vertices of an arrangement or of a convex polyhedron,
in arbitrary dimension. The algorithm has the following properties:

(a) Virtually no additional storage is required beyond the input data.

(b) The output list produced is free of duplicates.

(c) The algorithm is extremely simple, requires no data structures, and handles
all degenerate cases.

(d) The running time is output sensitive for nondegenerate inputs.

(e) The algorithm is easy to parallelize efficiently.

For example, the algorithm finds the v vertices of a polyhedron in R? defined by a
nondegenerate system of n inequalities (or, dually, the v facets of the convex hull of
n points in R where each facet contains exactly d given points) in time O(ndv) and
O(nd) space. The v vertices in a simple arrangement of n hyperplanes in R? can be
found in O(n2dv) time and O(nd) space complexity. The algorithm is based on inverting
finite pivot algorithms for linear programming.

1. Introduction

In this paper we give an algorithm, which with minor variations can be used to
solve three basic enumeration problems in computational geometry: facets of the

* The work of David Avis was performed while visiting the laboratory of Professor Masakazu
Kojima of Tokyo Institute of Technology, supported by the JSPS/NSERC bilateral exchange programs.
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With d fixed, the complete facial structure of a hyperplane arrangement can be
constructed by an algorithm due to Edelsbrunner et al. [9] in optimal time and
space O(n). The algorithm works by inserting the hyperplanes one at a time and
can handle degenerate cases. Again with d fixed, a method for enumerating just
the edges and vertices (with repetitions) in O(n) time and O(n) space is given by
Edelsbrunner and Guibas [8]. Houle et al. [12] give several applications in data
approximation where it is required to enumerate all vertices of an arrangement.

In the next section we begin by introducing the notion of a dictionary for a
system of equations. Next we show how the problems mentioned in the title can
be transformed into the enumeration of certain types of dictionaries. In the third
section we give the algorithm for enumeration of dictionaries. Finally, in the last
section we discuss complexity issues and other properties of the algorithm
proposed.

2. Dictionaries

Let A be an m x n matrix, with columns indexed by the set E = {1,2,..., n}. Fix
distinct indices f and g of E. Consider the system of equations

Ax =0, x, =L 21

For any J < E, x, denotes the subvector of x indexed by J, and A; denotes the
submatrix of A consisting of columns indexed by J. A basis B for (2.1) is a subset
of E of cardinalitytir;i containing f but not g, for which Ay is nonsingular. We are
only concerned with systems (2.1) that have at least one basis, and assume this for
the rest of the paper. Given any basis B, we can transform (2.1) into the dictionary

xg= —Ag ' Ayxy = Axy, 2.2)

where N = E — Bis the co-basis and 4 denotes — A ' Ay. A is called the coefficient
matrix of the dictionary, with rows indexed by B and columns indexed by N, so
that 4 = (a;;: i€ B, je N). Note that the co-basis always contains the index g.

A variable x; is primal feasible if ie B— f and a,, > 0. A variable x; is dual
feasible if je N —g and a;; <0. A dictionary is primal feasible if x; is primal
feasible for all ie B — f and dual feasible if x; is dual feasible for all je N —g. A
dictionary is optimal if it is both primal and dual feasible. An optimal dictionary
is shown schematically in Fig. 2.1. A basic solution to (2.1) is obtained from a
dictionary by setting of xy_, = 0, x, = 1. I any basic variable has value zero, we
call the basic solution and corresponding dictionary degenerate. In Section 3 of
this paper we give an algorithm for enumerating all distinct basic solutions of the
system (2.1) without repetition, using only the space required to store the input.
The algorithm is initiated with an optimal dictionary. A variant of the algorithm
enumerates all primal feasible dictionaries reporting the corresponding basic
feasible solutions without repetition.

In the following subsections we show how the problems mentioned in the title

,,,,,
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Fig. 2.1. An optimal dictionary (& = nonnegative entry, © = nonpositive entry).

can be transformed into the problem of enumerating basic (feasible) solutions of
a system of equations in the form (2.1).

