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ABSTRACT

Let K be a convex polyhedron in R3. Let A(x) denote the area of the intersection of
K with a plane orthogonal to the x-axis. We show that A(x) need not be a convex func-
tion of x. Nevertheless we show that A(x) is unimodal. Let K be tangent to the xy plane
and let R(w) denote the area of the intersection of K with a plane that is rotated by an
angle w about the y axis. We show that there exist convex polyhedra such that R(w)
is a multimodal function. In fact, for a convex polyhedron of n vertices, R(w) may
have O(n) local maxima. As an application of the unimodality of A(x) we show that
given a convex polyhedron K in R3 and a directional vector v, the section of K orthog-
onal to v with maximum area may be computed in O(n log n) time. On the other hand
the multimodality of R(w) implies £2(n) lower bounds on the complexity of certain
geometric problems for convex polyhedra.

1. Introduction '\

Let Q be a convex polygon of n vertices in the plane. It was shown in [DJ73] that if I(x) is
the length of the intersection of a line orthogonal to the x-axis with Q, then I(x) is a unimodal func-
tion of x, i.e., it has one local maximum. It is shown in [Ch80], [CD87] that given a line L and a
convex polygon Q then the perpendicular distance function of the vertices of Q from L is bimodal
from which a unimodal function is constructed. Such unimodality properties of functions are im-
portant for the design of efficient searching algorithms because they permit the application of
prune-and-search strategies such as binary search or Fibonacci search [Ki53]. For example, the lat-
ter property implies that given a convex polygon Q and a line L, the point in Q furthest from L can
be computed in O(log n) time [Ch80]. This in turn implies that given a diagonal of Q, the maxi-
mum-area triangle determined by this diagonal and a third vertex of Q may be found in O(log n)

time. Such unimodality properties also simplify proofs of geometric properties. For example, Pach >

[Pa78] gave a 9-case combinatorial argument to prove that the minimal-area triangle determined
by three vertices of a convex polygon has two sides which are edges of the polygon. An immediate

simple proof of this result follows from the second of the above unimodality properties. Note that

this observation allows the minimal-area tiiangle to be found in O(%) time, a marked improvement
over the O(n?) naive approach. As an application of the first unimodality property mentioned above
we point out in passing that it provides an alternate proof to that of Kirkpatrick and Snoeyink
[KS93] that the longest vertical cut of a convex polygon can be found in O(log n) time.
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On the other hand, let ¢ be a vertex of Q and consider the distance function r(z)=d(q,z) as z
travels around the boundary of Q starting at ¢ and ending at ¢, where d(g,z) denotes the Euclidean
distance between g and z. Then r(z) need not be unimodal. In fact it was shown in [ATB82] that
for a convex polygon with n vertices r(z) may have O(r) local maxima. These results have impli-
cations for computing several properties of polygons such as, for example, the diameter of a con-
vex polygon [Ab90], [To84] and the minimum vertex distance between two convex polygons
[MTS85].

In this note we extend these results from distances in two dimensions to areas in three dimen-
sions. Let K be a convex polyhedron in R3. Let A(x) denote the area of the intersection of K with
a plane orthogonal to x. We show that A(x) need not be a convex function of x but is unimodal. Let
K be tangent to the xy plane and Tet R(w) denote the area of the intersection of K with a plane that
is rotated about the y axis. We show that there exist convex polyhedra such that R(w) is a multimo-
dal function of the angle of rotation w. In fact, for a convex polyhedron of n vertices, R(w) may
have O(n) local maxima. As an application of the unimodality of A(x) we show that given a convex
polyhedron K in R3 and a directional vector v, the section of K orthogonal to v with maximum area
may be computed in O(n log n) time. On the other hand the multimodality of R(w) implies Q (n)
lower bounds on the complexity of several geometric problems for convex polyhedra.

2. Translational Sections

Let K be a convex polyhedron in R3. Let A(x) denote the area of the intersection of K with a
plane orthogonal to x. In this section we show that A(x) is not necessarily a convex function but
must be a unimodal function of x. The proof rests on the Brunn-Minkowski Theorem, a powerful
inequality between areas of polygons in the plane [S-Y93]. Suppose that we are given three convex
polygons in R?, Q1. Q and Q3, such that Q, is a linear combination of Qy, and Q3, i.e., Q; = AQ
+ (1-A)Q3, where 0 < A < 1. In other words, for any fixed A, Q§is the set of points Ap + (1-A)g
for all points p and ¢ such that p € Q .and g € Q,. Let A(Q)) denote the area of Q; for i=1,2,3.
Then the Brunn-Minkowski theorem states that:

