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Abstract

The set of solutions to a collection of polynomial equations is referred to as an algebraic set. An algebraic
set that cannot be represented as the union of two other distinct algebraic sets, neither containing the other,
is said to be irreducible. An irreducible algebraic set is also known as an algebraic variety. This paper
deals with geometric computations with algebraic varieties. The main results are algorithms to (1) com-
pute the degree of an algebraic variety, (2) compute the rational parametric equations (a rational map from
points on a hyperplane) for implicitly defined algebraic varieties of degrees two and three. These results
are based on sub-algorithms using multi-polynomial resultants and multi-polynomial remainder sequences for
constructing a one-to-one projection map of an algebraic variety to a hypersurface of equal dimension, as
well as, an inverse rational map from the hypersurface to the algebraic variety. These geometric computa-
tions arise naturally in geometric modeling, computer aided design, computer graphics, and motion planning,
and have been used in the past for special cases of algebraic varieties, i.e. algebraic curves and surfaces.
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1 Introduction

Background: Current research in geometric modeling is engaged in extending the geometric coverage of solid modelers
using polynomial equations of arbitrarily high degree. Effectively manipulating these geometric representations
require the ability to manipulate the underlying systems of equations [5, 26]. The set of solutions {or zero set Z(S5))

of a collection S of polynomial equations

Sl : fl(:ltl, ...,(L‘n) =0

St fm(z1,...2) =0 (1)

is referred to as an algebraze set. Algorithms for manipulating algebraic sets are crucial components for proof systems
deciding existential and universal theories of polynomial equations, see for e.g. [38]. An algebraic set that cannot be
represented as the union of two other distinct algebraic sets, neither containing the other, is said to be irreducible.
An irreducible algebraic set is also known as an algebraic variety.

One computational method for manipulating algebraic sets Z(S) is that of Grébner basis manipulations [12].
Given the set of polynomials F' = {f1, ..., fm}, the Grobner basis algorithms provide a deterministic iterative method
for determining whether a polynomial P lies in the set of all polynomials of the form Y a;f; (the ideal of F'). It
collectively manipulates the combinatorial structure of the entire set F' of polynomials and in doing so, indirectly
provides answers to questions about the zero set Z(S).

Geometric problems dealing with zero sets Z(S), such as the intersection of surfaces, or the decision whether a
surface contains a set of curves, are often first versed in an ideal-theoretic form and then solved using Grobner basis
manipulations. One of the main difficulties involved in using the indirect Grobner basis technique is that the method
may be extremely slow for even small geometric problems. In the worst case, this method requires exponential space
and may have running time that is double exponential in the number of variables in problem [35]. Even in special
cases where this double exponential behavior is not observed, deriving tight upper bounds on the method’s running
time is difficult.

In this paper, we present an alternative technique for answering various geometric questions on algebraic varieties
of degrees two and three. (We shall define the degree of the algebraic variety in section 3). The technique of
constructing rational maps of algebraic varieties with hyperplanes, that we present, deals directly with the zero sets of
polynomial equations (rather than just the combinatorial structure of the polynomials). Such rational maps provide
a compact data structure for algebraic varieties and also yield simpler algorithms for computing intersections[10],
shading, displaying and texture mapping[7], and in general solving systems of algebraic equations[11]. It is based,
though not entirely, on lesser known constructs of algebraic geometry, namely the multi-polynomial resultant[34]
and multi-polynomial remainder sequences (a generalization of remainder sequences of two polynomials, see for
e.g., [25, 33]). These computations can be done in time single exponential in the number of indeterminates of the

equations.



Main Results: In section 3 we present a method of computing the degree of an algebraic variety. This essentially
relies on a way of computing a hypersurface birational to the given variety, via a valid projection direction along
which the projection map is one-to-one. In section 4 we show how to construct the rational inverse of the one-to-
one projection map between the hypersurface and the algebraic variety, using either multi-polynomial resultants or
multi-polynomial remainder sequences. In section 5 we build on the earlier results of one-to-one maps and present an
algorithm to construct the rational parametric equations (a rational map from points on a hyperplane) for implicitly
defined algebraic varieties of degrees two and three. This is based on sub-algorithms for parameterizing arbitrary
dimension (> 3) hypersurfaces of these degrees.