2.1. Vertex Enumeration in Hyperplane Arrangements

A hyperplane in R?, d > 0, is denoted by the pair (b, c), where b is a vector of length
d and c is a scalar, and is the solution set of the equation by=¢, y=
(y;:j = 1,..., d). A hyperplane arrangement is a collection of n, hyperplanes (b;, ¢))
for some integer n,. A vertex of the arrangement is the unique solution to the
system of d equations corresponding to d intersecting hyperplanes. The vertex
enumeration problem for hyperplane arrangements is to list all of the vertices of
an arrangement. It is a simple matter to find a vertex ‘of an arrangement, or show
that none exists, since vertices correspond to subsets of d hyperplanes whose
normal vectors b, are linearly independent. We only consider arrangements that
contain at least one vertex. R

We may assume, by relabeling if necessary, that the vectors {Bro—as 1+ > Duo}
are linearly independent. Consider the system of equations

xi=Cixno+1_biy, i=1,...,n0.
By assumption, the last d equations are linearly independent, and so the variables
V1, .., yq can be expressed in terms of X, g+ 15+ > Xno> and eliminated from the
first n, — d equations. This results in a system of the form

xg = Axy,

for a suitable (n, — d) x (d + 1) matrix 4, where B={l,...,n — d} and N =
{ng —d +1,...,no + 1}. Furthermore, by a change of varig_bles if necessary, we
may assume that each 4, , ., is nonnegative. We augment A by adding a row of

T

all —1’s. We augment B by adding index n, + 2. Setting

f=n,+2 g=ny+1, m=n,—d+1 =ny + 2,
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we have constructed an optimal dictionary. This dictionary is obtained from the
following system which has the form of (2.1):

Ixg — Axy =0, x, = 1. (2.3)
It is easy to show that, for every co-basis N of (2.3), the set of d hyperplanes

indexed by N — g intersect at some vertex of the arrangement. The vertex can be
computed by setting

xi'——-ﬁig, iEB—f; x1=0, ]EN—g,

and solving for y, which was expressed in terms ot x,, 4.1, - - - » Xn,. Similarly, every
index set of d intersecting hyperplanes augmented by index f gives a co-basis for
(2.3). We say that a vertex is degenerate if it is contained in more than d
hyperplanes. For such vertices, there may be many corresponding bases of (2.3),
each giving rise to a degenerate dictionary. An essential part of our enumeration
algorithm is to output a degenerate vertex only once.

The linear program formulated in this section has a unique optimum vertex. If
this vertex is degenerate, however, there will be many optimal dictionaries that
correspond to it. The vertex enumeration algorithm must be initiated at each of
these dictionaries, an issue that is addressed in Section 3.2.

2.2. Vertex Enumeration for Polyhedra

In this section we relate the vertex enumeration problem for polyhedra to the
dictionary enumeration problem. For a fuller discussion and proofs of the facts
stated here, the reader is referred to any standard linear programming text, such

as [5]. A (convex) polyhedron P is the solution set to a system of n, inequalities
in d nonnegative variables:

P={yeR%Ay<b,y=>0} 24)

where A’ is an n, x d matrix and b is an n, vector. A vertex of the polyhedron is
a vector ye P that satisfies a linearly independent set of d of the inequalities as
equations. The vertex enumeration problem for P is to enumerate all of its vertices.
In fact to find even a single vertex of P is computationally equivalent to linear
programming. As we wish to separate this from the enumeration problem, we
assume we are given an initial vertex. By transforming the problem as necessary,
we may assume that the origin is the given vertex. This implies that the vector b
is nonnegative. We also note that the assumption of nonnegative variables is not
essential: a system of inequalities in unrestricted variables with known feasible
point can be transformed into a system such as (2.4) along the lines described in
the previous subsection.

Let n=ny+d+2 f=n-1 g=n B={l,...,np,n—1}, and N=
{no + 1,...,ny + d, n}. Consider the following system of equations in the form
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of (2.1): [
Ty, +x, =0, e [\
IxB-—f + A,xN—g - bxg = 03 (2.5)
X, = L

Here 1 is an identity matrix and 1 is a vector of all ones, of appropriate dimensions.
Set m = n, + 1 and let 4 be the m x n matrix corresponding to the coefficients in
the first m equations of (2.5). Then (2.2) is an optimal dictionary for the system
(2.5). It can be shown that each primal feasible dictionary for (2.5) has a basic
solution which gives a vertex y of P: set y; = x,.;,j=1,...,d. A vertex of P is
degenerate if it satisfies more than d inequalities of (2.4) as equations. Again,
degenerate vertices correspond to degenerate dictionaries. In order to enumerate
all vertices of P, it is sufficient to enumerate all primal feasible dictionaries for
(2.5), outputting a degenerate basic solution once only.