JA(Qy) 20, JA(Q)) + (1-2) JA(Q3)

in which equality holds if, and only, if Q,, and Qg are homothetic. Recall that a homothet of a con-
vex set Q has the form x + AQ where A >0 and x € RZ,

Now let us return to our polyhedron K in R3. We first show that A(x) is unimodal. Assume
that A(x) is not unimodal, i.e., that there exists at least one local minimum. Let x* denote the value
of x for which A(x) assumes this local minimum. Let S, denote the intersection of K with a plane
orthogonal to x at x*, and let A(S;) denote the corresponding minimal area. Since x* is the point
of minimal area there must exist a sufficiently small € greater than zero such that at x*- € and at
x*+ € the intersections S) and S3 of K with parallel planes intersecting x at x*- € and x*+ € must
have areas, A(S1) and A(S3) respectively, such that A(S;) > A(S;) and A(S3) > A(S5). Without loss
of generality, assume A(S;) 2 A(S3), and consider the solid S defined as the convex hull of the
union of S and S3. Furthermore, denote by A(§2) the area of the intersection of solid S with a plane



orthogonal to x at x*. Lyusternik [Ly66] has shown that all the steps in the proof of the Brunn-
Minkowski theorem in the plane hold for polygons which are parallel sections of the solid S. There-
fore we have that:

JA(5) 20 JA(S) + (1-1) JA(S,)

Furthermore, since solid S is the convex hull of subsets contained in K it follows that S must
be contained in K and therefore A(S;) 2 A(S,). Therefore we have:

JA(Sy) 2AJA(S)) + (1-1) JA(S,)

In the above construction A(S1) 2 A(S3) by assumption and therefore A(Sy) 2 A(S3) which
contradicts the fact that a local minimum implies A(S3) > A(S,). We have therefore proved the fol-
lowing.

Theorem 2.1: Given a convex polyhedron K in R3, the intersection area of K with a plane orthog-
onal to x is a unimodal function of x.

Theorem 2.1 can be strengthened by showing that A(x) need not be concave. Recall that a
function f{x) is concave if f (Ax + (1 =L1)y) 2Af(x) + (1 =A)f(y) . Now consider the following
example in which two homothets Q; and Qj are such that A(Q;) = 1 and A(Q3) = 4. Furthermore,
let Qp = (1/2)Qq + (1/2)Qs3. The Brunn-Minkowski theorem implies that

JA©) = )1+ () 2= ()
so that A(Q,) = 9/4. However,

1 1 1 1 10
(E)A(Ql) + (E)A(Q3) = (i) -1+ (5) 4 = (T) >A(Q,)

contradicting the definition of concavity.

An example of a 12-vertex convex polyhedron is described in the appendix for which the
function A(x) is neither convex nor concave. A plot of A(x) is also illustrated.

3. Rotational Sections

In this section we show through an example that if instead of translating a plane across a con-
vex polyhedron, we rotate the plane about some axis then unimodality of the sectional area no long-
er holds. In fact we construct a convex n-vertex polyhedron whose rotational sectional area func-
tion contains O(n) local maxima as the plane in question is rotated. The construction is inspired by
the convex polygon construction of [ATB82] that yields a multimodal function of the distances
from one vertex to all the others (refer to Fig. 3.1).



y Fig.3.1 llustrating a convex polyhedron in which the
rotational sectional area contains O(n) local maxima.

First construct the circle C determined by the equation x% + z2= 1. We refer to z as the vertical
direction. We will use C only above thé xy-plane. Next, we create three types of points in space
that will become the vertices of our desired polyhedron. There are two type-I points located at
(0,€,0) and (0,-€,0) where € is a fixed positive number, Let C’ denote the portion of C with z-co-
ordinate greater than a sufficiently small but positive 8. We now place (n-2)/2 type-1I points equal-
ly spaced on C’. C’ is now partitioned into [(n-2)/2]-1 arcs. Consider each arc determined by a pair
of adjacent points arc(pi,pj) on C’. Let e[pi.p;] denote the straight line segment connecting p; and
pj- The remaining [(n-2)/2]-1 type-III points are placed “in-between” the points already on C’.
More precisely, corresponding to each arc arc(p;,p;) we place a type-III point on the xz-plane strict-
ly below arc(p;,p;) and strictly above e[p;,p;. Finally we take the convex hull of all the n points as
our polyhedron K. To see that all n points appear in K and that K is a convex polyhedron it suffices
to establish that every vertex of K is convex. A vertex v of a polyhedron K is convex provided that
there exists a plane H through v such that all vertices of K adjacent to v lie in one open half-space
determined by H (call it H*) and such that if H is translated by a sufficiently small amount in a
direction towards any point in H*, then the intersection of H with K in a sufficiently small neigh-
borhood of v is a convex polygon. The type-I vertices are convex because all other vertices lie
above the xy-plane in which they lie, because all other vertices lie on the xz-plane, and because each
type-1II vertex such as py has z-coordinate smaller than its vertical projection on arc(py_1.Px4+1) and
greater than its vertical projection on e[py_1,px41]- The type-III vertices are convex for the same