Prior Work: Much of the work in algorithmic algebraic geometry dealing with algebraic curves, and to a
limited extent with algebraic varieties, is classical, dating to the pre-1920’s, see[16, 23, 28, 29] However, it was not
till the fundamental work of[30, 45] that algebraic geometry found a firm footing, free of the falacies which the
earlier classical methods were often troubled with. Modern algebraic geometry, equipped with the preciseness of
commutative algebra, has its main drawback in being abstract and non-constructive. Recent interest, stemming
largely from geometric modeling, graphics, robotics, and other geometric manipulation applications, has seen a
resurgence in constructive algorithm design activity, dealing with algebraic varieties[12, 13, 17, 18, 38, 42].

Various algorithms have been given for constructing the rational parametric equations of implicitly defined
algebraic curves and surfaces of low degree[2, 3, 43]. Computational methods have also been given for constructing
parametric equations of the intersection space curves of two degree two surfaces by[31] using the fact that the pencil
of quadrics contains a ruled surface and by[37], via the computation of eigenvalues of matrices of quadratic forms.
The parameterization algorithms presented in [4] are applicable for irreducible rational plane algebraic curves of
arbitrary degree, and irreducible rational space curves arising from the intersection of two algebraic surfaces of
arbitrary degree. The parameterization techniques, essentially, reduce to solving systems of homogeneous linear
equations and the computation of Sylvester resultants, see for e.g.[39]. For non-rational curves, parameterization
algorithms which are valid in local neighborhoods of points, singular or otherwise, are given in[6).

The parametric definition of a curve or surface is a standard example of a rational map. Inverting a parametriza-
tion of a surface has applications in areas such as sorting points along a parametric curve[27]. Birational maps have
been used in resolving the singular (nonsmooth) points of algebraic curves and surfaces[1]. In particular, {10] uses
this idea in the robust tracing of algebraic plane curves. Moreover, [4] use birational maps in determining whether
an algebraic space curve has a rational parameterization. From a mathematical point of view, current attempts to

classify surfaces and higher dimensional geometric objects usually are restricted to classifications up to birationality
[44].
2 Notation and Preliminaries

A point in complex projective space CP” is given by a nonzero homogeneous coordinate vector (Xo, X1,...,Xp) of

n + 1 complex numbers. A point in complex affine space CA" is given by the non-homogeneous coordinate vector



(z1,22,...,25) = —%, %, cee, % of n complex numbers. The set of points Z7(f) of CA™ whose coordinates satisfy
a single non-homogeneous polynomial equation f(z1,z2,...,z,) = 0 of degree d, is called an n — 1 dimension, affine
hypersurface of degree d. The hypersurface Z(f) is also known as a flat or a hyperplane, a Z%(f) is known as a
quadric hypersurface, and a Z% (f) is known as a cubic hypersurface. The hypersurface Z2 is a plane curve of degree
d, a Z3 is known as a surface of degree d, and Z7 is known as a threefold of degree d. A hypersurface Z7% is reducible or
irreducible based upon whether f(z1, 2, ...,2,) = 0 factors or not, over the field of complex numbers. An algebraic
variety Z"{f1, ..., f»} is then an irreducible common intersection of a collection of hypersurfaces Z7 (f;).

An irreducible rational hypersurface Z}(f), can additionally be defined by rational parametric equations which
are given as (1 = G1(u1, s, ..., Un_1), 22 = Ga(u1,us, ..., Un_1), ..., Tn = Gn(ur, us,...,us_1)), where Gy, Ga,
..., Gy are rational functions of degree d in u = (u1,us,...,un—1), i.€., each is a quotient of polynomials in u of
maximum degree d.

Multi-polynomial Resultant: Consider Fy = 0, ..., Fy, = 0 polynomial equations in n + 1 variables (X, ..., X,)
and homogeneous in m variables (X, ..., X;m—1). These equations could be the homogenization of the earlier system
(1) with X, acting as the homogenizing variable. The multi-polynomial resultant R(F1, ..., Fy,) is a polynomial in
the coefficients of the F; that vanishes if and only if the F; have a common zero in projective space. For this
reason, the resultant is also often called the eliminant. Geometrically, the resultant vanishes if and only if the n
hypersurfaces Z7 (F;) have a common intersection in projective space.