2.3.  Facet Enumeration of the Convex Hull of a Set of Points

Let Q = {q,,..., q,,} denote a set of n, points in R%. A facet of the convex hull
of Q is a hyperplane containing d affinely independent points of Q and such that
all points of Q lie in one of its closed half-spaces. There is no loss of generality in
assuming that the origin is contained in the convex hull of Q. By employing a
standard duality between points and hyperplanes, we may transform this problem
into a vertex enumeration problem for a convex polyhedron.

3. Enumeration of Dictionaries

Suppose we are given a system of equations of the form (2.1) for some m x n
matrix A. The linear programming problem (LP) for (2.1) is to maximize x, over
(2.1) subject to the additional constraint that each variable except x, and x, is
nonnegative. Each optimal dictionary is a solution to (LP). To begin with, we
assume that there is a unique optimal dictionary. A pivot (r, s) on a basis B, and
corresponding dictionary x; = Axjg, is an interchange of some r € B — fwith some

index se N — g giving a new basis B". The new coefficient matrix A’ = (a;)) is given
by

| —
]
a
£

aij

&Q
I
&
-

I
|
Q
|
|
l

=aij_

N
a

S
a3

08

(ieB—r,jeN—s). (31)

The pivot is primal feasible (resp. dual feasible) if both of the dictionaries corre-
sponding to B and B’ are primal (resp. dual) feasible. The simplex method is a
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method of solving (LP) by beginning with an initial dictionary and pivoting until
an optimal dictionary is found. We consider two rules for choosing a pivot.

The first rule, known as Bland’s rule, performs primal feasible pivots. Let B be
a basis such that the dictionary (2.2) is primal feasible.

Bland’s Rule.

(1) Let s be the smallest index such that x, is dual infeasible, that is, a,, > 0.
(2) Set A = min{—(d,/a,): i€ B — f,a; < 0}. Let r be the smallest index obtain-
ing this minimum.

The pivot (r, s) maintains the primal feasibility of the dictionary. If step (1) does
not apply, the dictionary is also dual feasible and hence optimal.

The second rule, known as the criss-cross rule, starts with any basis.

Criss-Cross Rule.

(1) Leti # f, g be the smallest index such that x; is (primal or dual) infeasible.
(2) Ifie B, let r = i and let s be the minimum index such that a,, > 0, otherwise
let s = i and let  be the minimum index such that 4, < 0.

The criss-cross pivot (r, s) interchanges x, and x; and may not preserve either
primal or dual feasibility. If step (1) does not apply, then the dictionary is optimal.

In both cases, if step (1) applies, then step (2) can always be executed. The
validity of these rules is given by the following proposition. Part (a) is proved in
[2] and part (b) in [19] for linear programs and in [20] and [22] in the more
general setting of oriented matroids. A simple proof of part (b) also appears in [11].

Proposition 3.1. Let (2.1) be a system that admits an optimal dictionary and let B
be any basis.

(@) If B is primal feasible, then repeated application of Bland's rule leads to an
optimal dictionary, and each basis generated is primal feasible.

(b) Repeated application of the criss-cross rule starting with basis B leads to an
optimal dictionary.

3.1.  Unique Optimal Dictionaries

In this subsection we give a dictionary enumeration algorithm for systems (2.1)
that admit a unique optimal dictionary. Consider a graph where vertices are
dictionaries and two vertices are adjacent if the corresponding two dictionaries
differ in only one basic variable. Then part (b) of the proposition tells us that there
is a unique path consisting of criss-cross pivots from any dictionary to the optimal
dictionary. The set of all such paths gives us a spanning tree in this graph. Consider
a nonoptimal dictionary D with basis B. Let (r, s), r€ B — f, se N — g, be the pivot
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obtained by applying the criss-cross rule to D giving a dictionary D’. We call (s, r)
a reverse criss-cross pivot for D'. Suppose we start at the optimal dictionary and
explore reverse criss-cross pivots in lexicographic order. This corresponds to a
depth-first search of the spanning tree defined above. When moving down the
tree, each dictionary is encountered exactly once.