reasons. The type-II vertices are convex for the additional reason that each such vertex pj is such

that its adjacent vertices pj-1 and pjy; both lie strictly below the line contained in the xz-plane and
tangent to C” at p;.

It remains to show that there exists a plane such that when it is rotated the sectional area it
makes with K is multimodal. Let R(w) denote the area of intersection of a plane H(w) that starts
out as the xy-plane and is rotated about the y-axis by w degrees, 0 < w < 180. When H(w) intersects
K at points other than the edge e’= [(0,€,0),(0,-€,0)] the intersection forms a triangle. Every such
intersecting triangle contains e’ as its base. Now whenever H(w) intersects a type-II vertex the
height of the triangle is equal to the radius r of circle C and thus the area equals 0.5¢’r. On the other
hand, whenever H(w) intersects a type-III vertex the height of the triangle is equal to a value ’ less
than the radius r and therefore the area equals 0.5¢’r’ < 0.5¢’r. Therefore as H(w) is rotated each
type-1II vertex yields a local minimum for R(w). We have thus established the following.

Theorem 3.1: There exist convex n-vertex polyhedra such that if a plane is rotated about some
axis in space, the area of intersection of the rotating plane with such a polyhedron yields a function
of angle of rotation which may contain O(n) local maxima.

This theorem has implications for the problem of computing the maximum-area triangle de-
termined by three vertices of P, two of which determine a pre-specified diagonal of P. Recall that
this problem in two dimensions can be solved in O(log ) time. On the other hand, theorem 3.1
implies the following.

Theorem 3.2: Given a convex polyhedron K of n vertices and a specified diagonal d of P, com-
puting the maximum-area triangle determined by d and a third vertex of K takes time O(n).

4. Applications
4.1 Computing the maximum area section of a convex polyhedron

In this section we show how the unimodality property of the sectional area allows us to find,
given an n-vertex convex polyhedron K and a direction ¢, the maximum-area intersection of K
with a plane orthogonal to ¢. Without loss of generality we assume ¢ to be the x-axis.

First we show how to compute in linear time the maximum area cross-section of a special
type of polyhedron called a drum. Let P'= [py, ps,..., p,,;] be a convex polygon in a plane H; in R3.
Let Q =[q, ¢2,..., g,] be a convex polygon in a plane H, which is parallel to, but not identical to,
H; and parallel to the yz-plane. Assume both polygons are labelled in counterclockwise order when
viewed from x = +o0. The convex hull of P U Q is called the drum defined by P and Q. Let us de-
note it D. We show how to compute the maximum area cross-section of D in the direction orthog-
onal to the x-axis in O(m+n) time.

The edges of D include the edges of P, the edges of Q and additional edges of the form pig;-
Suppose there are & of these additional edges and denote them bypPidj> .- P4,



Since D is a convex polyhedron in R3 we have k = O(m+n). Note that the intersection of D
and any plane H which lies between and is parallel to H; and H, is a polygon in the plane H with
k vertices. We denote this polygon D(H) and label its vertices 7, 7,..., 7. Each of these vertices is
the intersection of H with one of the k edges of D defined above. Assume the edges of D and the
vertices of D(H) are labelled such that fort = 1.,....k,

= Hopg,,

and that the vertices r, appear in counterclockwise order when viewed from x = +0o0. We assume
that D is given in such a way that the vertices of D(H) can be recovered in this order in O(m+n)
time. Let r, have coordinates (y,,z,).

The area of D(H) is given by the standard formula:
1
Area{D(H)} = (f) (122 + Y23+ .. +y,20) — (Z1yy+ 203+ ... + Z,¥y))

By the definition of H, there exists some A between zero and one such that

H = \H,+ (1-A\)H,

It follows that fort = 1,..., k

r, = lpil+ (1 —7\.)q,-'

The coordinates of the vertices of P and Q are known. We may therefore substitute for y, and
z; in the area equation for D(H) to obtain a formula that is quadratic in A in O(m+n) time. This for-
mula may be maximized by elementary calculus over the range 0 < A < 1 in constant time. Sum-
marizing, we have the following result.