The resultant of several equations has several different characterizations. Probably the most elegant was dis-
covered by Macaulay [34]. He shows that the multi-polynomial resultant can be expressed as the quotient of the
determinant of two matrices whose entries are coefficients of the polynomials. In the case of two equations, the
matrix for the denominator always has determinant 1 and the matrix for the numerator is the traditional Sylvester
matrix[39]. In computing the multi-polynomial resultant, the F; are multiplied by suitable monomials to transform
the problem of determining whether the polynomials have a common zero into a problem in linear algebra. We
construct a matrix whose entries are the coefficients of the F1i, ..., F;,. The determinant of this matrix will be the
product of the resultant and the determinant of a specific minor of the matrix.

The general construction due to [34] is as follows: In the system F; = 0, ..., Fy;; = 0 of polynomial equations, ho-

mogenous in variables Xy, ..., X;m—1, let F; be of degree d;. The coefficients of the F}’s are treated as indeterminates.

Let

d=1+) (di—1).
and let the m-vector o denote the exponents of a monomial in Xj, ..., X;m—1. For example, if & = (ao, ..., ¥m-1),
then

X% =Xge. . Xt

“tm-1

Thus, the set of all monomials of degree d in m variables is

X = {X%ag+ ... +am-1 =d.}



If N denotes the number of monomials in this set, then the monomials will index the columns of an N by N matrix.

d+m-—-1
d

N =

Partition X'¢ into n disjoint sets. These sets are
X = {X%|o; > d; and o < d; V) < i}.
Next, for each set X2, construct a set F# of polynomials from F; using monomials in X#. Specifically, let

P
Fi="%fi
i

=

The F{ are sets of homogeneous polynomials in m variables of degree d. Moreover, each of the polynomials in
the union of the F¢, equated to zero, collectively yields a set of N homogeneous polynomial equations. Construct
an N by N matrix (call it A) whose columns are indexed by monomials in X and whose rows correspond to the
polynomials in the ##’s. For a given polynomial P in F# its row consists of the symbolic coefficients a;p, bj etc.,

of each monomial in P.

Xg\ ~ailai2¢1i3----\(Xg\ {0\

bjv bz bjs

xa_, X4 _, 0 )

Now, if the F; have a common root (Xg, e Xm_l), then this root must satisfy all of the polynomial equations in the
F#s. This fact implies that the nontrivial vector (Xo, ..., X;u—1) must be in the null space of A. Thus, A must be
singular or equivalently, the determinant of A (call it D) must be zero. This argument establishes that the resultant
R 1s a factor of D. The remaining factors of D are extraneous and have no bearing on whether the original equations
have a common root. The beauty of Macaulay’s result is that he established that the extraneous factors are the
determinant of a minor of A. This minor (call it B) can be constructed from A in the following manner. Delete all
columns of A that correspond to monomials X* where o; < d; for all but one value of i. (Note there must at least
one such 7 due to the manner in which d was chosen.) Delete all rows of A that correspond to polynomials in Fj
whose multipliers X* have o; < d; for i < j < n.

Macaulay shows that the resultant R satisfies

_ det(A)
~ det(B)

where this division is carried out before the indeterminates forming the entries of A and B are specialized. The
reason for specializing after division is that det(A) and det(B) may evaluate to zero even though R is not identically

zero. Techniques for computing R by specializing before division has recently been considered in [14, 38].



Multi-polynomial Remainder Sequence: Consider first two polynomial equations fi(zy,...,z,) = 0and fo(z1,...,2,) =
0. Treating them as polynomialsin x;, the psuedo-remainder (fi/f2) = g(z1, . . ., zn) for degreeg, (f2) < degreeg, (f1),
1s the result of one step of psuedo-division in the ring C of coefficient polynomials in n — 1 variables (2, ..., ,),
re. af; = ffs — g with o, BeC and degree,, (g) < degrees, (f2). Repeating the psuedo-division with f and ¢ and
ensuring that the factors o and § are ‘primitve’, one can compute a subresultant polynomial remainder sequence

(p.rs):
flavag:Sk—‘l)"')Sl)SO (3)

where S; is the psuedo-remainder of the two polynomials preceding it in the sequence and is known as the 3"
subresultant of f; and fo, with respect to 21, see for e.g [25, 33]. Here Sy is a polynomial independent of z; and is
the resultant of f; and fa, with respect to #;. (Note in the homogeneous case Sy is the polynomial resultant of Fy
and Fy, with respect to Xo and X;.