A similar analysis applies to part (a) of the proposition. We form a similar
graph, except that vertices are just the primal feasible dictionaries. We define a
reverse Bland pivot in the analogous way. A depth-first search of this graph
provides all primal feasible dictionaries.

Our enumeration algorithm search for dictionaries is given in Fig. 3.1. For a

procedure search (B, N, 4);
X B={l,....m}, N={m+1,...,n}, f=1, g=n, xz= Axy is a unique optimal
dictionary for a system (2.1)*/
begin
=2 ji= 1
repeat
while (i < m and not reverse (B, N, 4, i, j)) increment (i, j);
if (i < m) then /* reverse pivot found */
begin
pivot (B, N, 4, i, j);
if lex-min (B, N, A) then print (B);

= 2; =15
end;
else /* go back to previous dictionary */
begin

select-pivot (4, i, j);
pivot (B, N, 4, i, j);
increment (i, j);
end;
until (i > m and B[m] = m)
end; /* search */

function reverse (B, N, 4, i, j): boolean;
/* true if (s, r), with s = B[{], r = N[ ], is a valid reverse cross pivot (resp. Bland pivot)
for A, otherwise false */

procedure pivot (B, N, 4, i, j);
/* pivot A on row i and column j, update B and N. Reorder as necessary and set i and
j to be the indices of the interchanged B[i] and N[/]. */

function lex-min (B, N, A4): boolean;
/* true if A is nondegenerate or degenerate and B is the lexicographically minimum
basis for this basic solution, else false */

procedure select-pivot (4, i, j);
/* Find criss-cross (resp. Bland) pivot for coefficient matrix 4. Return the index i of the
pivot row and index j of the pivot column */
procedure increment (i, j);
begin
Ji=Jj+ 1;if (j =n — m) then begin j:=1; i:=i + 1; end;
end; /* increment */

Fig. 3.1. The enumeration algorithm search for dictionaries.
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given system (2.1) we have an initial basis B={l,...,m}, co-basis N =
{m+1,..., n}, and optimal dictionary xp = Axy. We further assume that [ = 1,
g = n, and that m and n are global constants. The efficiency of the procedure
depends greatly on the procedure reverse. The simplest way to check if (r,s),7€
B—f, seN —g, is a reverse pivot is actually to perform the pivot, then use
procedure select-pivot on the new dictionary. If this produces the same pair of
variables, then (r, s) is a valid reverse pivot. Since a pivot involves O(m(n — m))
operations, a faster method is desirable. In fact to determine the pivot by the
criss-cross or Bland’s rules, procedure select-pivot does not require the entire
dictionary. To test whether A arises from a coefficient matrix 4’ by a criss-cross
(resp. Bland) pivot interchanging B[i] with N[j], it is only necessary to examine
rows f, i and columns j, g of A'. These can be computed from A in O(n) time, and
checked to see if (B[i], N[j]) is a criss-cross (resp. Bland) pivot. Further savings
are possible, as certain potential reverse pivots can be eliminated without any

pivoting. For the criss-cross rule we have the following necessary condition for a
reverse pivot.

Proposition 3.2. If(s,1),s€ B — f andre N — g, is a valid reverse criss-cross pivot
for a dictionary xz = Axy, then either

(@) a,>0,da,>0,a,;,>0forjeN —g,j<s,or
(b) a;,<0,a,<0,a,<0foriecB—fii<r.

Proof. Let A’ = (aj;), with basis B’ and co-basis N', be a dictionary that yields A
after the valid criss-cross pivot (r, s), with re B’ — f and se N’ — g. One of the
indices r, s must be the smallest infeasible index in A’. Suppose first that it is r.
By the criss-cross rule we must therefore have a;, <0, a,, > 0, and a;; < 0 for all
je N’ —g,j<s. Now applying the pivot formula (3.1) to the pivot row of A" we
obtain the signs indicated in part (a) of the proposition in 4. A similar analysis
applies to the case where s is the smallest infeasible index in A', giving the sign
pattern of part (b) of the proposition. O

For reversing Bland’s rule, we can exploit the fact that the reverse pivot must
maintain primal feasibility.