Theorem 4.1: The maximum-area cross-section of a drum of k vertices, in the direction orthogo-
nal to its defining polygons, can be computed in O(k) time.

We are now ready to solve the problem for an arbitrary convex polyhedron K. If we create a
list L stored as an array that contains all the vertices of K sorted by x-coordinates, theorem 2.1 al-
lows us to perform prune-and-search on this list. Accordingly, as a pre-processing step we first sort
all the vertices of K in O(n log n) time and remove any duplicate vertices in O(n) time. We may
discard duplicates because they yield the same cutting planes and therefore the same sectional ar-
eas. Let p,,,4 be the median vertex of L and pp,,4.1 and ppy,.4.41 its two adjacent vertices. We con-
struct three planes orthogonal to the x-axis, H,,.q, Hypeq.1 and H,,,p4,1 through the three corre-
sponding vertices in O(1) time. We intersect these three planes with K in O(n) time with the algo-
rithm of Chazelle and Dobkin [CD87] to obtain three polygons P4 Ppeg-1 and Ppog.1s
respectively that in turn determine two drums D,,,;. defined by P,,,4, and P,,,,.; and D,,. 4., de-
fined by P, and P,,4,1. Next we compute the areas of P4, Ppeg.1 and Ppeq,1 denoted by
Apeds Apmeq-1 and Ay, 4.1, TEspectively, in O(n) time. To decide which half of L to discard at each
pruning step we compare the values of the three areas. If A,,,1.1 < Aped < Apeds+1 We discard all
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vertices of L below p,,.; and recurse on the sub-list remaining. If A1 > Ajed > Ajpeds+1 We dis-
card all vertices of L above p,,.q and recurse. If A, 4> max[A ,..4.1, Amed+1] the optimal solution
must lie between p,,4.1 and p,,e 4, 1. Then we use theorem 4.1 twice to solve the optimization prob-
lem in O(n) time for drums D,,,,4. and D,,,4, and select the higher of the two values encountered.
Since at each pruning step we discard half of the vertices of L from further consideration and the
test to determine which half is thrown away takes O(n) time we have proved the following:

Theorem 4.2: The maximum-area cross-section of a convex polyhedron of n vertices, orthogonal
to a pre-specified direction, can be computed in O(n log n) time.

4.2 Computing the longest vertical cut of a convex polygon

Consider the two-dimensional version of our problem and let Q be a convex polygon of n ver-
tices in R? that supports binary search. What is asked for in this problem is the longest vertical
chord of Q. This problem finds application in computing the densest double-lattice packing of a
convex polygon [Mo91]. Kirkpatrick and Snoeyink [KS93] described an elegant prune-and-search
algorithm for computing the longest vertical cut (or chord) of Q in O(log ) time. Their key lemma,
that allows them to discard one fourth of the vertices at each pruning step, is that the longest cut is
determined by points on the boundary of Q that must admit parallel lines of support of Q. As a pre-
processing step they split the boundary of Q into two chains Qup and Qyyyp- This is accomplished
by finding the vertices of Q with minimum and maximum x-coordinates in O(log #) time with the
algorithm described in [Ch80].

For their prune-and-search strategy they pick qyp, the median vertex of Qyp as well gy, the
median vertex of Qg,y,. By examining the adjacent vertices of qup and g4y, they construct in
O(1) time non-parallel tangents to Q at dyp and G5, that meet at some point p outside Q. Their
“parallel-line-of-support” lemma allows them to discard one fourth of the vertices of Q. In partic-
ular, if p is right of g, which, in turn, is right of qyp then the vertices of Qgy,,, and to the right
of 440wy, may be discarded. The other three cases are analogous.

Recall that [(x), the length of the intersecting segment of a line parallel to the y-axis with Q
was shown in [JD73] to be a unimodal function of x. Here we merely wish to point out that the
“parallel-line-of-support” lemma is not necessary and that the correctness of their algorithm fol-
lows from the unimodality property of I(x).
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Appendix

Below we illustrate a convex polyhedron for which A(x) is neither convex nor concave. An unfold-
ing of this polyhedron given in Fig. A3.
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12
1

10]

0.0

| I 1 i {

0.5 1.0 L5 20 25

Fig. A2 The function A(x) for the polyhedron of Fig. Al.
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Fig. A3 The reader is encouraged to cut out the above unfoldi.ng of Fhe polyhedron
given in Fig. Al in order to construct a physical model as a visual aid.
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