For the set of polynomial equations ( 1), treating them as polynomialsin z;, we select the polynomial, say f, of
minimum degree in z;. We then compute the subresultant psuedo-remainder for each pair (f;/fr) =¢i, 1 <i<m
and 7 # k, yielding a new system of equations g; and f;. We repeat the above, first selecting from the new system,
a polynomial of minimum degree in 1, and then computing pairwise subresultant psuedo-remainders. Eventually,

we obtain a system of m — 1 polynomial equations, say S™!

fl(l'g, ceny (L‘n) =0

fm_l(:cg,...,zn) =0 (4)

independent of z;.

The above is then one (macro) step of the multi-equational polynomial remainder sequence (m.p.r.s). For the
new set of polynomial equations (4), treating them as polynomials in z3, we repeat the entire process above and
obtain yet another reduced system S™~? of m — 2 polynomial equations, all independent of z2, and so on. This

sequence of systems of multi-equational polynomial equations
S=5m,6m"1 gm-2 5150 (5)

i1s what we term the multi-equational polynomial remainder sequence.

3 Birational Hypersurface and Degree Computation

A map of the form

Y1 = 1 (Xo, X1, ..., Xm)Yo

Yn = ¢n(X0yX1» "'aXm)YO’



where the ¢; = g:();zy’f(:) are ratios of homogeneous polynomials of equal degree in the X; is referred to as a
rational map. In general, a rational map may be thought of as a function that transforms some set of points X in
{Xo...Xm) space to set of points Y in (Yp...Y,) space. Note that the denominators are polynomials and can have
zeros. Thus the map may not be defined at all points. We denote this map by ¢ : X — Y.

A rational map 1 : X — Y is called birational if it admits an inverse. That is, there exists a rational map
¢ Y — X such that (X) has the same dimension as Y, ¢(Y) has the same dimension as X, ¢ = 1 almost
everywhere, and ¢9 = 1 almost everywhere. Two sets X and Y are said to be birational if there exists a birational
map between X and Y.

A classical theorem from algebraic geometry states that “Any algebraic variety Z(S) is birational with a hyper-

surface Z(h) of appropriate dimension” (see [22], Prop.1.4.9).

Definition 1 The degree of the algebraic variety Z(S) is then defined as the corresponding degree of the birationally
equivalent hypersurface Z(h).

The construction of the hypersurface h for a given variety S can be done straightforwardly using multi-polynomial
resultants. (Computationally, as we shall show in the next section, under certain assumptions on the variety, this can
also be achieved using multi-polynomial remainder sequences). Given m independent equations in n variables (1),
let S be the algebraic variety of dimension n — m defined by these equations, i.e. Z(S) is the complete intersection
of the m polynomial equations. We may construct a generic linear projection onto n — m + 1 of the variables. The
image of this projection is the hypersurface H in these n — m + 1 variables. Determining, the dimension of an
arbitrary variety is a non-trivial problem. However, various solutions have been offered, for e.g., see [21, 36].

To find a generic linear projection, the following general procedure can be adopted. Consider the linear projective

coordinate transformation

Yy =aoXo + anXi1 + ... + ainXn

Yo =an0Xo + an1 X1 + ... + annXs

The linear coordinate transformation transforms the original homogenized variety V : Z{F;(Xo,...,X,)} into, a
bilinearly related variety V : Z{F(Yo,....Y)},i=1,..,m (wlg.).

Let R(F,..., Fn) = 0 be the irreducible resultant polynomial equation corresponding to the projection hyper-
surface H of the variety V. Irreducibility of H follows from the irreducibility of V and the projection mapping[22].
Let k be the multiplicity of polynomial R (i.e. there exists a factor R; such that R¥ divides R but R*¥*! does not).
Then by applying ([19],Theorem 8.4.13), we see that the projection map is generically k to one. To make the map
one-to-one we choose the coefficients of the linear projective transformation, a;j, ¢, j = 0..n such that (7) the deter-
minant of a;;, is non zero (making the map well defined) and (4¢) the discriminant of the polynomial R(f1, ..., fm) to
be non zero. As “bad” values for a;; which do not satisfy (i) and (ii) above, satisfy a set of hypersurface conditions,

any random choice of values will in general suffice with probability 1, see [41].



4 Birational Map Computation

The earlier section gave a way of constructing a hypersurface H as a one-to-one projection of the original algebraic
variety V, or a bilinearly related variety V. We now show how such a one-to-one map can be inverted, yielding a

birational map between H and V.