Proposition 3.3. Let xy = Axy be a dictionary, let re N —g, and set A=
min{ —(d,,/d;): i€ B — f, &, <O}. If (s,r), se B — f, is a valid reverse Bland’s rule
pivot, then s must be an index that obtains this minimum.

Proof. Under the conditions of the proposition, if s is not an index realizing the
minimum, then the dictionary obtained after the pivot (s, r) is not primal feasible. [J

In the next section we see how this simple observation reduces the complexity of
search in nondegenerate situations.

The procedure /ex-min is used to ensure that cach basic solution is output
exactly once, when the lexicographically minimum basis for that basic solution is
reached. The correctness of the procedure is based on the following proposition.
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Proposition 3.4. Let B be a basis for a degenerate dictionary xg = Axy. B is not
lexicographically minimum for the corresponding basic solution if and only if there
exists re B — f and se N — g such that r > s,a,, = 0 and a,; # 0.

Proof. For the sufficiency of the condition, let r and s have the above properties.
Let B = B —r + s. Since a,, # 0, B' is a basis, and it is lexicographically smaller
than B.

On the other hand, suppose B’ is a basis lexicographically smaller than B with
the same basic solution. Let s be the smallest index in B’ but not in B. Since both
bases have the same basic solution, ., = 0. If we augment B by s, there must exist
some index r such that B = B —r + s is a basis. Now r > s for otherwise re B/,
by the choice of s, and there is a linear dependence among the set of columns
{A;:jeB,j <s}. Also a,, # 0, otherwise B would not be a basis. Finally, since
a,, =0, we have 4,, = 0 and B has the same basic solution as B. d

3.2. Degenerate Optimal Dictionaries

Procedure search as given in the previous subsection will only generate all (feasible)
dictionaries if the system (2.1) has a unique optimal dictionary. Suppose there are
many optimal dictionaries. This situation arises when one of the basic variables
has value zero, i.e., the dictionary is degenerate. Then instead of a spanning tree
in the graph described after Proposition 3.1, we obtain a spanning forest. Each of
the two pivot algorithms terminates when any optimal solution is found. Therefore,
procedure search must be applied to each optimal dictionary. Fortunately, from
any optimal dictionary we can generate all optimal dictionaries by a procedure
very similar to search. We can and will assume that there is a unique optimal
basic solution. This corresponds to the condition that all of the coefficients dag;,
je N — g, are nonzero in the optimal dictionary. We are free to assume this since
in our applications we are free to choose this row, which corresponds to the
“objective function” of the linear program. ' '

Let x; = Axy be a degenerate optimal dictionary. Let B' < B denote the indices
of the variables with value zero in the corresponding basic solution and the index
f. We augment 4 by a column with index g’ = n + 1, consisting of all ones. This
column temporarily replaces column g. Let N'=N —g + g'. This augmented
dictionary is shown schematically in Fig. 3.2.

J g N —g
f — — - — — —
+]0
B—f| +]0
+]o0 _
=2
+ |+
B-B~f|+]+
+1+

Fig. 3.2. An augmented degenerate optimal dictionary.
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We now consider the subdictionary consisting of rows indexed by B’ and
columns by N'. This is a nondegenerate optimum dictionary. To obtain all optimal
dictionaries for the original problem, we apply a variant of procedure search to
the subdictionary using a dual form of Bland’s rule in procedures reverse and
lex-min. This form takes any dual feasible dictionary and gives a dual feasible pivot.

Dual Bland’s Rule,

(1) Letre B' — f be the smallest index that is primal infeasible, that is, a,;, < 0.
(2) Set i =min{—(a,;/a,):jeN —g, a;> 0}. Let r be the smallest index
attaining this minimum.

The pivot (r, s) maintains the dual feasibility of the dictionary. If step (1) does not
apply, the dictionary is optimal. Proposition 3.1(a) applies with “ primal” replaced
by “dual.”

We initiate the procedure search on the augmented dictionary with basis
B’ and co-basis N'. Although only rows indexed by B’ are considered for
pivots, we manipulate the entire coefficient matrix 4 in procedure pivot, and
update the vectors B and N. Now each reverse pivot found by search applied
to the modified problem yields a new optimal dictionary for the original problem.
After the call to procedure pivot in search, we now insert a call to the original
procedure search, with the dictionary A and the updated vectors B and N.

The validity of this approach is based on the following observations. Again let
x = Axy be a degenerate optimal dictionary for a system (2.1) with a unique
optimum basic solution. Let B’ and N’ be defined as above. Each optimal basis
for (2.1) contains the indices B — B’ augmented by a linearly independent set from
N — g + B'. Such bases will always be primal feasible for 4, if they are also dual
feasible, then they correspond to an optimal dictionary for the original system.
Using the dual form of Bland’s rule, this latter condition is always satisfied. Since
the modified problem has a unique optimal dictionary, each dual feasible dic-
tionary for the modified problem must be connected by a unique path by dual
Bland pivots to this optimum dictionary. Reversing the pivots allows us to visit
each optimal dictionary for the original problem.

4. Complexity

In this section we discuss the complexity of the dictionary enumeration algorithm,
and apply the results to the geometric applications described in Section 2. Suppose
we have a system (2.1) for some m x n matrix 4. Let f(A) denote the number of
dictionaries that can represent (2.1). f(A) is just the number of linearly independent
subsets of m columns of A, with the condition that the column with index f is

m—1
but may be much smaller. For each dictionary, we may evaluate (m — 1) X
(n — m — 2) candidates. for reverse pivots, each candidate requiring O(n) time

. n—2
always included, and index g is always excluded. This is at most ( ),
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as shown in the previous section. Procedure pivot requires O(m(n — m)) time per
execution as does procedure lex-min. These complexities are valid for the case of
multiple optimal solutions. Therefore the overall time-complexity of search is

O(mn(n — m)f(4)) = 0<mn(n — m)(iii)) 4.1)

Apart from a few indices, no additional space is required other than that
required to represent the input.

We now consider the complexity of evaluating all feasible dictionaries. Let g(A)
denote the number of primal feasible dictionaries representing (2.1). The above
analysis and (4.1) hold, with g(4) replacing f(A). In the nondegenerate case we
can do better. Recalling Proposition 3.3, we see that we only need to consider one
candidate reverse pivot per column of the dictionary: if there are two or more
indices realizing the minimum, then a pivot would give a degenerate dictionary.
For each column, the candidate basic variable can be found by computing the
minimum ratio A in O(m) time. To check if a candidate is in fact a reverse pivot,
we need to construct the objective row of the dictionary after the pivot, taking
O(n — m) time. Therefore since there are n —m — 2 candidate columns, all reverse
Bland pivots from the given dictionary can be found in O((n — m)n) time, in the
nondegenerate case. This gives an overall complexity of O((n — m)ng(A4)) for
the nondegenerate case.

We now return to the geometric problems mentioned in Section 2. Suppose we
have a collection of n, hyperplanes in R® For this problem, m = n, —d + 1 and
n=n, + 2. The time-complexity of enumerating all vertices of a hyperplane
arrangement by this method becomes

O(m3df (A)) = o<ngd<';°>>.

In the case of simple arrangements, f(A4) is the number of the vertices, ie.,
the size of the output. This method should be particularly useful for simple
arrangements with few vertices. This could occur if many hyperplanes are parallel.
In any event, the simplicity of the arrangement does not have to be known in
advance.

Consider now the enumeration of the vertices of a polyhedron given by
a list of n, inequalities in d variables. We have m = no + land n=ny +d+ 2.
The time-complexity of enumerating all of the vertices is

Olodino + D(A) = 0<nod(no + d)(’;))

Again the complexity is output sensitive for nondegenerate polyhedra, for which
g(A) is just the number of vertices. If the polyhedron is simple (ie., all dictlon?ries
are nondegenerate), then we get an improved complexity bound. The algorithm
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produces vertices at a cost of O(d(n, + d)) per vertex with no repetitions and no
additional space.

The complexities in the previous paragraph apply to the convex hull problem,
where n, is the number of input points. In the nondegenerate case where no more
than d points lie on any facet (i.e., the facets are simplicial), we can enumerate the
v facets in time O(nydv) and space O(nqd).