Theorem 1 Let X and Y be two irreducible n-dimensional varieties and 1 a rational map from X to Y that is

generically one-to-one. Then under ¢, X and Y are birational.

This follows from ([22], Cor. 1.4.5). Hence, since the map from V to H is one-to-one, there exists an inverse rational
map from H to V. Such an inverse rational map from the irreducible polynomial R to the C;’s may be recovered
by using the Theorem of the Primitive Element ([45], section I1.9). This construction for m = 2 is described in [4,
20]. A more general version for unrestricted m is described in [17,9]. We now show that by using the Macaulay

derivation of the multi-polynomial resultant, the construction of the inverse rational map reduces to applications of
Cramer’s rule ([24], Thm. 6.9.2) in linear algebra.

Recall the matrix equation (2) of section (2)

be: 0

A . =\ . (6)

xd_ 0
Thus, the eliminated homogeneous variables X' = (Xg, ...y X2 _1) spans the kernel of A. To apply Cramer’s rule,
we must first show that there exists a (N — 1) by (N — 1) minorA that is non-singular. Since the birational map
¢ is generically one-to-one, the order of vanishing of det(A4) must be one. Since the order of vanishing of det(A) is
one, the kernel of the matrix A must be one dimensional. Thus, the N — 1 vectors A; through Ay_; are linearly
independent and therefore there must be an invertible (N — 1) by (N — 1) minor of the matrix (41, ..., AN—1).
Removing a single row from the matrix (A, ..., AnN—1), we obtain an invertible square matrix. Let Ai: denote the 7"
column of the matrix when the j** row is deleted. Then using Cramer’s rule the inverse rational map is constructed

for each of the eliminated dehomogenized (affine) variables (z; = %, vy Ty = X)"(‘—O"

X, det(Al, ..., A% _y)
Xo ~ det(4%, ..., A% _)

;=

. __ j** monomial of vector x _ . i
where the rows j and k£ are chosen such that z; = T monormal of vector ¥’ and 1 <! < (m —1). Using multi
polynomial resultant computations [15, 38], all calculations can be done in time single exponential in m and n.

We now present an alternate method using the multi-polynomial remainder sequence of section (2) on the original
affine polynomial system (1). We assume that the hypersurfaces f; = 0 1 < { < m intersect transversally. First,

consider the subresultant polynomial remainder sequence (p.r.s) (3) : fi1, f2,9 = Sk—-1,..., 51, So. If the projection



direction z, is birational, and the hypersurfaces f; = 0 and f> = 0 have a transversal intersection, we show in [4]

that

Si(z1,..,zn) = hi(ze, ..., 20)21
+h0(1‘2, ey .’L‘n)
So(.’L'l,...,:L’n) = f(:cg,...,z,,)

That is, the last polynomial Sy is independent of z;, and is the resultant of fi and f; with respect to z,. More
importantly the next-to-last polynomial S; is linear in ;. It is referred to as the subresultant of fi and f» with

respect to z1. The subresultant equation S; = 0 then provides the rational inverse map z; = :J‘I’(H%

Similarly, computing the multi-polynomial remainder sequence (m.p.r.s) (5), under a birational projection

direction z;, yields after the first macro step, a reduced system (4) independent of z; as well as the inverse map

ho(za,...,Tn
h](l‘g,4u,zn) :

system independent of 25 as well as the inverse map z, = :—:%H%, and so on. Starting with m equations in (1),

;= After the second macro step, under a birational projection direction z2, we obtain a reduced

and after m — 1 steps, with the elimination order of z,, %3, ...,Zm—1 one obtains the rational projection as well as

the rational inverse map:

f(rm, vy @) =0
. _ hom—2(Zm, ..., 2n)
m=1= hgm_l(l‘m, seey :L'n)
_hy(zs,. .., za)
27 ha(zs,...,on)
ho(xz, . .,x,,)

— O\"a e n) 7

e hl(xz,...,mn) ( )

5 Parameterizing Varieties

Having an explicit birational mapping (projection and inverse maps) between the variety V and a hypersurface H of
equal dimension, the problem of computing the rational parametric equations of algebraic varieties V' then reduces to
the problem of parameterizing birationally related hypersurfaces H. We now provide such rational parameterization

algorithms for hypersurfaces of degree 2 in space n > 2 and degree 3 in space n > 3.

5.1 Parameterizing Hypersurfaces of Bounded Degree

Quadric Hypersurfaces Z7(f), n > 2



Geometric Idea: A line through a fixed point on ZZ(f) intersects Z3(f) in, at most, 1 additional point. The

coordinates of this additional point are then rational functions of the parameters of the line.

Algebraic Technigue:
1. Pick a point on Z7(f) and translate Z7(f) to the origin via a linear change of coordinates.
2. Map the origin to infinity along the X, axis via another linear change of coordinates.

3. The transformed equation of the hypersurface, must now be linear in z,, and hence z, is expressible as a

rational function of the remaining variables.

See Appendix A for algorithmic details.

Cubic Hypersurfaces Z5(f), n >3

Geometric Idea: A line intersects Z%(f) in at most three points. If two of these points lie on rational elements of
Z3(f) then the parameterized transversal connecting these two points will intersect ZF(f) in at most 1 additional
point. The coordinates of this additional point are then rational functions of the parameters of the transversal.

Algebraic Technique:

1. Pick a point on Z%(f) and translate ZZ(f) to the origin via a linear change of coordinates

2. Intersect Z%(f) with the tangent plane at the origin to yield a rational hypersurface Z5~(g).

3. Repeat (1) and (2) for a different point on ZZ(f) to yield another hypersurface Z%(h).

4. Now consider transversals connecting points on the two rational hypersurfaces Z5~*(g) and Z3~1(h).

5. The intersection of the transversal with ZF(f) yields three roots. Two of these are the chosen points on
Z371(g) and Z7~1(h), which can be factored out, leaving the remaining to be written as a rational function

of the parameters of the transversal.

See Appendix B for algorithmic details.

6 Possible Extensions

A natural extension to consider is computations with algebraic varieties of unbounded degree. One possibility for
constructing a general parameterization algorithm is perhaps to use an inductive argument on the degree of the
variety, with the results of this paper providing the base cases. Another interesting problem is to derive worst

case time bounds, using bit complexity analysis to model coefficient growth in all the multivariate polynomial



manipulations. Finally, interesting open algorithmic questions (which we did not get to consider in this paper) are
to compute the the singularities and the multiple genera of algebraic varieties.
Acknowledgements: 1 thank Guru Abhyankar for answering numerous questions and providing me references on
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A Appendix: Quadric Hypersurfaces

Consider the implicit representation of a quadric hypersurfac, (which is neither a cylinder or a cone)

Z5() D G fies 20 =0 8)

i1t +ia<2

We assume that all quadratic terms of Z3 (f) are present, for otherwise there exists a trivial parametricrepresentation.
1. Choose a simple point (a1, @, ...,an) on ZF(f) and apply a linear coordinate transformation
Y = zj — aj, i=1,..,n (9)

to make the resulting hypersurface pass through the origin. This yields

Z3(f) DL biaaU e
Y bt = (10)
f14...+in=2

2. Apply the homogenizing transformation

Y;

=2 j=1,.. 11
vo d=bhoan (11)

Y
to Z2(f1) and clear the denominator Y to yield

ZHF) ¢ Yo 3. bii s YYP Vi
ir4iot...Fin=1

+ Z CiligA..i,.Ylil---Yyi" =0 (12)
f1+io+t...+i,=2
3. Now in (12) there exists some nonzero coefficient of the quadratic terms Y, Y7, ..., Y. Without loss of
generality, let that be bago. o # 0. Then set Y7 = 1, a dehomogenizing transformation to yield

Z3(F) : Yo Y, YR Y
i1+ +in=1

+ Y YPLYin=0 (13)
14 4in=2

from where we obtain

: - iz in

Zi1+...+in=2 611.‘.an2 Yn
in i

Ei1+-..+in=1 bix...inYZ ...Yn

4. Using (14) and (11) with Y1 = 1 we obtain

Yo:-—

(14)

Zi1+ig+...+in=2 cilig...inyzi2~n Y:n
o (15)

1 Dy igtobin=1 biy i Yy Yar
e Yo o D iitint in=2 Ciyig..inYa" - Ya"
Yy Y D i tint. bin=l biy..in Y32 Yin
=y = - )
J

= 2,.



and finally using (9) we obtain

Tj =Y+ o

explicit parametric equations with parameters Y, ..., Y,,.