5. Example

In this section we given an example of the operation of procedure search
for the vertex enumeration of the set of ny = 5 lines shown in Fig. 5.1. This
arrangement is generated by the coefficients:

bl = (1, 3)’ b2 = (53 l)a b3 = (3’ 2)7 b4 = (— 17 _3)’ b5 = (—27 1),
c, =4, c; =5, €3 =2, ca=1, cs=2.
Proceeding as described in Section 2.1, we add variables x,,...,xs obtain-
ing the system
x;=4— y; — 3y,
Xy =5—=35y1 = Va2
X3 =2—3y, —2y,,
xg=1+ y + 3y,
x5 - 2 + 2y1 - yz.

Since the last two equations are linearly independent, we may solve for y, and y,

¢ Y2
ls
P 4 \P
I )
I
0 Y1
-2 0 2 4 6
-2

Fig. 5.1. Line arrangement.
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in terms of x, and x5, getting

X4 Xs
=—-14+—+43—,
Y1 7 7
X4 Xs
=22 _
Y2 7 7

X, = 5— x4
xz = IO—X4—2x55
X3= 5—x4— Xs.

These are plotted with x,, x5 as axes in Fig. 5.2. Adding the special variables x;
and x, and the additional row representing the “objective function,” we obtain
our initial optimal dictionary:

Xy = 5x,— X4,
X, = 10x, — x4 — 2Xs, (5.1)

X3 = ng_X4— x5,

XJ'= —X4— Xs5.

Starting at this dictionary we consider in turn each of the candidate reverse
pivots: (1,4),(2,4),(2,5),(3,.4),(3,5). The candidate pivot (1, 4) yields the dictionary

X, = 5%, + X — 2Xs,

X3 - xl ha x5, (5 2)
X = S5x;— Xy,

X;= —5%x, + Xy — Xs.

ls

Fig. 5.2. Transformed line arrangement.
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Checking this dictionary, we discover that the criss-cross rule does generate
the pivot (4, 1), so we continue from this dictionary. Note that in determining
this, we do not need the entire dictionary. In this example we need only the
column of coefficients for x,. The possible candidates are: (2, 1), (2,5), 3, 1),
(3, 5), (4, 1). We start with (2, 1), which leads to the dictionary

Xy = —5x,4 X, + 2xs,
X3 = —5x,+ X, + Xs, (5.3)
xe= 10x, — x; — 2xs,
x; = —10x, + X, + Xs.

Again the criss-cross rule applied to this dictionary generates the required
pivot (1,2). In this case we need only check the coefficients of x, and x, in
the row for x;.

Continuing from this dictionary, the first candidate pivot is (1, 2). This leads us
back to (5.2), for which the criss-cross rule generates the pivot (4, 1) which is not
the same. Therefore (1, 2) is not a valid reverse pivot from (5.3). Next we try the
pivot (1, 5) on dictionary (5.3). This gives the dictionary

5 Xy Xy
X3=——5xg+“2_+_2',
Xg= 5 x,— Xy

5 Xy X
Xg = —2‘x9+71—'52‘,

15 Xy X,
xf=_7x’+?+—i_'

The criss-cross rule applied to this dictionary yields the pivot (4, 1), so (1, 5) is not
a reverse pivot. Continuing in this way we discover that no dictionaries lead to
(5.3) by the criss-cross rule. We therefore backtrack to the parent dictionary of

s
les 0.9 25 3.4
(3.4 1.5 24 .5
8.8 @ (1.4 3.4
1.3 28 0.2 @23

Fig. 5.3. Enumeration tree.
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(5.3), which we do by performing the criss-cross pivot (1, 2) leading back to (5.2).
Note that no storage is required to determine the parent of a dictionary.

In Fig. 5.3 we show the complete tree enumerating all dictionaries from
(5.3). Due to degeneracy in the original arrangement, the same vertex in the
arrangement may occur as different dictionaries in the tree. Dictionaries with bases
{1,2,4}, {2, 3,4}, {2,4, 5} correspond to one vertex. We output this vertex when
its lexicographically minimum basis {1, 2, 4} is reached.

6. Concluding Remarks

We have presented a new algorithm that can be used to solve three important
geometric enumeration problems without additional space. The simplicity of the
algorithm renders it suitable for symbolic computation in a language such as
Maple or Mathematica. Using exact arithmetic, the problem of numerical accuracy
which occurs with most geometric algorithms is avoided. The second author and
Ichiro Mizukoshi have in fact implemented the algorithms of this paper as a
package in Mathematica, which is publicly available at no charge from the second
author.

Another useful feature of the algorithm is that it is easy to parallelize efficiently.
Since in the enumeration no dictionary is ever reached by two different paths and
no additional storage is required, subproblems can be scheduled arbitrarily onto
free processors. If the enumeration tree is relatively “bushy” we would expect
considerable speed-up from parallelization. However, in the worst case little if any
speed-up would be achieved: consider the so-called -Klee-Minty examples. It is
known [1] that Bland’s rule applied to these examples generates a path of
exponential length from some vertex to the optimum vertex. By reordering the
variables, this path in fact visits every vertex of the polyhedron [15]. In this case
the enumeration tree generated by reverse pivoting is also a path! However, since
the simplex method seems to work well in practice, the enumeration tree will
normally have high fan-out and relatively shallow depth, and so substantial
speed-up may be expected. This represents an area for future research. By
substituting other pivot rules in our algorithm, different enumeration trees are
generated. Study of these trees should prove useful in evaluating pivoting rules
for the simplex method.

The reverse pivoting approach is quite general and can be applied to a
wide variety of enumeration problems. The algorithms in this paper can be
extended to the setting of oriented matroids, and in particular to pseudoline
arrangements. While the criss-cross method works correctly in the setting of
oriented matroids, Bland’s rule is not finite for oriented matroid programming
[10]. Todd [21] has found a finite rule that can replace Bland’s rule in the oriented
matroid setting.

We have also recently used the reverse pivoting method to develop an
algorithm for enumerating all the cells in an arrangement of n hyperplanes.
For enumerating all the vertices of an arrangement, a related technique gives a
different algorithm than that presented here. The time complexity for vertex
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enumeration in a simple arrangement is improved to O(nd*v) with space complexity
again O(nd). In both cases, the enumeration tree has depth bounded by n, which
should enable an efficient parallel implementation. We can also apply reverse
enumeration to find all triangulations and spanning trees of a fixed set of points.
These results are described in detail in [23]. Also, in a very recent work, Rote has
modified the technique of this paper to address degeneracy in the vertex enumera-
tion problem more directly [16].

The complexity analysis presented in this paper is quite rudimentary. We
allow a worst-case time of O(n) to determine whether a pair of indices is a reverse
pivot. This seems certain to be an overestimate. For the ith basic variable to
interchange with the jth nonbasic variable, at least i + j signs have to be “correct.”
We may compute these signs consecutively and stop the first time an “incorrect”
sign is encountered. Amortizing this cost over the complete enumeration of an
arrangement, it is possible that just a constant amount of work has to be done
on the average to determine that a potential reverse pivot is invalid.

Finally, we remark that our algorithm can be easily modified to enum-
erate all of the edges of a polyhedron in the given time and space complexity.
Initially, suppose we have a simple polyhedron and we are at a vertex a of
the polyhedron with its associated dictionary. For each entering basic variable we
compute a leaving variable via the ratio test. Since the polyhedron is simple, this
variable is unique and gives a new vertex b of the polyhedron. Then the edge ab
is always an edge of the polyhedron and we can report it using a simple
lexicographic rule: to avoid reporting both edge ab and edge ba, check if the basis
for a is lexicographically less than that for b, and if so report ab.

For nonsimple polyhedra, the situation is more complex since two endpoints
of an edge, and even the edge itself, may be degenerate. Furthermore, the example
of a square pyramid in R? can be used to show that the lexicographically minimum
basis for one vertex may not be adjacent in the enumeration tree to the lexico-
graphically minimum basis for an adjacent vertex in the polyhedron. Nevertheless
we can apply a technique similar to that described at the end of Section 3.1 for
degenerate vertices. An edge corresponds to a nondegenerate pivot (r, s) from some
basis B. We can consider B — r — s as a basis for the edge, and output the edge
whenever this basis is minimal. The condition can be tested in a way similar to that
described in Proposition 3.4.
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