B Appendix: Cubic Hypersurfaces

Consider the general implicit equation of a cubic hypersurface

Z;(f) : Z ailizminzzllz;z”'xf'l" =0

i1+i2+1, <3

(17)

1. Choose a simple point (ay, ey, ..., @n) on ZF(f) and apply the linear coordinate transformation

Yi = Tj — o, j=1,..,n (18)

which translates the hypersurface Z%(f) to pass through the origin. This yields

Z3(f):

2. Apply the linear transformation

Z1 =

Zj:

RS 2 U P )
Z1'1-|-iz+4..i,,:1 bnz;...znyl Ys ...yn"
i1, 42

in
+zi1+i2+‘..+in:2 bi1ig...iny1 y2 yn

i1,1% i
+Ei1+i2+...+in=3 biligu.inyllyzn'”ynn

b1oo...041 + bo1o...0y2 + ... + booo...1Yn

Yi, i=1,..,n

(19)

(20)

which makes z; = 0 to be the new tangent hyperplane to the hypersurface at the origin. The hypersurface

Z2(f1) of equation (19) then becomes

Z3(f2) :

3. Intersecting the hypersurface Z3(f2) with the tangent hyperplane z; = 0 yields

i i
z1T + E Cig..inZo 2"

0<igt... 48, <2
2 i Z
+ oz E diy. i 212

1. tip=1
i in
+ E Siz...inzzz---zn
2. Fia=2
% in
-+ E tig...inZ22~~~Zn
Zg+ in=3

Z:?_l(fii) : Zi2+,..+in.—_2 Sizminzgz-"sz

. Li2 1
+Zi2+~u+in=3 tlz...znz2 ...Zn"

(21)

(22)



10.

11.

. Consider a u = (uy, ..., ug), k < n — 2, parameter family of lines, passing through the origin and lying in the

hyperplane z; = 0. These lines are given by

Zigz = uiZs, 1<i<k

zj = 2, k<j<n-2 (23)

. Intersect these lines given by equation (23) with Z}~!(f3) of equation (21) to yield

S £ 42
_ Zi2+~.+in=2 312...1nu1 ...uk

L yte ix+2
Z:|'1+...i,,=3 Ty iUy Uy

2 = (24)

which together with (23) above yields a parametric representation of Z53~!(f3) in terms of parameters u =

(Ul‘ cevy Uk).

. Using the linear transformation (18), (20), the parametric representation of Zg_l(f;;) and Z; = 0 we can

straightforwardly construct a u parameterization of Z3~'(f3) in the original space (z1, ..., z,). Namely
T; = M,r(u) 1 < 1 <n (25)

Next choose another simple point (81, B2, ..., Bn) on ZF(f) and repeat steps 1., 2., 3. replacing (a1, ag, ...an)
with (81, B2, ..., Bn). This would yield another Zg—l(fs) of similar structure as equation (21), viz.,the inter-

section of a corresponding hypersurface Z§( f2) with an appropriate tangent hyperplane 2; = 0.

Analogous to Step 4. above, consider then a v = (vy,...,v1), [ = n — k — 1, parameter family of lines, passing

through the origin and lying in the hyperplane #; = 0. These lines are again given by

Ziyo = widy, 1<5<I

5 = 5, 1<j<n-2 (26)

. Similar to Steps 5. and 6. above, intersect these lines of equation (26) with Z5~1(f3) to derive a v parametric

representation of Zg"l(fs) in the original space (z1, ..., z,). Namely,
Z; = N,'(V) 1 S i S n (27)

Finally consider the (u, v) parameter family of lines in (z1, ..., z,,) space joining points (M;(u), Ma(u), ..., Mn(u))
and (N1(v), Na(v), ..., No(v)). Namely,

(WVi(v) — Mi(v))
Nl(u) — Ml(u) (a"l - Nl(u))

1 <i<n (28)

z; = Ni(v) +

Intersect these lines of equation (28) with the hypersurface Z3(f) to yield
f(zlauav):() (29)

with degree of z; to be at most three, i.e., the lines intersect the hypersurface in at most three distinct

intersection points.



12. Two of the intersection points lying on the hypersurface Z3(f) have z; values M, (u), and Ny(v), Hence
(_xT—L(Az_"_)(uxlv-)T]? yields an expression which is linear in #;. Thus 1 = R(u,v) where R is a rational function in
the [+ k = (n — 1) parameters u = (u1, ..., ux), v = (v1, ..., ;). Using this together with equation (28) yields

a parametric representation of the hypersurface ZZ(f) in terms of the n — 1 parameters u, v.



